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ABSTRACT

This work-in-progress proposes an approach that uses a low-
cost, smartphone-based system for at-home, inquiry-driven sci-
ence learning called STEM-Messaging System (SMS). SMS sup-
ports real-time, interactive, message-based science activities and
is part of a broader project aimed at integrating science into chil-
dren’s daily lives by uncovering the science behind everyday objects
via computer vision overlays. We discuss how three pedagogical
principles—inquiry-based learning, culturally relevant pedagogies,
and modeling-based learning—inform key design features of the
system and its curricular activities. We identify tensions that sur-
faced from pilot studies involving students, parents, and teachers,
providing examples of how pedagogical principles and practical
applications influence design decisions.
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1 INTRODUCTION

The prototypical image of science for most children is that of a
mysterious body of knowledge understood by only a few. Many
children perceive a scientist as a white male in a lab wearing a white
coat. This perception creates a disconnect between science and chil-
dren’s lives, where being a scientist becomes an unreachable goal
[30, 63]. In addition, the COVID-19 pandemic revealed challenges
to ensuring high-quality science learning for all children at home
due to unequal access to appropriate technology infrastructure
and the inadequacy of existing educational materials and practices
tailored for remote learning. We examine ways to address these
gaps by bringing inquiry-based science activities into children’s
homes by allowing them to see the science behind everyday objects.
This work-in-progress paper explores the viability of a low-cost,
low-tech approach for at-home, inquiry-driven science learning.
STEM-Messaging System (SMS) is an interactive, message-based
platform tailored for households where the family’s sole computa-
tional device with internet access is a mobile phone, more common
in lower-income households in the US [50]. The SMS consists of (1)
alow-bandwidth, text-messaging-based system to allow teachers to
deliver inquiry-based activities to students at home, (2) a computer
vision system that will augment everyday objects with science
“modeling overlays,” and (3) carefully integrated STEM activities
scripts that co-design with middle-school teachers. The work pre-
sented in this paper is the initial phase of a three-year-long project
that aims to make science education more accessible while avoiding
undue pressures on families’ infrastructures. We executed scripted
activities (Wizard of Oz) with students and teachers and examined
the content topics, available infrastructure, and materials at home.
Our research question investigates the challenges and opportunities
in designing home-based, low-bandwidth inquiry activities rooted
in pedagogical principles within real-world settings.

2 THEORETICAL BACKGROUND

The following section will provide a brief background on related
work and the three fundamental pedagogical principles leading the
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design of this platform—Inquiry-based learning, Culturally relevant
pedagogies, and Modeling-based learning.

2.1 Inquiry-based-learning

Authentic inquiry-learning activities are essential components of
STEM education [43], in which learners formulate hypotheses, con-
duct experiments, and make observations [15, 38, 45, 46]. Over
the last two decades, studies showed that inquiry-based learning
is highly beneficial to students, including linking science to phe-
nomena in everyday life [57]; promoting active participation [13],
interest in science [44], and collaboration between students [26]; it
increases motivation and positive attitude toward science [7, 27],
conceptual understanding [23], and the comprehension of the na-
ture of science [35]. It also helps students develop their ability to
work in unpredictable and complex environments, especially in our
ever-changing society.

Mobile devices provide unique affordances for inquiry-based
science, such as portability, interactivity, and context-sensitivity
[56]. Research efforts have leveraged these affordances to create
mobile-assisted instructional approaches that integrate in-school
and out-of-school learning experiences [39, 55, 64], emphasizing
the importance of aligning classroom culture, pedagogical princi-
ples, design features of the mobile devices, and learning goals for
effective science inquiry learning [40]. In previous studies, students
have used mobile devices to collect data outside of the school, which
the teacher then integrates into classroom activities [11, 39, 42].
It was noted that teacher support in implementing the activities
as part of the curriculum is essential [18]. Scripts help teachers
coordinate allocating resources and technologies across the learn-
ing contexts and adapt to students’ progress [55]. However, more
research is needed to develop evidence-based design principles
for scripted orchestration for smartphone-assisted science inquiry
learning [39, 65].

2.2 Culturally Relevant Pedagogies

The idea of building on local students’ cultures, knowledge, and life
experiences has been widely researched and used in education. Cul-
turally responsive/relevant teaching [20, 21], culturally responsive
pedagogy [33], culturally sustaining pedagogy, and place-based
education have common attributes [1, 16, 29, 32, 48, 51]. Research
on culturally relevant pedagogies elevates the integrity of students’
sociocultural contexts, experiences, expectations, family knowl-
edge, networks, and values. Researchers in science education have
applied for this work in different ways, calling for science teaching
to be situated in meaningful contexts, bridging the cultural gaps
between students and science content [4, 5, 16, 17]. According to re-
searchers, context impacts education [6, 34]; thus, learning science
outside a typical classroom setting presents opportunities. Learning
in one’s community or home could facilitate learning in several
ways: (1) It enables students to see the application of learning sci-
ence and mathematics to their lived environments, (2) Students
can dive deeper into their communities’ sophisticated (but often
undervalued) knowledge, making connections to canonical school
content, and (3) Learners can use their environments as an exten-
sion of the classroom or school lab, either as a fertile ground for data
collection [59] or as a source of significant problems and scientific
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questions. Culturally relevant pedagogies are also connected to
students’ identity, determining engagement, epistemology, career
choice, and learning [41].

2.3 Modeling-based Learning

Modeling holds a crucial place in K-12 STEM [8, 22, 36, 52, 58].
Educational researchers extensively explored model-based inquiry
[9, 28] as a powerful tool for inquiry-based learning [22, 24, 49, 53].
It enhances students’ disciplinary knowledge [49] and fosters their
understanding of the nature of scientific inquiry [37, 52]. Lab experi-
ments in middle-school classrooms are common, but viewing empir-
ical inquiry as a step-by-step “recipe” negatively impacts students’
understanding of the role of experimentation in science [10, 45, 60].
Researchers have explored combining physical experiments and
computational models [2, 3, 14, 19, 31, 61, 62], linking experiments
and computer models, comparing them, and making explicit con-
nections. Implementing classroom modeling faces challenges due
to the lack of tools and the high technological infrastructure re-
quirements. In recent years, modeling has gained prominence in
mainstream science education [22, 54], as highlighted in the Next
Generation Science Standards (NGSS), a set of K-12 science content
standards originating in the United States that explicitly identify
eight science and engineering practices, including one dedicated
to developing and using models [47]. Implementing modeling in
classrooms faces challenges due to the lack of tools and the high
technological infrastructure requirements. Our research aims to
help students connect scientific principles through models to ob-
jects and phenomena in their lives.

3 THE DESIGN OF SMS

Our design utilizes a low-cost, low-bandwidth, mobile-based ap-
proach for at-home, inquiry-driven science learning; SMS sup-
ports real-time, interactive, message-based science activities and
requires only the family’s mobile phone as the computational re-
source. Through mini-lessons via SMS, students capture home
images of their experiments and receive on-time feedback from an
autonomous system.

In a more advanced project stage, still in development, students
will send images of experiments or household objects to the system,
which will augment them with a “modeling overlay” and send
back enhanced images that will capture the micro-mechanism of
the phenomena. Imagine a scenario where a student can text a
brief video of a diffusion experiment of a tea bag in water to the
system and receive back the same video enhanced with an animated
modeling overlay depicting the movement of molecules. Therefore,
these overlays would unveil fundamental scientific concepts within
the objects surrounding students, offering a genuine computer
model derived from the learner’s collected data.

Our initial research focuses on determining suitable inquiry-
based, at-home activities that are engaging personally and cul-
turally relevant while addressing limitations and parents’ privacy
concerns. We found that parents are wary of any activity that uses
personal phone numbers, and school and district administrators are
not allowed to obtain and share that information from students. As
a response, we are developing a web-based system that simulates
a messaging app interface, eliminating the need to use students’
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phone numbers. With regards to the activities themselves, we col-
laborate with teachers to co-design curricular activities, seamlessly
incorporating these advancements into NGSS-aligned curricula.

The curricular activities delivered through SMS covered three
subjects: 1. Acid-base reactions, 2. the water cycle (both of which
were developed simultaneously), and 3. Diffusion (developed after
piloting and receiving feedback from the first two activities). Spe-
cific criteria guided the selection of these topics: a. they encompass
fundamental scientific principles relevant across scientific fields, b.
their mechanisms can be visualized through a micro-level model,
c. they involve experiments that are engaging and suitable for
middle school children, and d. the materials required are simple
and accessible for most households. For the first activity, we asked
the children to make “fluffy pancakes” The text messages led them
through activities that included adding baking soda and lemon juice
to create an acid-base reaction that forms in the pancake batter. For
the second activity, we asked children to clean salty water from
the ocean and took them through a message-based conversation
that led them to a thermal desalination experiment. Students boil
salty water and turn it into vapor—leaving the salt behind—that is
collected and condensed back into the water by cooling it down.
For the third activity, we asked them to explain diffusion. Children
were asked to experiment using tea bags with cold and hot water
and examine the phenomena.

4 METHODS

4.1 Participants

The study engaged both student and teacher cohorts. Initially, data
collection comprised individual online sessions with five 6th-grade
students (aged 11-12) in their homes, along with their parents. In
addition, we connected with three middle school science teach-
ers. Each session with students and teachers took place in the
participants’ homes and lasted around 40 minutes. The session
was recorded through Zoom and conducted via a readily available,
free messaging platform like WhatsApp, employing a Wizard-of-
Oz approach. All SMS-based curricular units include a script for
hands-on activities that students conduct at home, interacting with
a researcher through our enhanced text messaging system (at first
without the computer vision overlay representation component),
delivering messages based on the method known as Wizard-of-Oz
prototyping - an established approach in human-computer interac-
tion research [12]. During the experiment, we asked students to
take photos of their in-process experiment and answer questions
about those photos, probing their understanding.

4.2 Data source and collection

Data for this study were collected through the first iteration of a
Design-based-research approach [25], which involved the evolu-
tion of initial design features rooted in theory and their subsequent
modifications based on empirical data collected during interactions
with children and teachers. Data collection included complete SMS
responses (with time-stamped message logs) and post-activity in-
terviews with participants. The interviews were designed to assess
participants’ perceptions of the SMS activity and system, as well
as gain insights into the materials available at participants’ homes
for potential use in future SMS science activities. Additionally,
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multiple-choice questions were embedded at the end of the SMS
activity to assess students’ conceptual learning and their ability
to explain the phenomenon at a micro-level, as illustrated in the
activity.

5 CURRICULUM DESIGN FINDINGS

In this section, we share the design considerations and challenges
of the SMS curricular activities. Our iterative design process was
driven by three key pedagogical principles identified in the theoret-
ical background section and refined based on student and teacher
feedback following pilot implementations.

5.1 At-home inquiry-based learning

5.1.1 Design an independent exploration activity. We aimed to
strike a balance between open-ended inquiry and ensuring safety
for children to perform the tasks on their own at home. The first
two SMS activities (exploring acid-base reactions in the kitchen by
making pancakes with different ingredients and learning about the
water cycle via thermal desalination) both required the use of a
stove. Feedback from interviews with students and their parents
following the activity indicated that some tasks were unsuitable to
conduct independently (e.g., safety). One example from an inter-
view with a 6th-grade student and his mother highlighted the need
for parental supervision during the task involving stove use, sug-
gesting that older children (13-14) might handle it autonomously.
This feedback prompted us to be mindful of possible risks associated
with household appliances as well as parental involvement as both
a potential resource and an impediment to student-led inquiry in
SMS activity design. Our second SMS activity centered around a dif-
fusion experiment using tea, allowing for independent exploration
and eliminating the need for adult assistance, thus encouraging
inquiry-based learning.

5.1.2  Design an engaging home-based activity with progress moni-
toring. In response to the absence of real-time teacher control and
feedback in at-home experiments, our goal was to design an activity
with a “guidance messenger” Messages were sent in real-time to
students, offering feedback and prompting their responses to ensure
active participation and adherence to instructions. Feedback em-
bedded in the script design facilitated the breakdown of steps into
smaller activities, enabling effective progress monitoring and the
receipt of visual updates from students in the form of photos (figure
1). Our results revealed that the average time students dedicated to
the activity was about 20 minutes. The time was spent engaging
in the experiment, with messages coming in at consistent inter-
vals. While this information did not provide details about students’
actions at home, it indicated that they were actively conducting
the experiment in accordance with the script in a timely manner.
Furthermore, the teachers expressed during their interviews that
the activity was structured enough for students to stay engaged.
All three teachers said they could see themselves offering this to
their students.
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Figure 1: Example student interaction with the text-message-based SMS interface for a diffusion experiment.

5.2 Culturally relevant pedagogy and
curriculum alignment

5.2.1 Design for personal and cultural relevance. Based on the cul-
turally relevant pedagogical principle, we aimed to guarantee per-
sonal and cultural relevance in lesson design, catering to diverse
student backgrounds while utilizing the materials that are read-
ily available to students. This involved pinpointing activities and
materials at home that are both suitable for sharing and effective
as learning tools. Initial pilot tests illustrated how experiments
with food, in particular, can introduce unknown points of reference.
In one case, a Brazilian student who participated in the acid-base
activity noted that while cooking pancakes was novel and engaging,
he did not initially have the ingredients and was unfamiliar with
some instructions. For example, he did not know how thick the
batter or how fluffy the resulting pancake should be to properly
evaluate the different ingredients. His parents offered an alternative
recipe featuring ingredients more common in a typical Brazilian
household-prompting the team to incorporate flexibility and al-
ternative materials in future activity scripts. In ongoing work, we
developed a survey asking participants to describe more materials
they could use for at-home science activities. Moving forward, spe-
cial consideration was given to substances, especially food-related,
that might be inappropriate to use or “waste” in some households.

5.2.2  Design activities aligned with school curriculum and topics. In
addition to being personally and culturally relevant, our goal was
to connect classroom activities with students’ home learning via
SMS, using the school curriculum as a foundation. This proved chal-
lenging as many NGSS curricular standards did not align with expe-
riences students would generally conduct at home. We interviewed
three teachers to understand classroom activities, garnering ideas
for linking school content with home. For instance, one teacher
suggested exploring crystal growth, while another proposed activi-
ties like growing mold on bread. However, selecting topics posed
challenges due to the need for short-term impact testable within
hours, as longer processes like mold growth take days. We are still
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determining the most effective activities for extended processes at
this project stage and observing how this evolves over time.

5.3 Modeling-based learning

Modeling-based learning was the third pedagogical principle guid-
ing this system’s design. We are designing the system so that the
photos collected during the experiments can be sent to the sys-
tem, processed, and returned to the students with a “modeling”
overlay, i.e., an animation of the micro-mechanisms operating in
the phenomenon. In the diffusion experiment, this overlay would
move tea molecules from high to low concentrations in the water.
Our preliminary technical and conceptual research indicated that
the design decisions involve choosing content from the scene that
will be suitable for the computer vision system to “understand”
automatically, the efficient generation of a modeling layer, and the
actual improvement of the mechanisms’ visibility for students. This
component of the project is still under development and is not
included in the scope of this paper.

6 DISCUSSION AND CONCLUSION

This paper presents a work in progress of the design process of the
SMS, a learning technology platform committed to broadening the
accessibility of science education. We illustrate core design deci-
sions guided by three pedagogical principles and those influenced
by real-world use, highlighting the responsive nature of the design
process. A key finding for transporting science experiments to the
home is that even when the activities are familiar and common,
shifting them to a science experiment changes the ways in which
parents and children need to participate, their time, attention, and
supervision-making otherwise common activities unfit for these
remote learning experiments. Additionally, our findings highlight
the responsive engagement with teachers in selecting topics that
captivate students’ interests but also align with the school curricu-
lum and draw upon community and cultural knowledge. Through a
design-based research approach, we highlight the significance of it-
erative design research, with the results emphasizing the role of the
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designer/researcher in addressing the evolving needs of the target
audience, improving usability, and ensuring content accessibility.
We argue that this paper contributes to the understanding of barri-
ers and difficulties in introducing a new platform for inquiry-based
science learning at home — even after years of remote learning and
a recognized need to expand instruction to outside the school.

In the short term, our plan for future work involves iterating
and implementing additional design interventions to gather more
empirical data on the dynamics of student learning. This includes a
specific exploration of how students learn at home and an investi-
gation into their self-efficacy and identity as scientists. In the long
term, we plan to complete the development of the platform and
incorporate computer vision to visualize the model overlay.
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