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INTRODUCTION

Since June 1963, a Time-Sharing System has
been operational at the System Development
Corporation in Santa Monica. This system was
produced under the sponsorship of ARPA and
has utilized ideas developed at both Massachu-
setts Institute of Technology®* and Bolt,
Beranek, and Newman,!-1! as well as some origi-
nal techniques. Time-sharing, in this case,
means the simultaneous access to a computer
by a large number of independent (and/or re-
lated) users and programs. The system is also
“general purpose,” since there is essentially no
restriction on the kind of program that it can
accommodate. The system has been used for
compiling and debugging programs, conducting
research, performing calculations, conducting
games, and executing on-line programs using
both algebraic and list-processing. languages.

This paper is divided into four major dis-
cugsions. These are: (1) an outline of the capa-
bilities provided for the user by the equipment
and program system; (2) a description of the
system’s operation, with an analysis of the sys-
tem scheduling techniques and properties; (8)
a somewhat detailed description of two of the
currently operating system service programs;
and (4) a conclusion and summary.

CAPABILITIES FOR THE USER

Equipment Configuration

The major computer used by the Time-
Sharing System (TSS) Executive is the, AN/
FSQ-32 (manufactured by IBM). Also used
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by the system is the PDP-1 (manufactured by
Digital Equipment Corp.), which is the major
input/output vehicle for the various remote
devices.

The remote input/output devices available to
users include Teletypes, displays, and other
computers. These devices can be run from
within SDC, and from the outside, with the
exception of displays, which can be operated
only a short distance from the computer. It is
expected that computers to be used at remote
stations will eventually include the CDC 1604,
the DEC PDP-1, and the IBM 1410. (Currently
only the 160A is being used, from an installa-
tion 400 miles distant from the Q-32.) Figure 1
is a description of the system's remote equip- .
ment configuration.' '
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Figure 1. Remote Equipment Configuration.
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The AN/FSQ-32 computer is a 1’s-comple-
ment, 48-bit-word computer, with 65,536 words
of high-speed (2.5 usec. cycle time minus over-
lap) memory available for programs, and an
additional 16,384 words of high-speed memory
available for data and input/output buffering;
the latter memory is called input memory. The
PDP-1 also has access to the input memory;
thus, this memory serves as the interface be-
tween the two computers. In addition, the Q-32
has an extremely powerful instruction reper-
toire, including access to parts of words for
loading, storing, and arithmetic; it also has an
extensive interrupt system.

Figure 2 shows the principal components of
the system and the important information-flow
paths throughout the system. As implied in
the figure, each main memory bank (16K
words) is individually and independently ac-
cessible by three control units: the central proc-
essor unit, the high-speed control unit, and the
low-speed control unit. High-speed 1/0, low-
speed 1/0, and central processing can take
place simultaneously out of different memory
banks, or, with certam restrictions, out of the
same memory bank. The high-speed and low-
speed 1/0 operations originate, of course, frem
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Figure 2. TSS Hardware System.

requests by the central processor unit. The
low-speed control unit can service two or more
low-speed 1/0 devices simultaneously, while the
high-speed devices can only be operated indi-
vidually, mainly because their cycle time ap-
proaches that of core memory.

A memory-protection mechanism and an in-
terrupt, interval (quantum) clock (not shown
in the figure) are also integral parts of the
TSS computer system. On a bank-by-bank basis
only, the memory protection mechanism pro-
vides the capability for inhibiting, under pro-
gram control, the writing of information into
one or more memory banks. The quantum clock
has the following characteristics:

1. It can be set under program control to a
time interval (quantum) anywhere in the
range from a few msec. to 400 msec.

2. It can be made to interrupt computer op-
erations after the set interval has elapsed,
or after any power-of-two multiple of the
set interval (up to a multiple of eight)
has elapsed. .. -

3. Under program confrol,"y can be acti-
vated'and reset, .~

A summary of the pertinent device charac-
teristics is given in Table I below. The disk
file shown in Figure 2 is currently being in-
corporated into the system.

The Time-Sharing System as it Looks to the
User

The time-sharing user today communicates
with the Time-Sharing System primarily by
means of Teletype. He has at his disposal six
basic commands to the system. Briefly, these
commands are:

e LOGIN: The user is beginning a run. With
this command he gives his identification
and a “job number.”

o LOAD: The user requests a program to be
loaded (currently from tape, eventually,
from disk). Once this command is exe-
cuted, the program is an “object program”
in the system.

e GO: The user starts the operation of an
object program or restarts the operation
of an object program that has been
stopped. Once the user gives this com-
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Table I. Characteristics of the AN/FSQ-32 Storage Devices

DEVICE SIZE WORD RATE AVERAGE ACCESS TIME
Core Memory 65K 2.5 psec./wd. —

Inut/Output 16K 2.5 psec./wd. —_

Core Memory

Magnetic Drums 400K 2.75 psec. /wd. 10 msec.

Disk File 4000K 11.75 psec./wd. 225 msec.

Magnetic Tapes 16
Drives

128 psec./wd.
(High density)

mand, he can send Teletype messages to
either his object program or the Time-
Sharing System.

¢ STOP: The user stops the operation of an
object program.

e QUIT: The user has finished a particular
job. Upon receipt of the QUIT, the Time-
Sharing System punches a card with cer-
tain accounting information on it and re-
moves the object program from the sys-
tem.

e DIAL: The user may communicate with
other users or the computer operators with
this command.

In addition to these basic commands, the user
has available to him a variety of on-line pro-
gram debugging, or checkout, functions which
give immediate access to any part(s) of an
object program.

Briefly, these debugging functions include:

e Open: Displays the contents of the given
memory or machine register and uses this
as a base address for other debugging
commands.

¢ Modify open register address: Changes the
address of the opened register by the given
increment or decrement.

e Insert: Inserts the given value into the
opened register.

e Mask: Inserts values by the given mask.

¢ Mode: Displays values according to speci-

fied mode (floating, decimal, octal, Hol-
lerith).

5 to 30 mseec. (no positioning), depending on
whether the tape is at load point, and whether
it is being read or written.

e Break point: When a specified point in the
program is reached, notifies the user, and
(on options) displays registers, and stops
or continues the program. As many as
five break points are allowed simultane-
ously.

e Dump: Dumps a given set of registers,
either on Teletype or tape.

The actual commands to perform these func-
tions usually include a symbol or address with
one or two unique Teletype characters.

Additional Facilities Available to System Users

The commands and devices mentioned so far
are facilities available to users or users’ object
programs directly through the Time-Sharing
System’s Executive. With these facilities one
could run and debug programs that exist in a
binary form. To make the system more useful,
however, a number of additional devices (called
service routines) are available to users. These
are themselves run as object programs, so it
is clear that there is no limit to the number of
service routines that can eventually be made
available.

These service routines include programs to
file and update symbolic information; com-
pilers; a fancy desk calculator; tape-handling
routines; and a number of others including
some advanced routines utilizing interpretive
techniques. A more detailed description of these
interpretive routines appears in the time-shar-
ing applications section, below.
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SYSTEM OPERATION AND TIME AND
SPACE ALLOCATION

System Operation

The discussion so far has been primarily on
the operation of the system from the user’s
point of view. The following is an over-all de-
scription of the system and how it operates.

Basically, the system operates as follows:
All object programs are stored on drum, put
there as a result of the LOAD command. When
a program’s time to operate arrives, or, pref-
erably, ahead of this time, it is brought into
high-speed memory. If bringing a program into
its area in memory causes a storage conflict
with another program, the latter must be re-
stored to its place on drums (a process called
swapping). A program’s turn will end when
it initiates an input or output request, when
a machine or program error is detected, or
when its time is up, the time allotted being de-
termined prior to its turn. At the completion of
its turn, its machine environment (e.g., accu-
mulator, index-registers, ete.) is saved, and it
either resides in memory until its next turn
or is written on drums. This mechanism is con-
trolled by the time-sharing Executive.

As stated before, there is no restriction on
the type of object program that can run in the
system. Therefore, as much input/output
equipment as possible is made available to ob-
ject programs; thus, object programs may use
tapes, displays, and Teletypes for input and
output. Other computers can also be treated
as input/output devices; further, disk storaze
is available to object programs. Since it is im-
practical, in such a system, to have specific
Teletypes or tapes referred to by object pro-
grams, input/output is done in a general fash-
ion, with all input/output devices given arbi-
trary names by the object programs and
declared to be files used by the object program
during its run. Thus, only the Time-Sharing
System knows what physical tape drivers, Tele-
types, or areas of drums are being used.

The Time-Sharing System’s Q-32 Executive
occupies 16,384 words of memory, leaving the
remainder of memory for object programs. The
Executive that exists in the PDP-1 is primarily
concerned with maintaining the flow of infor-

mation to and from the remote devices. It
does relatively little decision-making. However,
it does determine the kind of input/output
device concerned, the type of conversion neces-
sary (if any), and the particular channel of the
device with which it is communicating.

The time-sharing Executive in the Q-32 has
eight major components, These include routines
that perform input/output, perform on-line
debugging, interpret commands, assign stor-
age, and schedule object programs. By far the
most distinctive feature of the time-sharing
Executive, compared to other monitors or ex-
ecutive systems, is the scheduler. Accordingly,
a more detailed description of time and space
scheduling follows.

Time Allocation and User Capacity

The first problem considered in the Time-
Sharing System (TSS) scheduling design was
the determination of the minimum amount of
time to be given each program during a re-
sponse cycle of the system. A response cycle is
that period of time during which all active pro-
grams (i.e., programs requiring central process-
ing time) are serviced. Clearly, to satisfy
TSS objectives, this quantum of time (q) must
be at least as great as the average amount of
time required by an object program to produce
a response. Here, of course, we refer only to
those programs designed to communicate with
a user station (display or keyboard device),
and to those programs for which a fast response
is desired and can reasonably be expected. In
other words, a user requesting a matrix in-
version will (and must) expect to wait con-
siderably longer than a user wishing only to
see the contents of some register in his pro-
gram,

Initially, it was obviously not possible to
determine a priori the distribution of object-
program operating times, nor was it even pos-
sible to define or classify the group of users re-
quiring these data. The currently available in-
formation regarding user programs, and, to
some extent, the experience of others, indicated
that a q of 50 msec. was sufficient. The extensive
recording now being performed during TSS
operation is accumulating data that will much
more accurately indicate the necessary q size.
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In the following section, “worst-case” situa-
tions are being treated. “Worst-case” situa-
tions are being treated because they, by defini-
tion, give the overload threshold or capacity of
the system; because they simplify the problem
of having to cope with the distributions of
object-program sizes and operating times; and
pbecause TSS will be operating at, or near,
capacity for a high percentage of the time, if
the present rate of usage continues. In some
cases the “worst-case’” values that are used had
to be estimated. There is considerable evidence,
however, to support the estimates given in the
following approximation of the maximum num-
ber (Dmax) Of active users that can be serviced
in one response cycle, when given the size of the
response interval (t,), the quantum size, and
the hardware constraints.

In the current version of TSS the “worst-
case” response cycle consists of the following
recurrent, non-overlapping sequence of opera-
tions: dumping of the last program operated;
loading of the next program to operate; alloca-
tion of the time interval for operation. For the
values of q and t, that are of interest, the num-
ber of active programs in the system can be
much larger than the number of memory-pro-
tected programs that can be held in core
memory at one time; therefore, the above se-
quence will virtually always be necessary for

the operation of each program.

Assuming (as is presently the case) that
object programs are not relocatable, we have
(in view of the regular, cyclic operation of
TSS) the following simple relation,

2t. + q

where t, represents an average value for the
time it takes to transfer a program from drum
storage to core memory or vice versa, and 5 is
the fraction of time (overhead) used by the
Executive during each response cycle.

(1)

nmnx =

The fraction of overhead () is a difficult
quantity to evaluate, and it depends to some
extent on n,,.. Because of the complexity of
TSS operation, it is also difficult to estimate
» through recording during TSS operation.
From experience to date with the system, it is
estimated that = ranges from two per cent to

fifteen or twenty per cent depending on existing
circumstances.

Equation (1) shows that, without major re-
visions in hardware, a significant inprovement
in nmax can be achieved only through a decrease
in the quantity (2t, + q). In particular, if
object programs can be made dynamically re-
locatable, this quantity can be reduced to the
value of 2t, alone. Clearly, this is the best one
can do, simply because the speed of the high-
speed I/O section in swapping programs in an
uninterrupted sequence represents a funda-
mental upper bound on TSS capacity. Further
improvement necessitates an extensive increase
in core-memory size, so that at least some active
programs can remain in memory during con-
secutive response cycles. An increase in np.,
brought about by an increase in the speed of
the high-speed I/0 section is not economically
feasible as can be seen from the equipment de-
scription given earlier.

Assuming dynamic relocatability of pro-
grams, equation (1) changes to:

Muux= (1 —7)t, 2t, (2)
In practice, the extent to which the optimum
is attained depends on the distributions of
object-program sizes and operating times. If
2t. is substantially larger than q, Equation (2)
can, for all practical purposes, be considered an
equality. Relocatability at load time would, of
course, also significantly increase n,,,, but the
improvement that could be expected would be
substantially less than that given in Equation
(2). For a more specific evaluation of the im-
provement, a knowledge of the distributions
just mentioned is necessary.

The linear relationships between np.. and t,
given by Equations (1) and (2) are shown
graphically in Figure 8 with the following
parameter values: q = 50 msec., » = 0.20, and

T T T T T—¢t, (aec.)
0.5 1.0 1.5 2.0 2.5 F

Figure 3. Response Time vs. Number of Users.
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2t, = 100 msec. (corresponding to a program
size of 16K words). At present, a value of 2.0
sec. is being used for t,, with a resulting Ny,
of about 11,

Up to now, the efficiency of central processor
utilization (relative to unoverlapped I/0 time)
has been considered of secondary importance,
providing that user requirements have been
met. Admittedly, this computational efficiency?
is rather low in the “worst-case” situations.
As will be seen in the next section, however, the
way in which object programs are sequenced
tends to maximize this efficiency for any given
load situation. Clearly, the installation of
dynamic relocatability in the system would
allow an efficiency up to 50% since q can be
made equal to 2t, without affecting Equation

(2).

It should be emphasized that nn., does not
represent the maximum number (N..,) of user
stations that can be active at one time; it rep-
resents only the maximum number of user
programs that can be serviced in a fixed re-
sponse interval under the assumptions given
earlier. It has been conservatively estimated
that the associated object program is in need of
central processor time only ten to twenty per
cent of the time during which a user station is
in use. Accordingly, it may be possible to
make N.. considerably larger than np,, with-
out significantly jeopardizing user-response
requirements. Three important factors figure
in the estimate of p = npas/Npax:

1. Relative to computer processing speeds,
many applications (e.g., debugging, gam-
ing) consume considerable user time in
thinking and output analysis.

2. The average user is less than professional
in his use of input devices. A slow
manual-input rate, coupled with occa-
sional typing or format errors, will cer-
tainly tend to make p small.

3. Generally, computer output to user sta-
tions takes as much as one to ten seconds.

The estimate of , given above was based on
the observation of these three factors during
system operation and has been justified by the
results of the limited amount of recording
currently available. In obtaining the precise

distribution of the quantity , it will be possible
to determine the probability of overload for a
given Ny.;, or to determine the N, necessary
for a given probability of overload. It should
also be pointed out that, ultimately in TSS, as
in a telephone exchange, several more user sta-
tions may be allowed than can actually be in
use at one time. The extent to which N,... can
be exceeded must again be determined by a
distribution obtained in the same manner as
for p.

Sequencing and Priorities

The sequence in which object programs are
allocated time is determined by a priority
scheme that favors the smaller programs that
do not use low-speed I/0 time. The amount of
time allocated is given by the total time avail-
able (t,), divided by the current number (n)
of object programs requesting central process-
ing time. When n= n,.,, the time allocated is
given by the minimum quantum discussed in
the previous paragraphs.

The priority scheme was adopted to prevent
low-speed I/0 that was initiated by object pro-
grams from degrading the response of those
users not using low-speed I1/0. Users whose
programs require low-speed I/0 must expect
poorer response, not only because of the low-
speed operations, but also because of possible
conflicts in object-program I/0 requests. Each
object program in the system receives a prior-
ity according to the criteria in Table II.

Table II. Priority Criteria

PROGRAM
PRIORITY] CHARACTERISTICS
1 Program is less than 16K and does

not use low-speed 1/0.

2 Program is less than 32K and uses|
low-speed I/0 or, program is be-
tween 16K and 32K and no low-
speed 1/0.

3 rogram in excess of 32K.

—

During any given interval of time, Priority
1 programs will receive service first; Priority
2, second ; and Priority 3, last. To prevent deg-
radation of response by low-speed I/0, main
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Figure 4. Main Memory Allocation.

memory is partitioned and allocated as shown
in Figure 4. Because of the relatively small
number of current TSS users, this storage al-
location procedure has not yet been imposed on
object programs. In the future when the num-
ber of Priority 2 and 3 users begins to cause a
significant degradation in Priority 1 response,
this scheme will be fully implemented as de-
scribed.

Figure 4 shows that Priority 1 and 2 pro-
grams can be multiplexed, but Priority 3 pro-
grams preempt practically the entire machine.
The priority scheme cannot solve the problem
arising when a Priority 3 program undertakes
a lengthy, low-speed I/0 transfer. The majority
of programs using low-speed I/0, however,
concern tape transfers, which involve no
searching, that take from 50 to 75 msec.

When a program completes operation prior
to the expiration of its time allocation for any
of the reasons given in the second paragraph
of this section, the remaining time will be re-
distributed among the remaining users re-
questing service. As a result, the large Priority
2 and 3 users will generally receive more time
than the Priority 1 users, thus increasing the
potential utilization of central-processor time.

Space Allocation

Although the timing and speed limitations on
TSS capability have been of concern, storsge
limitations are presently far more severe. Stor-
age limitations can be largely removed, how-
ever, by acquisition of additional drum space
up to the maximum of about 600K. Figure 5
gives a rough idea of how much drum storage
must be provided for object programs, to
achieve a balance between the speed and capac-
ity of the system. The curves are obtained by
letting n,.. = pNu.e in Eq. (1), t, = 2.0 sec,,
n=0.2, and p = 0.2.

3
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In the initial TSS model (with only eight
TTY users), auxiliary memory drum storage
wags partitioned and allocated in a fixed man-
ner to provide an early working model of the
system. This technique proved quite satisfac-
tory at the time, but the number of input sta-
tions has now increased to about 48. To ac-
commodate the additional users, a more effi-
cient use of drum storage was necessary. The
present method meets this requirement by al-
locating storage in a contiguous, “head-to-tail”
fashion. The adapatability of this storage-al-
location method requires searching an inven-
tory of available drum space each time a new
program enters the system, and periodically
redistributing drum space to maximize the
available amount of contiguous drum space. A
possible disadvantage of this method is the
additional overhead produced, especially when
programs must be reshuffled to allocate a
sufficient amount of contiguous drum space
for a new program. Here again, the perform-
ance of this storage allocation technique must
be evaluated by statistical recording, since the
performance depends strongly on the distribu-
tion of program sizes, and on the rates at
which programs enter and leave the system.
However, at present (and in the foreseeable
future) the above rates are so low that the ad-
ditional overhead produced is negligible.

Future Improvements in TSS Scheduling

There are many ways, including both hard-
ware and software additions to the system, in
which the capacity and scheduling efficiency of
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TSS can be enhanced. The more or less obvious
hardware improvements include:

o Additional core memory
o Additional drum memory
o Relocation mechanism

o Disk storage

The effects of a relocation mechanism and ad-
ditional drum storage have been described in
the previous sections. Additional main memory
can be expected to allow for a larger Executive
system, larger object programs, and greater
scheduling efficiency. However, a substantial
improvement in scheduling efficiency must be
predicated on the existence of a relocation
mechanism, when one makes the obvious as-
sumption that the memory size is small com-
pared to the total size of all active object pro-
grams.

The disk file, which is just now being in-
stalled and checked out, will supplant tapes for
all those applications in which disks are faster
and use less machine time. It is expected that
disks will be used to store a program library
for TSS usage and to store large data bases for
object program usage. It is conceivable that
disks will also be used for program swapping.
The first use of the disk file promises to elimi-
nate a high percentage of manual operations
agsociated with program loading from tapes,
and thus to reduce greatly the corresponding
delay experienced by users. The second use
should save considerable time for the user
whose application involves searching through
large data bases.

Although the estimates given in this paper
are based realistically on current experience, it
is not unlikely that user characteristics will
evolve quite differently than predicted. Pro-
gram sizes and/or operating times may grow
to a point that invalidates the ‘“worst-case”
figures given in this section. It is possible,
however, to counteract a certain amount of this
degradation by certain improvements in sched-
uling logic. One improvement would be ob-
tained by taking advantage of the fact that a
fairly large class of users exists for whom re-
sponses substantially greater than one or two
seconds are quite acceptable. In short, it is
possihle to assign response levels to each user

and to service each user just frequently enough
to ensure his level of response. Furthermore,
the disk file can be used for swapping those pro:
grams for which short responses are not neces-
sary. Provided that disk access is in paralle]
with other high-speed I/0 activities, the effec-
tive swapping speed can retain the same order
of magnitude as for drums.

There are many programs that do not alter
themselves during their execution. Thus, as
another software improvement, these pro-
grams could be treated by the system in two
sections: an instruction section and an en-
vironment (data) section. During a program’s
execution it would never be necessary to write
the instruction section back on drums; only
the environment section and the machine con-
ditions at interrupt would be written back on
drums. These and other improvements to TSS
are under present investigation. Of principal
concern in the investigation of these system
changes is the amount of overhead they pro-
duce. In some cases the increase in overhead
exceeds the expected “improvement” in operat-
ing speed and efficiency.

TIME-SHARING APPLICATIONS

To illustrate the ‘“‘general purpose” nature
of the Time-Sharing System, we focus on two
interesting programming systems currently
operating on TSS as service systems for the
user. The first, IPL-TS, is a complete list-
processing system for the Information Process-
ing Language V developed by Newell, Simon,
and Shaw.!? The second, TINT, is an on-line
Teletype INTerpreter for theJOVIALalgebraic
language developed by SDC.16 17 When the
Time-Sharing System 'is equipped with these
two programming-language systems, the user
is immediately provided with a familiar pro-
gramming system to ease his transition to
programming for time-sharing, and allowed to
use, with little or no modification, any code he
may have previously written in IPL-V or
JOVIAL for other machine systems.

IPL-TS Description

IPL-TS executes interpretively IPL-V code
written in accordance with the latest published
IPL-V conventions.’* Some exceptions are
noted, particularly in the IPL-TS I/O conven-
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tions dictated by machine limitations and time-
sharing procedures. More significant, how-
ever, are the extensions provided by IPL-TS in
the areas of mode of code execution, and im-
proved on-line communication.

IPL-TS can operate in one of two modes at
the programmer’s option: the “production”
mode or the “debugging’” mode. The production
mode is designed for maximum code execution,
and is used essentially for checked out code.

Though code is still executed interpretively,
a suppression of all debugging functions in the
production mode has produced a four-fold in-
crease in execution rate over debugging-mode
operation. Execution rates of over 400,000
cycles per minute, which compare favorably
with other non-time-sharing IPL systems, are
common. To the IPL-TS user, production-mode
operation is analogous, as we shall see later, to
the TINT user compiling his checked-out code
with the Time-Sharing JOVIAL Compiler
(JTS). Debugging-mode operation, on the
other hand, is designed for maximum user
efficiency and greater on-line programmer con-
trol over the execution of his program. The
debugging mode allows all the standard IPL
options; it also permits a number of on-line
functions not common to IPL systems. These
include:

1. Optional breakpoint action at any moni-
tor point, whereby the currently execut-
ing program is suspended until comple-
tion of the execution of any on-line, pro-
grammer-specified routine;

2. On-line, symbolic program composition
and/or debugging;

3. Optional automatic or on-line program-
mer-controlled execution of a full “back
trace’” routine that prints up to the last
100 interpretation cycles. This routine
is executed by IPL-TS automatically at
each system-detected error occurrence as
a debugging diagnostic; and

4. A flexible, “thin skinned” system error
trap mechanism permitting programmer
specification of trapping actions for all
system-detected errors.

TINT Description
TINT is a two-pass interpretive program

system for time-sharing use, and operates upon
a subset of the JOVIAL problem-oriented
language.

TINT includes a generator, a set of operator
subroutines, and the interpreter. The genera-
tor was acquired from a current IBM 7090
JOVIAL compiler and was modified to handle
the particular JOVIAL dialect used by TINT.
The operator subroutines and the interpreter

are original code developed specifically for
TINT.

The generator (first pass) scans the input
JOVIAL statements and translates them into
an intermediate Polish prefix language. Gram-
mer checking is performed during the transla-
tion. The language subset allowed may include
the arithmetic, relational, and Boolean opera-
tors; procedure calls; data table, array, and
item (integer, floating point, and Hollerith)
declarations; and the GOTO, IF, STOP, READ,
and PRINT statements. The READ and
PRINT statements were added to the language
specifically for time-sharing operation.

Operator subroutines comprise the primitive
functions used by the interpreter to perform
the actions specified in the intermediate
language. The interpreter (second pass) scans
the intermediate language for the current op-
erator prefix and its arguments, and executes
the corresponding operator subroutine that
computes on these arguments.

The TINT user is permitted a number of
options in composing and executing his code.
He may reference code stored in a binary
library tape of his own composition ; he may file
away any current code on tape for subsequent
use, or for compilation with JTS after the
code has been exercised and debugged; and, he
may optionally execute code from a prestored
tape or from the Teletype.

On-Line Program Composition

Both IPL-TS and TINT allow the user to
write symbolic programs on-line and to execute -
them immediately, by themselves or in conjunc-
tion with previously coded routines. With IPL-
TS, the programmer uses the special system
routine, Linear IPL (LIPL),* which accepts

* [,IPL was designed and coded by R. Dupchak while
consnltant to the RAND Corporation, Santa Monica.
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Figure 6. Typescript of Ackermann’s Function.

IPL code on-line in a symbolic, linear, paren-
thesis format convenient for keyboard input.
Figure 6 presents an example of LIPL being
used to compose and execute Ackermann’s func-
tion® on-line. TINT, which was developed
specifically for on-line program composition,
accepts JOVIAL statements on-line in the same
linear format used for compiler input.

The ability to program on-line frees the pro-
grammer from having to concern himself with
all the formalities of punched card accounting.
With experience and facility, he programs on-
line directly from his thoughts or, for more
difficult problems, directly from a flow diagram,
circumventing such time-consuming tasks as
program-coding-sheet preparation, key punch-
ing, card sorting, editing, and prestoring. The
time saved by the programmer can be applied
to other coding tasks or to quality review of his
current code,

No programmer, of course, could compose a
large program at one sitting with either of
these systems, but this is a human, not a sys-
tem, limitation; LIPL has no upper bound, and
TINT’s 600-statement limit effectively exceeds
a human’s short-term comprehension. Opti-
mally, these systems should be used for pro-
grams that can be written and debugged in one
or two sittings (usually under 100 IPL inst:uc-
tions or 50 JOVIAL statements).

There are three immediate consequences of
this practical size limitation. First, many non-
trivial, one-shot programs, such as for statisti-
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Figure 7. Example of the Use of TINT as a
‘Desk Calculator.”

cal computations, can be coded, debugged, and
executed at one sitting. Often a programmer
himself will refrain from writing such pro-
grams, knowing the time and effort involved.
Figure 7 shows the Teletype communication re-
sulting from an exercise using TINT as a “desk
calculator” for computing the standard devia-
tion of a set of research data. Second, large
programs take on a modular structure; that is,
large programs become a concatenation of
numerous smaller programs and subroutines.
Third, programmers begin to amass personal
libraries of short utility subroutines, which
they use to build larger programs. Clearly,
consequences two and three would not exist,
except in trivial cases, if it were not possible
to work one day with code developed cn prior
days. Both IPL-TS and TINT provide this ca-
pability.

TINT may accept symbolic input from
magnetic tape, and can integrate this input with
on-line Teletype input when so directed by the
user. Thus the results of one day’s coding can
be filed on tape for later use. An alternative,
if the symbolic JOVIAL statements have been
executed and debugged, is to compile the code
and save the binary output on a binary library
tape, thus, again, integrating previous work
with current code; however, the binary library
approach has greatest value when used for
utility routines.
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Figure 8. Accessing the Computer with Model 33
Teletypes and Displays.

IPL-V is essentially a language of sub-
routines (composed from an inventory of some
200 system subroutines called J routines or
primitives). Programs written in IPL-V are
usually modular hierarchies of subroutines.
Therefore, on-line composition of IPL-V pro-
grams is a natural extension of the language,
and many alternatives for continuity of pro-
gramming across many days of operation
already exist within the language. For ex-
ample, the programmer may “fire” a J166 (Save
For Restart) at any time and continue from
that point at a later date, or he may load a pro-
gram from symbolic tape using the loader or
J165 (Load Routines and Data) and continue
using LIPL on-line.

Therefore, the attributes of IPL-TS and
TINT, when combined with a programmer’s
imagination and skill during on-line program
composition, reduce significantly the tedious,
uncreative tasks of code preparation and in-
crease productivity. This point is particularly
apparent to all programmers who have been
required to debug code that they wrote several
days earlier, and that has grown “stale” while
it was being keypunched, compiled, and ex-
ecuted. Instead of expending additional time
and energy becoming reacquainted with his
code before he can correct his errors, the pro-
grammer can, by composing the code on-line
and executing it immediately, debug while the
code is stil] fresh in his mind.

On-Line Program Debugging
The particular ability of IPL-TS and TINT

to detect, locate, and correct program errors on-
line is perhaps their greatest asset, since it
leads to substantial decrease in Program turn-
around time. In effect, IPL-TS and TINT in-
crease the programmer’s debugging efficiency
by allowing him to check out more code per day
than would be possible with non-time-sharing
operation.

Error Detection is the first step in debugging
any program. Errors may be classeq as either
grammatical errors in language or format, or
logical errors in code execution. The genera-
tor screens out most grammaticy) errors for
TINT, and either the loader or L|p], performs
the same task for IPL-TS. Logical-error detec-
tion, however, is a more difficult task, even with
IPL-TS and TINT. The advantage of these
systems for error detection is theip responsive-
ness to the programmer. He may choose to
develop on-line, special-purpose debugging tools
to suit his individual preference, or he may use
those debugging tools provided by the system.
For example, IPL-TS currently provides an
error trap for some twenty illegn] IPL opera-
tions resulting from faulty program logic;
when such errors occur, IPL-TS attempts to
provide the programmer with as much informa-
tion as possible to help him correct his error.
First, an error message is sent to the program-
mer to inform him of the error's occurrence
and of its nature. Second, a special system
routine, Trace Dump (discussed below), pro-
vides him with a “back trace” of the code lead-
ing up to the error to help him locate the cause
of the error. Finally, the system pauses at a
breakpoint, to allow him time to correct the
error. However, all three steps may be altered,
since the IPL-TS error trap mechanism is de-
signed with a “thin skin” to allow the program-
mer to substitute his own trapping action in
lieu of that provided by the system.

With TINT, logical-error detoction is left
more to the imagination of the programmer.
TINT allows the programmer to insert a
PRINT statement, with numerouy jtem names
as arguments, at any point in his program.
When it encounters this statement during pro-
gram execution, TINT responds hy printing on
the user’s Teletype the current values of all
specified items. In this fashion, the program-
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mer may take item snapshots at critical points
in his program. The power of the PRINT
statement for logical-error detection is ampli-
fied when combined with the TINT READ
statement. The READ statement is the con-
verse of the PRINT statement. When TINT
encounters this statement during program ex-
ecution, the programmer must insert the cur-
rent values of prespecified items. By judicious
use of the READ and PRINT statements, the
programmer can repeatedly exercise a program
with different initial conditions and review his
results with input/output transfer-function
analysis.

Thus, on-line user-program communication
increases a programmer’s debugging efficiency
by increasing his ability to detect program
errors. It is typical for a programmer, check-
ing out new code with IPL-TS or TINT, to
detect and correct half a dozen program errors
in the first hour of operation; such error cor-
rection might easily have required a week with
conventional programming systems.

Error location, the pinpointing of the errone-
ous code, is often considered no different from
error detection. This may be true for gram-
matical errors, but is far from true for logical
errors. The knowledge that an error exists does
not, in and of itself, narrow the search for the
error's location. The user of IPL-TS, there-
fore, is provided with a description of the
system-detected error and the aforementioned
back trace of the code leading up to the error.
Back tracing by the system is performed in the
debugging mode by the special system routine
Trace Dump, which prints a full trace of up to
the last 100 interpretation cycles, in reverse
order (last cycle first). The number of previ-
ous cycles printed is controllable on-line. Ex-
perience shows that the location of an error can
usually be found within the first five cycles
printed, and that it is rarely necessary to go
deeper than ten cycles back. For logical errors
not detected by the system, the programmer has
available all the standard IPL-V Monitor Point
functions; in addition, IPL-TS extends these
functions to include breakpoint operation as a
programmer-initiated option. The option may
be invoked at load time or during program ex-
ecution. In addition, the IPL primitive J7
(Halt) has been implemented as an alternative

breakpoint mechanism. When a breakpoint is
encountered by IPL-TS, the programmer is
notified and requested to enter the name of any
regionally defined routine, which is then ex-
ecuted immediately. Upon completion of the
routine, the programmer is again queried. He
may continue to fire routines at the breakpoint,
or he may exit back to the prior program, the
context of which has remained undisturbed.

Breakpoints are not a panacea for locating
erroneous code; however, they do provide ad-
ditional control flexibility at critical points in a
program. In fact, the user of TINT must rely
almost exclusively on breakpoint logic for
locating erroneous code: the aforementione-
READ and PRINT statements are in effect
breakpoint statements. For elusive errors
these statements may be used to bracket groups
of JOVIAL statements, and in extreme cases,
individual JOVIAL statements. TINT also
provides a STOP statement, which is also a
breakpoint statement. When the interpreter
encounters the STOP statement, the program
is suspended until directed by the user to con-
tinue. The user may also reexecute his program
from a STOP breakpoint, or he may enter new
code or edit prior code before continuing.
TINT’s STOP statement is analogous to the
IPL-TS J7 (Halt) primitive.

Error correction in symbolic code with either
IPL-TS or TINT is essentially on-line program
composition, LIPL allows the IPL program-
mer to erase, extend, or modify selectively any
user routine existing in the system. TINT,
similarly, allows the programmer to edit any
JOVIAL code written, on a statement-by-state-
ment basis.

Here, again, the programmer’s control over
his program is effectively increased. He can
correct code in several minutes instead of the
several days typical with most computer in-
stallations,

SUMMARY AND CONCLUSION

There are some obvious advantages to this
kind of system that have been borne out in
practice. There is a large class of problems
whose compute time is extremely small in
relation to the total time the problem is on the
computer. This is because a large percentage
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of time is taken up by human thought and com-
puter input/output. In fact, the use of a com-
puter for this kind of application in a non-
time-sharing mode is so inefficient that it
would not be worthwhile to run. There are
many examples of this kind of problem. The
one that most programmers are familiar with
is console debugging, that is, the checkout of
programs with the programmer at the com-
puter—anathema to most computer managers,
but desired by a large number of programmers.
These kinds of applications have been run with
a high degree of success in this Time-Sharing
System, with each person involved actually
feeling he has the whole computer to himself,

At the other end of the spectrum are those
programs that compute for essentially one
hundred per cent of the time they are on the
computer. If these programs compute for long
periods, say a matter of minutes, they will
completely usurp their allotted time and thus
tend to make the on-line user wait for the maxi-
mum response period possible. Time-sharing
does not benefit this kind of user, except that
this kind of program can be run “in the back-
ground” while other on-line interaction pro-
grams are idle. In the SDC installation, the
percentage of these long-period compute pro-
grams has been small, so that no serious system
response time delays have been noticed from
them.

Questions frequently asked are, “Do people
like the system?” ‘“Does it produce better re-
sults than other, more standard techniques?”
Both the questions are difficult to answer in an
absolute sense. However, some reasonable ob-
servations can be made that apply to this sys-
tem and probably to others of this kind.

First, those on-line interaction programs that
used to run in a non-time-sharing mode but
were converted to time-sharing produce results
that are as valid as before but with greater
efficiency in computer operation, since a num-
ber of different ones are run simultaneously.

Next, the on-line debugging capability has
proved very valuable. This system of debug-
ging gives a feeling of closeness to the computer
and control over the program, so that debug-
ging time is reduced considerably while the
efficiency of computer utilization stays high.

Also, although the tools available so far have
been relatively few and unsophisticated, one
can see the advantages to be gained by giving
everyone immediate access and response from
a computer. ‘“Directed” computer runs are the
mode of operation. Every step taken is taken
only as a result or verification of the previous
step. ‘If things do not go as planned, alternative
paths can be followed immediately. Before
time-sharing, one had two choices: “submit-
ting” of a run, followed by an anxious waiting
period climaxed by a sigh (or worse) and a re-
submitting of the same run; or one-man on-line
interaction with the computer, which benefitted
that person, but caused consternation on the
part of others waiting for computer runs.

This kind of system must be made foolproof.
Due to the nature of this system, one must have
a reasonably long time of uninterrupted opera-
tion to get satisfactory results. This implies
several things:

1. The system Executive must be reliable
and able to account for any condition that
may arise, including object program and
machine errors.

2. The machine must be reliable. Although
the system must provide the ability to
analyze each computer error and isolate
and stop only the particular object pro-
gram or programs affected, frequent or
solid computer errors can cause the en-
tire system and all object programs to
{erminate.

3. Certain hardware features are essential.
These include: Memory protection—the
ability to prevent object programs from
destroying each other or the Executive
system; and high-speed large-storage
random-access devices—the major bottle-
neck in a system of this kind is the slow
rate at which object programs can be
moved in and out of memory. Also, the
use of magnetic tapes for such functions
as the permanent storage of programs
and data files creates operational and
timing problems that can be overcome
with the use of large drums or disks; also
essential is clock interrupt capability—
the system requires that no single pro-
gram run for an excessively long time.
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Therefore a clock that can be set to in-
terrupt operation at various intervals is
necessary for complete control and the
assurance of adequate response time.

When this Time-Sharing System first became
operational, it had no memory protection, its
Executive was unreliable, and its computer was
beset by a much heavier load than it was used
to and reacted accordingly. With these ob-
stacles, the early users were subject to frus-
trations unlike many found in the twentieth
century. The system's life expectancy was no
more than ten minutes. The only remarkable
thing about the early months was that anything
useful was accomplished. Interestingly enough,
however, some work was accomplished, pri-
marily through patience on the part of the
users. With the passage of time, many of the
problems have been alleviated through both
equipment and programming improvements, so
that now the system runs with considerably
more continuity and reliability.

Since the system became operational, it has
been used in a wide variety of applications.
These applications have, for the most part,
been checked out using the Time-Sharing Sys-
tem and have been run productively during
time-sharing. Some of the specific applications
for which time-sharing has been used are:

e Natural Language Processors—used for

parsing English sentences, answering
questions, and interpreting sentence-
structured commands.

e Group Interaction Studies—in which

teams or players are matched against each
other and the computer is used to measure
individual and team performance.

e General Display Programming—in which
the programs are used as vehicles for gen-
erating and modifying visual displays ac-
cording to the users’ keyboard inputs.

e A FORTRAN-to-JOVIAL Translator—
symbolic JOVIAL program tapes are pro-
duced for FORTRAN tape inputs,

e Simulated Alternate Mobile Command
Post—a realistic simulation of the A.M.C.P.
has been produced, and the display require-
ments for this organization are studied
within this framework.

Of course, a number of other routines, games,
and services have been and are being developed
under the system.

One of the “disadvantages” in using a time.
sharing system such as this is the fact that most
computer runs require the presence of one or
more people. Users of many large-scale com-
puters are accustomed to remaining detached
from the actual computer runs and are some-

* times reluctant to follow the runs closely. How-

ever, the elapsed time for completing jobs
using these ‘“‘on-line” techniques is normally
dramatically reduced compared to a more re-
mote operation, and this reduced time has been
noted in the use of the time-sharing system.

It is interesting to watch a group of people
using a computer simultaneously but solving
different problems using different tools. At the
computer console itself, one can usually see all
the available tape drives busy, typewriters
busy, drum indicators indicating the drums are
busy, the punch punching, on occasion, and the
card-reader going at anywhere from quarter
to full speed. For those who judge the worth
of a computer by the amount of equipment used
per second, time-sharing is well worth its in-
vestment.

Since the system has been under development
(it was begun in January 1963), the number
of existing services has been expanding rapidly.
One can envision the development of an in-
creasing number of on-line programming aids
and techniques of utilizing keyboards, displays,
and groups of computers to make a time-
sharing network a truly powerful device.

It is certainly conceivable that, in the not too
distant future, many people will have at their
fingertips a device that, at a reasonable cost,
enables them to enter an operating network
such as this one. While in this network, they
will have access to routines, techniques, and
computing power unavailable to them by other
means. The computing power will include not
only the Executive computer but the other com-
puters that are in the network as well, Thus,
the possibility of large-scale time-sharing net-
works seems to be one of the more promising
developments in computer technology today.
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