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1 Introduction

In many respects, the current state of DNA-based computing resembles the state
of standard, electronic computing a half century ago: a fascinating prospect is
slow to develop owing to inflexible interfaces and unacceptably low reliability of
the computational processes. We concentrate in this paper on the latter aspect,
specifically addressing the interplay between the reliability and speed of DNA
computing.

While DNA-based computational devices are known to be extremely energy
efficient, their reliability is seen as the greatest obstacle to becoming a viable
computing environment. As DNA based computing becomes more fully devel-
oped, the speed of self assembly will become a crucial factor; but as of now,
little is known concerning the fundamental question of computation times. We
emphasize the intrinsic connection between the two problems of reliability and
speed, because of the unavoidable trade-off that exists between them. A clear
understanding of the limitations of self-assembly reliability and speed, specifi-
cally that of DNA-based computing, and the interplay between these properties,
will be paramount in determining the full potential of the paradigm.

In our past work, which is briefly reviewed below, we analyzed, for a given
function, the time required to determine its value on given inputs, and therefore,
established theoretical limits on the performance of DNA-based computers. In
the simplest instance, the analysis of computation times has surprising connec-
tions with interacting particle systems and variational problems, as shown in
[1], and as further developed here. The critical new dimension of this paper lies
in (a) a novel approach to dramatic improvements in the reliability of compu-
tations and (b) in the analysis of the inevitable performance losses of reliable
computations.

Computation speed The early theoretical work on DNA-based computation fo-
cused chiefly on various measures of complexity, in particular, program-size and
time complexity [2—4]. However, Adleman et al [2,5] also investigated interest-
ing combinatorial questions such as the minimum number of tile types needed
for universality, and stochastic optimization questions such as the choice of con-
centrations that leads to minimum expected assembly times. Apart from these



works, the mathematical foundations of computational speed in a stochastic
context appear to be restricted to the ground breaking work of Adleman et
al [6] and to the more extensive work of Baryshnikov et al [7,8,1,9]. The for-
mer work studies random self assembly in one dimension. In a problem called
n—linear polymerization, elementary particles or monomers combine to form pro-
gressively larger polymers. The research of Baryshnikov et al [8] on linear self
assembly has resulted in exact results for dimer self assembly, which reduces to
an interesting maximal matching problem.

Error correction. Any implementation of DNA computing is constrained fun-
damentally by the fact that all basic interactions have energy thresholds that
are much lower than those in electronic devices. This means that any realistic
computational device based on organic structures like DNA is forced to operate
at signal-to-noise ratios several orders of magnitude lower than those in elec-
tronic computing. Therefore, error correction at the computation stage becomes
a necessity. Recent research has focused on methods of error correction based on
approaches that are analogous, at some level, to the repetition coding of infor-
mation theory, or, in the computer science context, the concurrent execution of
the same computational algorithm with subsequent comparison of results. Note
also that biological computations achieve redundancy at little extra cost, as by
the inherent virtues of the process, many copies of it are run independently.

However, in our view, an essential component has to be introduced into this
paradigm. It involves the notion of pulsing and is analogous to checkpointing?,
in which computations are periodically tested to decide their validity. If a test
certifies the outputs of the running processes, the inner state of the comput-
ing device is saved, and the computation resumes. Otherwise, the computation
restarts from the last checkpoint. In our DNA-computing context, saving a state
need not entail a specific operation as in classical computing applications. Yet
the process of returning from an invalid state to a most recent valid state (i.e.,
rescuing the latest stage of a self assembled structure that was still error-free)
also requires an operation that usually has a non-negligible (delay) cost, a cost
that must be balanced by a higher speed of checkpointed computations.

Tile model. Formally, the now standard tiling system introduced and validated as
a universal computational framework in [11, 12] will be our abstract model, and
follows the adaptation to elementary logic units of DNA computing described
by Winfree and Rothemund [13, 3]. The tile is modeled as shown in Figure 1 as
a marked or labeled square. Briefly, in the simplest version, the label values are
0 or 1, and they break down into two input labels on one edge and two output
labels on the opposite edge. As illustrated in Figure 1, a computational step
consists of one tile bonding to others according to given rules that match input
labels of one tile to the output labels of one or two adjacent tiles. Successive
bonding of tiles in a self assembly process performs a computation.

4 Checkpointing techniques have been in use since the early days of computing; see,
e.g., [10]
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Fig. 1. Since a tile glues to other tiles only if their corner labels match, operation
0@1 = 1 is performed. The correct output tile simply attaches itself to the preassembled
input tiles, effectively yielding the output bit.

Currently, in a typical implementation of this scheme, the tiles are DNA-
based molecular structures moving randomly, in solution, and capable of func-
tioning independently and in parallel in a self assembly process. This process
results in a crystal-like construct modeled as a two dimensional array whose
allowable structural variations correspond to the possible results of a given com-
putation. We emphasize the contrast with classical computing paradigms: the
random phenomena of self assembly create a randomness in the time required
to perform a given computation.

2 Growth Models

The tiling self assemblies of the last section are growth processes. Through the
abstraction described next, the times to grow constructs or patterns can be
related to classical theories of particle processes; growth in the latter processes
is again subject to rules analogous to those governing the self assembly process
of the previous section.

An initial set of tiles (the input) is placed along the coordinate axes, and
growth proceeds outward in the positive quadrant; the placement of a new tile is
allowed only if there are already tiles to the left and below the new tile’s position
which match labels as before. The left-and-below constraint is equivalent to
requiring a newly added tile to bond at both of its input labels. The completion
of the computation occurs at the attachment of the upper-right corner tile which
can happen only after all other tiles are in place.

The fundamental quantity of interest is the computation time, or equivalently,
the time until the final square (represented by the upper right corner square in
position (M, N)) is in place. Let T;; be the time it takes for a tile to land
at position (4,7) once the conditions are favorable; that is, once both positions
(i, — 1) and (i — 1,7) are tiled. In a reference theory for self assembly, it is
natural to take the T} ;’s as independent exponential random variables with unit
means. Let C; ; be the time until the square (i, j) becomes occupied, so that the
random completion time of interest is given by Cas n.

On discovering the isomorphic relationship between the self assembly process
and the totally asymmetric simple exclusion process (TASEP), Baryshnikov et



al [1] exploited the results on TASEP behavior in the hydrodynamic limit to
show that, as N, M grow to infinity such that M /N tends to a positive constant,
one has [14, p. 412] Cyr.n/(VM + V' N)? ~ 1, a formula quantifying the de-
gree of parallelism in the computation. One can generalize this formula to more
general shapes and to schemes where tiles can depart as well (like the schemes
described in [15]). Growth is no longer monotonic, but still can be mapped to a
generalization of TASEP for which similar results are known. One obtains [1]

Theorem 1 The time Exp , required to complete computation on a DNA com-
puter of shape XD with tiles arriving at rate 1 and departing at rate p is given

by
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3 Error Correction with Checkpointing

Checkpointing is a popular error-correction method implemented in operating
systems. Typically a control mechanism periodically creates checkpoints, at dif-
ferent times (milestones) in the process. State information is stored at a check-
point so that the process can restart from that location without having to per-
form work done before the checkpoint. Thus, when the controlled process fails,
it is rolled back to the most recent checkpoint and resumes from that point.

We expect the checkpointing method, being a simple but elegant error-
correction technique to become a viable tool in the area, at least until a dramatic
change in the underlying chemical technology takes place. The narrow question
we address below is how to apply it to DNA tile self-assembly. First, however,
we briefly review other approaches.

Alternative approaches The two most frequent errors in DNA self-assembly are
growth errors and nucleation errors. Growth errors occur when a wrong type of
tile, an errortile, attaches to the lattice; a sublattice that forms with the error tile
at its origin will then be corrupt. A nucleation error occurs when only one side
of a tile attaches to the lattice, and hence at a wrong position. Thermodynamic
controls that slow down growth can be introduced to help ensure the relatively
early separation of error tiles.

A tile can also be designed to have its own error-correction capability, or
a new type of tile that assists the self-assembly process in lowering error rate
can be introduced. Several methods for this have been proposed. For example,
Winfree and Bekbolatov’s Proofreading Tile Set [15] shows that the error rate
can be reduced significantly by creating an original Wang Tile using four or nine
smaller tiles (2 x 2 or 3 x 3) in order to ensure that the small incorrect tiles
will fall off before they are assembled to form an incorrect Wang tile. Chen and
Goel’s Snake Tile Set [16] improves the Proofreading Tile Set by ensuring that
the smaller tiles can be assembled only in certain directions.



Reif et al [17] use pads to perform error checking when a new tile is attached
to the lattice. Each pad acts as a kind of adhesive, connecting two Wang tiles
together, whereas in the original approach the Wang tiles attach to each other.
This method allows for redundancy: a single pad mismatch between a tile and
its immediate neighbor forces at least one further pad mismatch between a pair
of adjacent tiles. This padding method can be extended further to increase the
level of redundancy.

Chen et al’s Invadable Tile Set [18] applies the invading capability of the
DNA strand to emulate the invasion of a tile. In this model, the tiles are de-
signed so that the correct tile can invade any incorrect tile during the lattice
growth process. Fujibayashi and Murata’s Layered Tile Model [19] significantly
reduces the error rate by using two layers of tiles: the Wang tile layer and the
protective tile layer. The protective layer does not allow tiles to attach to the lat-
tice incorrectly. When the attachment is correct, the protective tile releases the
rule tile, to which the next tile attaches itself. As one must expect, all methods
have one or more shortcomings or costs associated with them, such as prolonged
self-assembly times, enlarged lattices, potential instabilities, and failure to deal
effectively with both error types.

Modeling checkpointing in DNA self-assembly Temperature pulsing, a widely
used method to grow crystals, is analogous to checkpointing. Periodic pulses re-
move the defective parts of a crystal; in particular, the hydrogen bonds between
improperly attached DNA tiles are broken so that defective substructures can
separate from the lattice, thus restarting growth at an earlier fault-free struc-
ture. Parameters other than temperature can also be considered in the pulsing
approach. Pulsing applied to the DNA tile self-assembly model removes the in-
correctly attached tiles from the assembly at a higher rate than the correct ones.
More targeted pulsing systems can employ enzymatic or conformational ways to
shift the binding energy.

In our model of self-assembly with checkpointing, we consider a lattice of
size N x N. (While our results are valid for general shapes, the square lattice
helps focus discussion.) We study the standard growth process described earlier,
with the modification that there are two competing populations of tiles to be
attached, correct tiles and erroneous tiles. With an appropriate rescaling, the
waiting time until a tile attaches at a vacant position is taken to be exponential
with mean 1 (all attachment times are independent). Attached tiles are erroneous
with probability q.

We call a tile that attaches to a valid structure a seed error tile. Any tile
attached to the north east of the seed error tile is automatically an error tile
as it participates in an incorrect computation. (See Figure 2(a)). In our initial
analysis we assume that a pulse succeeds in washing out all defective regions of
the structure. (See Figure 2(a).)

A growth stage consists of a growth period of duration P between consecutive
pulses. At the end of one such stage, the locations of the seed error tiles define
the boundary of the lattice for the next growth period, on which more tiles will
be attached. A growth layer is the region of tiles that attach to the lattice during
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Fig. 2. (a) - the profile of DNA tile self-assembly process before and after a pulse. (b)
the number of layers and the longest increasing subsequence

one growth step. The number of stages required to complete the N x N lattice
is the number of pulses or layers required to complete the lattice.

The shapes at the beginning of each growth stage form a Markov process
which is clearly significantly more complicated than the growth process without
pulsing. Moreover, it is easily seen that these processes cannot be mapped onto
1-dimensional particle processes with local interaction. Hence to evaluate per-
formance, we are forced to resort to asymptotic analysis and simulation studies.

Small q asymptotics The number of pulses required to complete a crystal can
be approximated using Hammersley’s Process. In our version of this process, we
have an underlying Poisson process in two dimensions with samples w taken from
the square S = [0, a] x [0,a]. For each z = (z,y) € S let n(z) be the length of
the longest monotone subsequence in w between (0,0) and z, that is the maximal
length ¢ of a chain of points (z1,y1) < (z2,y2) < ... < (ze,ye) < (z,y), where
(u,v) < (u/,v") iff u < v and v < v'. See Figure 2(b).

The problem of finding this length is closely related to the famous problem
of finding the longest increasing subsequence in a random permutation (Ulam’s
problem). It turns out that the expected value E¢ ~ 2a, as a — o0, see, e.g.,
[20].

This implies immediately some information on the asymptotic scaling of the
number of pulses L, in the limit of small ¢ and large /N. Indeed, we have

Theorem 2 As PPN — oo, and ¢ — 0 in such way that ¢ = o(P/N), the
number L, of pulses required for an error-free assembly grows as

L, ~ 2N /q.

Using this result, we can adjust the value of P so as to obtain an estimate
of the minimal time required to complete the lattice for any given NN, ¢, and



average time ps taken by a pulse to remove error tiles. More details can be found
in [21].

Remark. The Layered Tile Set [19] can be seen as a variant of our method
where P is 1 time unit. When the value of P is very small, the total number of
pulses becomes very large because the process pulses once per time unit. As a
result, when the value of P is small, the completion time for the formation of the
crystal is inversely large. Furthermore, in the case of a high p,, a very low value
of P will not be suitable for the process because of the length of time required
during the checkpointing process. Therefore, if P is adjusted appropriately, our
checkpointing method will be better than the Layered Tile Set technique.

Simulation analysis The total crystal completion time, T', consists of the total
time required by tile attachment, T4, pulsing setup time and the pulsing over-
head, T},. Our simulations determine the effect of P and ¢ on T4 and 7},. The
simulation of a 500 x 500 lattice yielded T4 and 7}, for different values of P and
g. The total pulsing overhead time, T}, is given by T, = psL,, (recall that p; is
the average time taken by a pulse to remove all erroneous tiles).
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Fig. 3. The performance of pulsing for various P and ¢. Crystal size: 500 x 500

Our self assembly simulations created more than a million tiles. Developing
the simulator was a challenge in itself, given current limits on computer memory.
We designed our simulator so that it contains only the information of the crystal,
which for our purposes will suffice without having to assign memory space for
each tile. Implementation details can be found in [21].

Figure 3 shows the effects of P and g on the performance of self-assembly
with pulsing. Since the total time 7" required to complete the crystal is T, + T4,
we see that T" in general has an optimal point for given p;.

For example, Figure 4(a) shows the total-time surface plot as a function
of (P,q). For simplicity, we assume that the time required for each pulse, ps, is
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linearly proportional to the growth time, ps = 0.2P+2, to show how p; can affect
the total time, T'. For a given value of ¢, there is an optimal P that minimizes
the total time to complete the self-assembly. Figure 4(b) shows the total time for
different values of P with the error probability ¢ = 0.05. The figure shows that
one obtains the highest over-all lattice growth rate when P is approximately 9
time units.

4 Future Directions

We have introduced and analyzed the performance of an error-correcting self as-
sembly pulsing/checkpointing technique. This comprises the modeling and anal-
ysis component of an over-all project that will include the essential experimental
component. To fully verify the validity of the method, we propose an experimen-
tal setup that produces a simple periodic system capable of errors, as a testbed
for examining our proposed error-correcting techniques. It is possible to ’tag’
particular elements in 2D crystals; the addition of a DNA hairpin that sticks up
from the plane of the array is the simplest tag. Thus, rather than using a single
motif to act as a ’tile’ in forming the crystal, we can use two or more different
tiles, say, an A-tile and a B-tile. An example of this approach is shown for DX
molecules in Figure 5.

The experiments we propose here are based on this notion of two differently
marked tiles. The idea is to make a 2-D array with two tiles whose sticky ends
are distinct, as they are in the DX example above. It is unlikely that individual 4
nm x 16 nm DX tiles can be recognized, but many motifs with large dimensions
in both directions exist (see e.g., [22]), and they would be appropriate for this
experiment. The uniqueness of the sticky ends is central to the robust formation



Fig.5. A Schematic DX Array with 2 Components, A and B*; B* contains a hairpin
(the black circle) that protrudes from the plane. Sticky ends are shown geometrically.
Note that the A and B* components tile the plane. Their dimensions in this projection
are 4 X 16 nm, so a 32 nm stripe is seen on the AFM image to the right.

of the pattern shown above. Were the sticky ends of the two molecules identical,
a random array of protruding features would result, rather than the well-formed
stripes shown. It is clear that there must exist some middle ground between
unique sticky ends and identical sticky ends. Each tile contains four sticky ends,
each of six or so nucleotides. We propose to explore steps on the way from
uniqueness to identity (starting from unique) so that we can get a set of tiles
that produce an array with a well-defined error rate, low but detectable.

Once we have such a system, it will then be possible to do prototype rescue
operations, the results of which are expected to complement and validate the
modeling approach. The basis of these operations will be thermodynamic pulsing,
but the study of techniques based on recognition of structural differences in the
2D array, or some combination of the two basic approaches, will be pursued as
well.
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