

TurKit: Human Computation Algorithms
 on Mechanical Turk

Greg Little1, Lydia B. Chilton2, Max Goldman1, Robert C. Miller1

1MIT CSAIL
{glittle, maxg, rcm}@mit.edu

2University of Washington

hmslydia@cs.washington.edu

ABSTRACT
Mechanical Turk provides an on-demand source of human
computation. This provides a tremendous opportunity to
explore algorithms which incorporate human computation
as a function call. However, various systems challenges
make this difficult in practice, and most uses of Mechanical
Turk post large numbers of independent tasks. TurKit is a
toolkit for prototyping and exploring truly algorithmic hu-
man computation, while maintaining a straight-forward
imperative programming style. We present the crash-and-
rerun programming model that makes TurKit possible,
along with a variety of applications for human computation
algorithms. We also present a couple case studies of TurKit
used for real experiments outside our lab.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Prototyping.

General terms: Algorithms, Design, Experimentation

Keywords: Human computation, Mechanical Turk, toolkit

INTRODUCTION
Amazon’s Mechanical Turk (MTurk) is a popular web ser-
vice for paying people to do simple human computation
tasks. Workers on the system (turkers) are typically paid a
few cents for Human Intelligence Tasks (HITs) that can be
done in under a minute. MTurk has already been used by
industry and academia for labeling images, categorizing
products, and tagging documents.

Currently, MTurk is largely used for independent tasks.
Task requesters post a group of HITs that can be done in
parallel, such as labeling 1000 images. We want to explore
tasks that build on each other. Figure 1 shows a simple ex-
ample of an algorithm that generates a list of suggestions
for what to see in New York, and then sorts them. A more
sophisticated example might have turkers iteratively im-
prove a passage of text, and vote on each other’s work. In

general, this paper considers human computation algo-
rithms, where an algorithm coordinates the contributions of
humans toward some goal.

Human computation and Mechanical Turk are already be-
ing explored and studied in the HCI community [7] [8] [9].
We want to extend this study to explore algorithms involv-
ing humans, which is an HCI issue in itself. It requires
knowing the right interface to present to each turker, as
well as the right information for the algorithm to pass from
one turker to the next.

Unfortunately, implementing algorithms on MTurk is not
easy. HITs cost money to create, and may take hours to
complete. Algorithms involving many HITs may run for
days. These factors present a significant systems building
challenge to programmers. Programmers must worry about
issues like: what if the machine running the program crash-
es? What if the program throws an exception after a bunch
of HITs have already been completed? These challenges
are prohibitive enough to prevent easy prototyping and
exploration of human computation algorithms.

This paper introduces the crash-and-rerun programming
model to overcome these systems challenges. In this model,
a program can be executed many times, without repeating
costly work.

ideas = []
for (var i = 0; i < 5; i++) {
 idea = mturk.prompt(
 "What’s fun to see in New York City?
 Ideas so far: " + ideas.join(", "))
 ideas.push(idea)
}

ideas.sort(function (a, b) {
 v = mturk.vote("Which is better?", [a, b])
 return v == a ? ‐1 : 1
})

Figure 1: Naturally, a programmer wants to write an
algorithm to help them visit New York City. TurKit
lets them use Mechanical Turk as a function call to
generate ideas and compare them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00. �

TurKit is a toolkit for writing human computation algo-
rithms using the crash-and-rerun model. TurKit allows the
programmer to think about algorithmic tasks as simple
straight-line imperative programs, where calls to MTurk
appear as ordinary function calls.

This paper makes the following contributions:

 Crash-and-Rerun Programming: A novel program-
ming model suited to long running processes where lo-
cal computation is cheap, and remote work is costly.

 TurKit Script: An API for writing algorithmic MTurk
tasks using crash-and-rerun programming.

 TurKit Online: A public web GUI for running and
managing TurKit scripts.

 Example Applications: Examples of algorithmic tasks
explored in our lab, as well as algorithmic tasks ex-
plored by people outside our lab using TurKit.

 Performance Evaluation: An evaluation of TurKit's
performance drawn from a corpus of 20 scripts posting
almost 30,000 tasks over the past year.

CRASH-AND-RERUN PROGRAMMING
Consider a standard quicksort algorithm which outsources
comparisons to Mechanical Turk (see Figure 2). This is a
scenario where a local algorithm is making calls to an ex-
ternal system. Local computation is cheap, but the external
calls cost money, and must wait for humans to complete
work. The algorithm may need to run for a long time wait-
ing on these results.

The challenge in this scenario is managing state over a long
running process. This state can be kept in the heap, but this
is dangerous in case the machine reboots or the program
encounters an error. The error may be easy to fix, but all
the state up to that point is lost.

State can be managed in a database, but this complicates
the programming model, since we need to think about how
to record and restore state. This can be particularly cumber-

some for recursive algorithms like quicksort, which would
require storing some representation of the call stack in the
database.

The insight of crash-and-rerun programming is that if our
program crashes, it is cheap to rerun the entire program up
to the place it crashed, since local computation is cheap.
This is true as long as rerunning does not re-perform all of
the costly external operations from the previous run.

The latter problem is solved by recording information in a
database every time a costly operation is executed. Costly
operations are marked in a new primitive called once,
meaning they should only be executed once over all reruns
of a program. Subsequent runs of the program check the
database before performing operations marked with once
to see if they have already been executed.

Note that this model requires the program to be determinis-
tic, since we are essentially storing complicated state in the
logic of the program itself, rather than storing it explicitly
in the database. Hence, once is important in the following
conditions:

 Non-determinism. Since all calls to once need to hap-
pen in the same order every time the program is exe-
cuted, it is important that execution be deterministic.
Wrapping non-deterministic calls in once ensures that
their outcomes are the same in all subsequent runs of
the program.

 High cost. The whole point of crash-and-rerun pro-
gramming is to avoid incurring more cost than neces-
sary. If a function is expensive (in terms of time or
money), then it is important to wrap it in once so that
the program only pays that cost the first time the pro-
gram encounters the function call. Typical tasks posted
to Mechanical Turk cost 1 to 10 cents, and take be-
tween 30 seconds and an hour to complete.

 Side-effects. If functions have side-effects, then it may
be important to wrap them in once if invoking the

quicksort(A)
 if A.length > 0
 pivot ← A.remove(A.randomIndex())
 left ← new array
 right ← new array
 for x in A
 if compare(x, pivot)
 left.add(x)
 else
 right.add(x)
 quicksort(left)
 quicksort(right)
 A.set(left + pivot + right)

compare(a, b)
 hitId ← createHIT(...a...b...)
 result ← getHITResult(hitId)
 return (result says a < b)

Figure 2: Standard quicksort algorithm that out-
sources comparisons to Mechanical Turk.

quicksort(A)
 if A.length > 0
 pivot ← A.remove(once A.randomIndex())
 left ← new array
 right ← new array
 for x in A
 if compare(x, pivot) A
 left.add(x)
 else
 right.add(x)
 quicksort(left)
 quicksort(right)
 A.set(left + pivot + right)
A
compare(a, b) A
 hitId ← once createHIT(...a...b...)
 result ← once getHITResult(hitId)
 return (result says a < b) A

Figure 3: Standard quicksort augmented with the
once primitive, to remember costly and non-
deterministic operations for subsequent runs.

side-effect multiple times will cause problems. For in-
stance, accepting results from a HIT multiple times
causes an error from Mechanical Turk.

We can add once to our quicksort algorithm by surround-
ing the non-deterministic random pivot selection, as well as
the expensive MTurk calls (see Figure 3). These modifica-
tions maintain the imperative style of the algorithm.

If the program crashes at any point, then subsequent runs
will encounter all calls to once in the same order as before.
Any calls which succeeded on a previous run of the pro-
gram will have a result stored in the database, which will be
returned immediately, rather than re-performing the costly
or non-deterministic operation inside once.

Since crashing is so inexpensive in this model, we can
crash instead of blocking. For instance, we implement get-
HITResult by crashing the program if the results are not
ready, rather than blocking until the results are ready. This
works because once only stores results if the operation
succeeds.

If the user needs to change an algorithm so that it is incom-
patible with a recorded sequence of once calls, then they
can clear this record in the database, and start afresh. Once
also detects when the database is out of sync with the pro-
gram by recording information about each operation, and
ensuring that the same operation is performed on subse-
quent runs. In such cases, the program crashes, and the user
is notified that the database and program no longer agree.

The benefits of the crash-and-rerun model include:

 Incremental Programming: When a crash-and-rerun
program crashes, it is unloaded from the runtime sys-
tem. This provides a convenient opportunity to modify
the program before it is executed again, as long as the
modifications do not change the order of important op-
erations that have already been executed. TurKit pro-
grammers can take advantage of this fact to write the
first part of an algorithm, run it, view the results, and
then decide what the rest of the program should do
with these results.

 Easy to Implement: Crash-and-rerun programming is
easy to implement, and does not require any special
runtime system, language support, threads or synchro-
nization. All that is required is a database to store a se-
quence of results from calls to once.

 Retroactive Print-Line-Debugging: In addition to add-
ing code to the end of a program, it is also possible to
add code to parts of a program which have already ex-
ecuted. This is true because only expensive or non-
deterministic operations are recorded. Innocuous oper-
ations, like printing debugging information, are not
recorded, since it is easy enough to simply re-perform
these operations on subsequent runs of the program.
This provides a cheap and convenient means of debug-
ging in which the programmer adds print-line state-
ments to a program which has already executed, in or-

der to understand where it went wrong. This technique
can also be used to retroactively extract data from an
experiment, and print it to a file for analysis in an ex-
ternal program, like Excel.

TURKIT SCRIPT
TurKit Script is built on top of JavaScript. Users have full
access to JavaScript, in addition to a set of APIs designed
around crash-and-rerun programming and Mechanical
Turk. JavaScript was chosen because it is a common script-
ing language, popularized primarily within webpages, but
general purpose enough for many prototyping applications.

Crash-and-Rerun
TurKit supports crash-and-rerun programming in JavaS-
cript by providing the once function described in the pre-
vious section. Once accepts another function as an argu-
ment. It calls this function, and if it succeeds (i.e. it returns
without crashing), then it records the return value in the
database, and returns the result back to the caller. When
once is called on a subsequent run of the script, it checks
the database to see whether a return value has already been
stored. If so, it skips calling the argument function, but ra-
ther simply returns the stored value. For example:
var r = once(function () {
 return Math.random()
})

The first time the script runs, the function is evaluated,
generating a new random number. This number is stored as
the result for this call to once. The next time the script
runs, Math.random is not called, and the random number
generated on the previous call is returned instead.

TurKit also provides a convenient way to crash a script.
The crash function throws a "crash" exception. Crash is
most commonly called when external data is not ready,
e.g., tasks on MTurk are not complete.

TurKit automatically reruns the script after an adjustable
time interval. Rerunning the script effectively polls Me-
chanical Turk every so often to see if any tasks have com-
pleted. In addition, the online version of TurKit receives
notifications from MTurk when tasks complete, and reruns
any scripts waiting on these tasks.

Parallelism
Although TurKit is single-threaded, and the programmer
does not need to worry about real concurrency in the sense
of multiple paths of execution running at the same time, it
does provide a mechanism for simulating simple parallel-
ism. This is done using fork, which creates a new branch
in the recorded execution trace. If crash is called inside
this branch, the script resumes execution of the former
branch. Note that fork can be called within a fork to cre-
ate a tree of branches that the script will follow.

Fork is useful in cases where a user wants to run several
processes in parallel. They may want to run them in parallel
for efficiency reasons, so they can post multiple HITs on
Mechanical Turk at the same time, and the script can make

progress on whichever path gets a result first. For example,
consider the following code:
a = createHITAndWait() // HIT A
b = createHITAndWait(...a...) // HIT B

c = createHITAndWait() // HIT C
d = createHITAndWait(...c...) // HIT D

Currently, HITs A and B must complete before HIT C is
created, even though HIT C does not depend on the results
from HITs A or B. We can instead create HIT A and C on
the first run of the script using fork as follows:
fork(function () {
 a = createHITAndWait() // HIT A
 b = createHITAndWait(...a...) // HIT B
})
fork(function () {
 c = createHITAndWait() // HIT C
 d = createHITAndWait(...c...) // HIT D
})

The first time around, TurKit would get to the first fork,
create HIT A, and try to wait for it. It would not be done, so
it would crash that forked branch (rather than actually wait-
ing), and then the next fork would create HIT C. So the
first time the script runs, HITs A and C will be created, and
each subsequent time it runs, it will check on both HITs to
see if they are done.

TurKit also provides a join function, which ensures that a
series of forks have all finished. The join function ensures
that all the previous forks along the current path did not
terminate prematurely. If any of them crashed, then join
itself crashes the current path. In our example above, we
would use join if we had an additional HIT E that re-
quired results from both HIT B and D:
fork(... b = ...)
fork(... d = ...)
join()
E = createHITAndWait(...b...d...) // HIT E

Using Mechanical Turk
The simplest way to use Mechanical Turk in TurKit is with
the prompt function. This function shows a string of text to
a turker, and returns their response:
print(mturk.prompt(“Where is UIST 2010?”))

Prompt takes an optional argument specifying a number of
responses to be returned as an array, so we can ask 100
people for their favorite color like this:
mturk.prompt("What is your favorite color?", 100)

In addition to these high level functions, TurKit provides
wrappers around Amazon’s MTurk REST API. These
wrappers build on the crash-and-rerun library to make these
calls safe, e.g., the createHIT function calls once inter-
nally so that it only creates one HIT over all runs of a pro-
gram. These wrappers use the same naming conventions as
MTurk, and handle the job of converting XML responses
from Amazon into suitable JavaScript objects. TurKit also
provides a waitForHIT function which crashes unless the
results are ready. It is called wait because from the pro-

grammer’s perspective, it waits for the results to be ready
before returning.

Voting
The crash-and-rerun programming model allows us to en-
capsulate human computation algorithms into functions,
which can be used as building blocks for more sophisticat-
ed algorithms.

One common building block is voting. We saw voting early
on in Figure 1, but did not explain how it worked. Consider
a simple voting function, where we want a best 3-out-of-5
vote. This is possible using a single HIT with 5 assign-
ments (Amazon will ensure that each assignment is com-
pleted by a different turker). However, if we want to be
even more cost efficient, we could ask for just 3 votes, and
only ask for additional votes if the first 3 are not the same.
This implies a simple algorithm:
function vote(message, options) {
 // create comparison HIT
 var h = mturk.createHITAndWait({
 ...message...options...
 assignments : 3})

 // get enough votes
 while (...votes for best option < 3...) {
 mturk.extendHIT(...add assignment...)
 h = mturk.waitForHIT(h)
 }

 // cleanup and return
 mturk.deleteHIT(h)
 return ...best option...
}

TurKit’s version of this function takes an optional third
parameter to indicate the number of votes required for a
single option. One could also imagine extending this func-
tion to support different voting schemes.

Sorting
Another building block is sorting. A first attempt at sorting
is simple using the crash-and-rerun model. We just take
JavaScript’s sort function and pass in our own comparator.
Recall from Figure 1:
ideas.sort(function (a, b) {
 v = mturk.vote("Which is better?", [a, b])
 return v == a ? ‐1 : 1
})

One problem with this approach is that all of the compari-
sons are performed serially, and there is no good way to get
around this using JavaScript’s sort function because it
requires knowing the results of each comparison before
making additional comparisons. However, in TurKit we
can implement a parallel quicksort, as shown in Figure 4.
This implementation is fairly straightforward, and shows
where TurKit’s parallel programming model succeeds.
Limits of this approach are discussed more in the discus-
sion section.

Creating Interfaces for Turkers
The high level functions described so far use Mechanical
Turk’s custom language for creating interfaces for turkers.
However, more complicated UIs involving JavaScript or

CSS require custom webpages, which Mechanical Turk
will display to turkers in an iframe.

TurKit provides methods for generating webpages and
hosting them on TurKit’s server. Users may create
webpages from raw HTML, or use templates provided by
TurKit to generate webpages with common features.

One basic template feature is to disable all form elements
when a HIT is being previewed. MTurk provides a preview
mode so that turkers can view HITs before deciding to
work on them, but turkers may accidently fill out the form
in preview mode if they are not prevented from doing so.

TurKit also provides a mechanism for blocking specific
turkers from doing specific HITs. This is useful when an
algorithm wants to prevent turkers who generated content
from voting on that content. This feature is implemented at
the webpage level (in JavaScript) as a temporary fix until
Amazon adds this functionality to their core API.

Implementation
TurKit is written in Java, using Rhino1 to interpret JavaS-
cript code, and E4X2 to handle XML results from MTurk.
State is persisted between runs of a TurKit script by serial-
izing a designated global variable as JSON. This variable is
called db.

The crash-and-rerun module makes use of db to store re-
sults between runs of the script. The basic idea is to record

1 http://www.mozilla.org/rhino/
2 http://en.wikipedia.org/wiki/ECMAScript_for_XML

a trace of once calls in an array. As the script runs, we
maintain a pointer to the next location in this array.

When once is called, it checks the information stored at the
next location in the trace. If there is a return value there, it
returns this immediately. Otherwise, it calls the function
passed as a parameter to once. If the function succeeds,
then it writes information about this call into the trace. Af-
ter the call to once completes, the pointer moves to the
next location in the trace.

Implementing fork requires managing a stack of instruc-
tion pointers. Fork also consumes an element in the array
of once calls, except instead of storing a return value there,
it stores another array of once calls.

The crash function is implemented by throwing a “crash”
exception. This exception is caught internally by the fork
function, so that it can pop the forked branch off the stack
of instruction pointers, and return. If crash is ever called,
even if it is caught by a fork, then TurKit will schedule a
rerun of the script after some time interval.

ONLINE WEB INTERFACE
Figure 5 shows the TurKit web-based user interface, an
online IDE for writing TurKit scripts, running them, and
automatically rerunning them. The interface also has facili-
ties for managing projects, editing files, viewing output,
and managing the execution trace.

The run controls allow the user to run the project, and start
and stop automatic rerunning of the script. This is neces-
sary in the crash-and-rerun programming model since the
script is likely to crash the first time it runs, after creating a
HIT and seeing that the results for the HIT are not ready
yet. Starting automatic rerunning of the script will periodi-
cally run the script, effectively polling Mechancial Turk
until the results are ready.

There are also controls for switching between sandbox and
normal mode on Mechanical Turk, as well as clearing the
database. Together, these tools allow users to debug their
scripts before letting them run unattended. Sandbox mode
does not cost money, and is used for testing HITs. Users
typically run a script in sandbox mode and complete the
HITs themselves in the MTurk sandbox.

After the script appears to be working in the sandbox, the
programmer may reset the database. Resetting the database
clears the execution trace, as well as deletes any outstand-
ing HITs or webpages created by the script. The user may
now run the script in normal mode, and it will create HITs
again on the real MTurk without any memory of having
done so in the sandbox. Reseting the database is also useful
after correcting major errors in the script that invalidate the
recorded execution trace.

The execution trace panel shows a tree view representing
the recorded actions in previous runs of the script. Note that
calling fork creates a new branch in this tree. Some items
are links, allowing the user to see the results for certain
actions. In particular, createHIT has a link to the Mechan-

quicksort(a) {
 if (a.length == 0) return
 var pivot = a.remove(once(function () {
 return Math.floor(a.length * Math.random())
 }))
 var left = []
 var right = []
 for (var i = 0; i < a.length; i++) {
 fork(function () {
 if (vote("Which is best?",
 [a[i], pivot]) == a[i]) {
 right.push(a[i])
 } else {
 left.push(a[i])
 }
 })
 }
 join()
 fork(function () {
 quicksort(left)
 })
 fork(function () {
 quicksort(right)
 })
 join()
 a.set(left.concat([pivot]).concat(right))
}

Figure 4: A parallel quicksort in TurKit using fork
and join.

ical Turk webpage for the HIT, and the webpage.create
function has a link to the public webpage that was created.

New users can get started by cloning a project from the
panel in the lower-right. These projects demonstrate many
common programming idioms in TurKit. Users may modi-
fy their cloned version of these projects to suit their own
needs. There is also a link to the TurKit API for reference.

Implementation
The web-based GUI runs on Google App Engine3 (GAE).
This choice was made because it is a free scalable server,
and because it provides an easy way for users to log in us-
ing their existing Google account.

The web-app is built on top of TurKit, with extra security
enhancements. In particular, Rhino generally allows JavaS-
cript code to access Java directly. In order to protect users
from damaging the server, or accessing each other’s data,
we only allow access to a secure set of Java classes.

EXAMPLE APPLICATIONS
This section describes applications we have explored using
TurKit, as well as use cases outside our group.

3 http://code.google.com/appengine/

Iterative Writing
TurKit has been used to run many experiments which in-
volve asking one turker to write a paragraph with some
goal. The process then shows the paragraph to another per-
son, and asks them to improve it. The process also has peo-
ple vote between iterations, so that we eliminate contribu-
tions which don’t actually improve the paragraph. This
process is run for some number of iterations. Figure 6
shows template code for a simple version of this algorithm.
We have run many scripts like this to describe images (see
Figure 7). These scripts are slightly more complicated be-
cause we need to generate a UI displaying an image.

From our iterative paragraph writing experiments, we have
observed that most improvements involve making the para-
graph longer (note that we limit the size to 500 characters).
Also, people tend to keep the style and formatting intro-
duced by earlier turkers in an iterative sequence.

Blurry Text Recognition
As another example of an iterative task using a similar
structure, but achieving a different goal, consider the task
of doing hard OCR. This is similar to reCAPTCHA [2],
except it may work when the text is so unreadable that con-
text and seeing other people’s guesses may be necessary to
decipher the passage. Figure 8 shows an example transcrip-
tion of an artificially blurred passage.

Figure 5: This is the TurKit web user interface, an online IDE for writing TurKit scripts, running them, and automatically
rerunning them. Projects appear on the left, an editor appears in the center, and output appears to the right. There is
also an execution trace pane showing the history of recorded actions. The run controls area has options for switching
between sandbox and normal mode on Mechanical Turk, running the script, letting the script rerun automatically, and
resetting the script. The lower-right contains a link to the TurKit API reference, as well as example projects which can
be cloned as a starting point for writing scripts.

We can see the guesses evolve over several iterations, and
the final result is almost perfect. We have had good success
getting turkers to translate difficult passages, though there
is room for improvement. For instance, if one turker early
in the process makes poor guesses, these guesses can lead
subsequent turkers astray.

Decision Theory Experimentation
TurKit has been used to coordinate a user study in a Mas-
ter’s thesis outside our lab by Manal Dia: “On Decision
Making in Tandem Networks” [4]. The thesis presents a

decision problem where each person in a sequence must
make a decision given information about the decision made
by the previous person in the sequence. Dia wanted to test
how well humans matched the theoretical optimal strategies
for a particular decision problem:

Consider a sequence of N numbers, each chosen randomly
between -10 and 10. The goal of the participants is to guess
whether the sum of the N numbers is positive or negative.
Each person is provided two options, “negative” or “posi-
tive”, and sometimes a third option “I don’t know”. Person
x in the sequence is given three pieces of information:

 the fact that they are person x in the sequence

 the xth number of the N numbers

 the decision of the (x – 1)th person, if x > 1

TurKit was used to simulate this setup using real humans
on Mechanical Turk, and run 50 trials of this problem for
two conditions: with and without the option “I don’t
know”. The first condition replicated the findings of prior
results which used classroom studies, and the second condi-
tion found some interesting deviations in human behavior
from the theoretical optimal strategy.

Dia found TurKit helpful for coordinating the iterative na-
ture of these experiments. However, she used an early ver-
sion of TurKit, and had difficulty discovering the parallel-
ization features in that version.

Psychophysics Experimentation
Phillip Isola, a PhD student in Brain and Cognitive Science,
is using TurKit to explore psychophysics. He is interested
in having turkers collaboratively sort, compare, and classify
various stimuli, in order to uncover salient dimensions in

Iteration 1: Lightening strike in a blue sky near a tree and a building.
Iteration 2: The image depicts a strike of fork lightening, striking a

blue sky over a silhoutted building and trees. (4/5 votes)
Iteration 3: The image depicts a strike of fork lightning, against a

blue sky with a few white clouds over a silhouetted building and
trees. (5/5 votes)

Iteration 4: The image depicts a strike of fork lightning, against a
blue sky- wonderful capture of the nature. (1/5 votes)

Iteration 5: This image shows a large white strike of lightning com-
ing down from a blue sky with the tops of the trees and rooftop
peaking from the bottom. (3/5 votes)

Iteration 6: This image shows a large white strike of lightning com-
ing down from a blue sky with the silhouettes of tops of the trees
and rooftop peeking from the bottom. The sky is a dark blue and
the lightening is a contrasting bright white. The lightening has
many arms of electricity coming off of it. (4/5 votes)

Figure 7: Iterative text improvement of an image.

Iteration 4: TV is* *festival ____ was *two *me ____ , *but ____
*is ____ ____ TV ____ . I *two ____ tv ____ ____ ____
festival , ____ I ____ ____ is ____ it ____ *festival .

Iteration 6: TV is supposed to be bad for you , but I ____ watching
some TV *shows . I think some TV shows are *really
*advertising , and I ____ ____ is good for the ____

Iteration 12: TV is supposed to be bad for you , but I am watching
some TV shows . I think some TV shows are really entertaining ,
and I think it is good to be entertained .

Figure 8: Blurry text recognition. Errors are shown
in red. The error in iteration 12 should be “like” in-
stead of “am”, according to ground truth.

// generate a description of X
// and iterate it N times
var text = ""
for (var i = 0; i < N; i++) {
 // generate new text
 var newText = mturk.prompt(
 "Please write/improve this paragraph
 describing " + X + ": " + text)

 // decide whether to keep it
 if (vote(“Which describes " + X + " better?",
 [text, newText]) == newText) {
 text = newText
 }
}

Figure 6: Template for a simple iterative text im-
provement algorithm.

those stimuli. For instance, if turkers naturally sort a set of
images from lightest to darkest, then we might guess that
brightness is a salient dimension for classifying images.
This work is related to the staircase-method in psychophys-
ics, where experimenters may iteratively adjust stimuli until
it is on the threshold of what a subject can perceive [3].

His current experiments involve using TurKit to run genetic
algorithms where humans perform both the mutation and
selection steps. For instance, he has evolved pleasant color
palettes by having some turkers change various colors in
randomly generated palettes, and other turkers select the
best from a small set of color palettes.

He has also applied genetic algorithms to sorting. In one
experiment, he shows users a list of animals, and asks them
to reposition one of the animals in the list. Other users se-
lect the best ordering from several candidates. Users are not
told how they should sort the animals. In one instance, the
result is an alphabetical sorting.

Isola found TurKit to be the right tool for these tasks, since
he needed to embed calls to MTurk in a larger algorithm.
However, he also used an early version of TurKit, and had
difficulty discovering the parallelization features. This is-
sue is discussed more in the Discussion section below.

PERFORMANCE EVALUATION
This paper claims that the programming model is good for
prototyping algorithmic tasks on MTurk, and that it sacri-
fices efficiency for programming usability. One question to
ask is whether the overhead is really as inconsequential as
we claim, and where it breaks down.

We consider a corpus of 20 TurKit experiments run over
the past year, including: iterative writing, blurry text recog-
nition, website clustering, brainstorming, and photo sorting.
These experiments paid turkers a total of $364.85 for
29,731 assignments across 3,829 HITs.

Figure 9 and Figure 10 give a sense for how long tasks take
to complete once they are posted on MTurk. Figure 9
shows the round-trip time for the first assignment to com-
plete after posting HITs with various payoffs. Part of this
time is spent waiting for turkers to accept each task, and the
rest is spent waiting for turkers to perform the work. Our
higher paying tasks are typically more difficult, so we ex-
pect them to take longer to perform. However, if we sub-
tract this time, the chart still increases, meaning it takes
longer for turkers to start the higher paying tasks. One ex-
planation is that turkers sort by reward, and 10-cent tasks
are not on the first page of results. Another explanation is
that turkers are looking for quick and easy tasks.

Figure 10 gives a better picture of the round-trip time-to-
completion for the 1-cent tasks. The average is 4 minutes,
where 82% take between 30 seconds and 5 minutes. About
0.1% complete within 10 seconds. The fastest is 7 seconds.

Figure 11 gives a sense for how long TurKit scripts take to
rerun given a fully recorded execution trace, in addition to
how much memory they consume. Both of these charts are
in terms of the number of HITs created by a script, since

this measure is more correlated to space and time require-
ments than “calls to once” or “assignments created”. Note
that for every HIT created, there is an average of 6 calls to
once, and 7.8 assignments created.

The largest script in our corpus creates 956 HITs. It takes
10.6 seconds to rerun a full trace, and the database file is
7.1MBs. It takes Rhino 0.91 seconds to parse and load the
database into memory, where the database expands to
25.8MBs.

This means that waiting for a single human takes an order
of magnitude longer than running most of our scripts,
which suggests that crash-and-rerun programming is suita-
ble for many applications. The slowest script is faster than
99% of our hit-completion times. Note that making the
script 10x slower would only be faster than 70% of hit-
completion times. For such a slow script, it may be worth
investigating options beyond the crash-and-rerun model.

DISCUSSION
We have iterated on TurKit for over a year, and received
feedback from a number of users (four in our group, and

Figure 9: Average time until the first assignment is
completed after posting a HIT with 1, 2, 5, or 10
cents reward. Error bars show standard error.

Figure 11: Time and space requirements for 20
TurKit scripts, given the number of HITs created by
each script.

Figure 10: Time until the first assignment is com-
pleted for 2648 HITs with 1 cent reward. Five com-
pleted within 10 seconds.

two outside our group, noted above). This section discusses
what we’ve learned, including some limitations of TurKit,
and areas for future work.

Usability
The TurKit crash-and-rerun programming model makes it
easy to write simple scripts, but users have uncovered a
number of usability issues. First, even when users know
that a script will be rerun many times, it is not obvious that
it needs to be deterministic. In particular, it is not clear that
Math.random is dangerous, and must be wrapped in once.
This led us to override Math.random with a wrapper that
uses a random seed the first time the script executes, and
uses the same seed on subsequent runs (until the database is
reset).

Users were also often unclear about which aspects of a
TurKit script were stored in the execution trace, and which
parts could be modified or re-ordered. This was due primar-
ily to the fact that many functions in TurKit call once in-
ternally (such as createHIT and waitForHIT). We miti-
gated this problem by adding a view of the execution trace
to the GUI, making clear which aspects of the script were
recorded. This also allows users to delete records from the
execution trace for fine-grained control of their script. Do-
ing this before required advanced knowledge of how the
trace was stored in the database.

Finally, many early TurKit users did not know about the
parallel features of TurKit. Multiple users asked to be able
to create multiple HITs in a single run, and were surprised
to learn that they already could. The relevant function used
to be called attempt, a poor naming choice based on im-
plementation details, rather than the user’s mental model.
We renamed this function to fork. We also added join,
since most uses of the original attempt function would
employ code to check that all of the attempts had been suc-
cessful before moving on.

Scalability
The crash-and-rerun model favors usability over efficiency,
but does so at an inherent cost in scalability. Whereas a
conventional program could create HITs and wait for them
in an infinite loop, a crash-and-rerun program cannot. The
crash-and-rerun program will need to rerun all previous
iterations of the loop every time it re-executes, and eventu-
ally the space required to store this list of actions in the
database will be too large. Alternatively, the time it takes to
replay all of these actions will grow longer than the time it
takes to wait for a HIT to complete, in which case it may be
better to poll inside the script, rather than rerun it.

One way to overcome this barrier is to use continuations
and coroutines. Rhino supports first-class continuations,
which provide the ability to save and serialize the state of a
running script, even along multiple paths of execution.
Continuations could be saved after all important calls (like
createHIT), and a try-catch block around the entire script
would catch any exceptions and store all the continuations
in a database. The main drawback of this approach is that a
serialized continuation includes the code of the script, so it

cannot be reused if the script changes. This means that us-
ers could not incrementally modify their code between runs
of a program, or use retroactive print-line debugging.

Parallel Programming Model
Parallel programming in the crash-and-rerun model is not
completely general. For instance, we proposed a parallel
version of quicksort that performs the partition in parallel,
and then sorts each sublist in parallel. However, it joins
between partitioning the elements, and sorting the sublists.
In theory, this is not necessary. Once we have a few ele-
ments for a given sublist, we should be able to start sorting
it right away (provided that we chose a pivot from among
the elements that we have so far). Doing so is possible in
TurKit by storing extra state information in the database,
but is infeasible using once, fork and join alone.

Experimental Replication
The crash-and-rerun programming model offers a couple of
interesting benefits for experimental replication using Me-
chanical Turk. First, it is possible to give someone the
source code for a completed experiment, along with the
database file. This allows them to rerun the experiment
without actually making calls to Mechanical Turk. In this
way, people can investigate the methodology of an experi-
ment in great detail, and even introduce print-line state-
ments retroactively to reveal more information.

Second, users can use the source code alone to rerun the
experiment. This provides an exciting potential for experi-
mental replication where human subjects are involved,
since the experimental design is encoded as a program. We
post most of our experiments on the Deneme4 blog, along
with the TurKit code and database needed to rerun them.

RELATED WORK
Programming Model
Crash-and-rerun programming is related to early work on
reversible execution [11], as well as more recent work on
the Java Whyline which can answer causality questions
about a program after it has already executed [10]. Our
implementation is more light weight, and does not require
instrumenting a virtual machine. Crash-and-rerun pro-
gramming is also similar to web application programming.
Web servers typically generate HTML for the user and then
“crash” (forget their state) until the next request. The server
preserves state between requests in a database. The differ-
ence is that crash-and-rerun programming uses an impera-
tive programming model, whereas web applications must
be written using an event-driven state-machine model.

Some innovative web application frameworks allow for an
imperative model, including Struts Flow5 and stateful djan-
go6. These and similar systems serialize continuations be-
tween requests in order to preserve state, which means they
do not share many of the important benefits of crash-and-
rerun programming, including incremental programming

4 http://bit.ly/deneme-blog
5 http://struts.apache.org/struts-sandbox/struts-flow/index.html
6 http://code.google.com/p/django-stateful/

and retroactive debugging. This is less of an issue for web
services since the preserved state generally deals with a
single user over a small time-span, whereas TurKit scripts
may involve hundreds of people over several days.

Human Computation
Human computation systems generally involve many
workers making small contributions toward a goal. Quinn
and Bederson give a good overview of distributed human
computation systems [16]. Individual systems have also
been studied and explored in academic literature, including
Games with a Purpose [1], Wikipedia [9] [15], and Me-
chanical Turk [7] [8] [12] [13] [14].

Human Computation Algorithms
Many human computation systems are embarrassingly par-
allel, where tasks to not depend on each other. Human
computation algorithms involve more complicated orches-
tration of human effort, where workers build on each oth-
er’s work. Kosorukoff uses humans in genetic algorithms
[11]. Wikipedia itself may be viewed as a human computa-
tion algorithm. Each article involves many humans adding,
improving and moderating content.

TurKit is a toolkit for exploring human computation algo-
rithms. Human genetic algorithms, and processes within
Wikipedia can be encoded as TurKit scripts and tested on
Mechanical Turk. The applications and algorithms present-
ed in this paper are merely first attempts at exploring this
space. Already Dai, Mausam and Weld propose decision-
theoretic improvements to algorithms proposed in this pa-
per [5], which we could encode and test empirically using
TurKit.

CONCLUSION
TurKit is a toolkit for exploring human computation algo-
rithms on Mechanical Turk. We introduce the crash-and-
rerun programming model for writing fault-tolerant scripts.
Using this model, TurKit allows users to write algorithms
in a straight-forward imperative programming style, ab-
stracting Mechanical Turk as a function call. We present a
variety of applications for TurKit, including real-world use
cases from outside our lab.

The online version of TurKit is available now, as well as
the source code: turkit-online.appspot.com. In addition to
enhancing the TurKit UI and API, we are actively using
TurKit to continue exploring the field of human computa-
tion algorithms as future work.

ACKNOWLEDGMENTS
We would like to thank everyone who contributed to this
work, including Mark Ackerman, Michael Bernstein, Jef-
frey P. Bigham, Thomas W. Malone, Robert Laubacher,
Manal Dia, Phillip Isola, everyone who has tried TurKit,

and members of the UID group. This work was supported
in part by Xerox, by the National Science Foundation under
award number IIS-0447800, by Quanta Computer as part of
the TParty project, and by the MIT Center for Collective
Intelligence. Any opinions, findings, conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the
sponsors.

REFERENCES
1. Luis von Ahn. Games With A Purpose. IEEE Computer Mag-

azine, June 2006. Pages 96-98.
2. Luis von Ahn, Ben Maurer, Colin McMillen, David Abraham

and Manuel Blum. reCAPTCHA: Human-Based Character
Recognition via Web Security Measures. Science, September
12, 2008. pp 1465-1468.

3. Cornsweet, T.N. The Staircase-Method in Psychophysics. The
American Journal of Psychology, Vol. 75, No. 3 (Sep., 1962),
pp. 485-491

4. Manal A. Dia. "On Decision Making in Tandem Networks".
M.Eng. Thesis at MIT. 2009.

5. Dai, P., Mausam, Weld, D.S. Decision-Theoretic Control of
Crowd-Sourced Workflows. AAAI 2010.

6. Feldman, S. I. and Brown, C. B. 1988. IGOR: a system for
program debugging via reversible execution. In Proceedings
of the 1988 ACM SIGPLAN and SIGOPS Workshop on Pa-
rallel and Distributed Debugging.

7. Heer, J., Bostock, M. Crowdsourcing Graphical Perception:
Using Mechanical Turk to Assess Visualization Design. CHI
2010.

8. Kittur, A., Chi, E. H., and Suh, B. 2008. Crowdsourcing user
studies with MTurk. CHI 2008.

9. Kittur, A. and Kraut, R. E. 2008. Harnessing the wisdom of
crowds in wikipedia: quality through coordination. CSCW
'08. ACM, New York, NY, 37-46

10. Ko, A. J. and Myers, B. A. Finding causes of program output
with the Java Whyline. CHI 2009.

11. Kosorukoff A. Human based genetic algorithm. IlliGAL re-
port no. 2001004. 2001, University of Illinois, Urbana-
Champaign.

12. Mason, W. and Watts, D. J. Financial incentives and the "per-
formance of crowds". KDD-HCOMP 2009.

13. Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Y. Cheap
and fast---but is it good?: evaluating non-expert annotations
for natural language tasks. EMNLP 2008.

14. Sorokin, A. and D. Forsyth, "Utility data annotation with Am-
azon MTurk," Computer Vision and Pattern Recognition
Workshops, Jan 2008.

15. Susan L. Bryant, et al. Becoming Wikipedian: transformation
of participation in a collaborative online encyclopedia.
GROUP 2005.

16. Quinn, A. J., Bederson, B. B. A Taxonomy of Distributed
Human Computation. Technical Report HCIL-2009-23 (Uni-
versity of Maryland, College Park, 2009).

The columns on the last page should be of approximately equal length.

