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Abstract

Variational inference (VI) has emerged as a popular method for approximate inference
for high-dimensional Bayesian models. In this paper, we propose a novel VI method
that extends the naive mean field via entropic regularization, referred to as =-variational
inference (2-VI). Z-VI has a close connection to the entropic optimal transport problem and
benefits from the computationally efficient Sinkhorn algorithm. We show that =-variational
posteriors effectively recover the true posterior dependency, where the likelihood function
is downweighted by a regularization parameter. We analyze the role of dimensionality of
the parameter space on the accuracy of Z-variational approximation and the computational
complexity of computing the approximate distribution, providing a rough characterization
of the statistical-computational trade-off in =-VI, where higher statistical accuracy requires
greater computational effort. We also investigate the frequentist properties of Z-VI and
establish results on consistency, asymptotic normality, high-dimensional asymptotics, and
algorithmic stability. We provide sufficient criteria for our algorithm to achieve polynomial-
time convergence. Finally, we show the inferential benefits of using =Z-VI over mean-field
VI and other competing methods, such as normalizing flow, on simulated and real datasets.
Keywords: Variational inference, optimal transport, mean-field approximation, statistical-
computational tradeoff, high-dimensional Bayesian inference.

1 Introduction

Variational inference (VI) is a widely used method for approximate probabilistic inference.
VI approximates a difficult-to-compute distribution by positing a family of simpler distributions
and minimizing the KL divergence between the family and the target. In Bayesian modeling,
the target is a posterior distribution of latent variables given observations p(f|x) and the
variational family is of distributions of the latent variables q(6) € Q(©). VI approximates
the posterior with

q’(0) = arg min Dig, (a(0) I p(f]x)). (1.1)
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To set up variational inference, we need to select the family of distributions over which
to optimize. In many applications, practitioners use the mean-field or fully factorized
family. This is the family of product distributions, where each variable is independent
and endowed with its own distributional factor. Consider a model with D latent variables
0 ={61,...,0p}. The corresponding mean-field family is

D

a(0) = [ ] a:(62), (1.2)

=1

where each ¢;(0;) is the variational factor for 6;. Thanks to this simple family, the variational
optimization is computationally efficient (to a local optimum). But this efficiency comes at
a cost. Mean-field VI suffers in accuracy because it cannot capture posterior dependencies
between the elements of 6 (Blei et al., 2017).

In this paper, we develop a new way of doing variational inference. The idea is to
optimize over all distributions of the latent variables, i.e., q € P(©), but to regularize the
variational objective function to encourage simpler distributions that are “more like the
mean-field.” At one end of the regularization path we effectively optimize over the mean-
field family, providing traditional mean-field VI (MFVI). At the other end we optimize
over all distributions, providing exact inference (but at prohibitive cost). Between these
extremes, our method smoothly trades off efficiency and accuracy.

In detail, consider a probabilistic model p(#, x) = p(€)p(x | #) and the goal to approximate
the posterior p(f|x). Denote the prior m(f) := p(f) and the log likelihood ¢(x; 0) :=
log p(x | ). We propose to approximate the posterior by optimizing an expressivity-regularized
variational objective over the entire space of distributions q € P(0).

Take an arbitrary distribution q(¢) with marginal distributions denoted q;(6;). We
define the expressivity functional as the KL divergence between () and the product of its
marginals:

D
Z(q) = D <Q(9) | H%(@)) : (1.3)
i=1

Expressivity measures the dependence among the D latent variables under (). In the
language of information theory, it is the multivariate mutual information of § ~ q(6) (Cover
and Thomas, 2006). Intuitively, it quantifies how ”un-mean-field” the distribution q is. A
larger E(q) indicates that the distribution is further from a factorized distribution.

We define E-variational inference (2-VI) as an expressivity-regularized optimization
problem:

A\ (0) = arg max Eq[l(x; 0)] — Dy (q(f) | 7(0)) —  AE(q) - (1.4)
q€eP(©) ——
ELBO(q) Expressivity penalty

The first two terms comprise the evidence lower bound (ELBO) (Jordan et al., 1999; Blei
et al., 2017), which is the usual objective functon for variational inference. When optimized
relative to the full set of distributions of 6, maximizing the ELBO recovers the exact
posterior (Zellner, 1988; Knoblauch et al., 2022). The third term, however, is a penalty
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term. It encourages the optimal ¢ to resemble a product distribution, i.e., a member of the
mean-field family. By varying A > 0, we interpolate between the exact posterior and its
mean-field approximation.

We will study the theory and application of Eq. (1.4), which we call Z-VI (pronounced
“ksee VI”). First we show that we can solve this optimization by iterating between (1)
calculating approximate posterior marginals for each variable and (2) solving a problem of
entropic optimal transport (EOT) with a multi-marginal Sinkhorn algorithm (Cuturi, 2013;
Lin et al., 2022). We then develop ezpressivity-corrected mean field. It first approximates
marginals using traditional VI (e.g., black-box VI (Ranganath et al., 2014) or expectation
propagation (Minka, 2013)), and then optimizes Eq. (1.4) with the Sinkhorn algorithm to
model dependencies in the variational approximation.

We prove that =-VI gives frequentist guarantees including posterior consistency and
a Bernstein-von Mises theorem. Further, we theoretically characterize how to choose the
regularization parameter A to balance accuracy and efficiency. Specifically, we characterize
the regions of possible A values where the resulting variational approximation is either
mean-field or Bayes-optimal.

Empirically, we apply Z-VI correction to multivariate Gaussians, linear regression with a
Laplace prior, and hierarchical Bayesian modeling. The results demonstrate the competitive
performance of Z-VI over other variational inference methods, including mean-field and full-
rank ADVI (Kucukelbir et al., 2017), normalizing flow (Rezende and Mohamed, 2015), and
Stein variational gradient descent (Liu and Wang, 2016). To set the regularization strength
A, our empirical findings suggest that A = D is a reasonable choice, marking a phase
transition between the computationally efficient and statistically accurate regimes.

The rest of the paper is organized as follows. Section 2 introduces =-VI and the =Z-VI
correction algorithm. Section 3 provides an empirical study. Section 4 establishes theoretical
guarantees for the =-variational posterior, including posterior consistency, Bernstein-von
Mises theorem, high-dimensional bounds, finite-sample convergence, and algorithmic stability.
Section 5 concludes the paper with a discussion of limitations and further research.

Related Work. This paper proposes =-VI, a new way to relax the mean-field assumption
in variational inference. With this new algorithm, we also add to two existing areas of VI
research: statistical guarantees and computational guarantees.

Mean-field VI is efficient, but it also has limitations. It poorly approximates posteriors in
settings such as multivariate Gaussian models (Blei et al., 2017), state-space models (Wang
and Titterington, 2004), piecewise-constant models (Zhang and Gao, 2020), and spike
covariance models (Ghorbani et al., 2019). To address these shortcomings, researchers have
proposed a variety of solutions, including structural VI (Xing et al., 2012; Ranganath et al.,
2016), copula-based methods (Tran et al., 2015, 2017), linear response corrections (Giordano
et al., 2018; Raymond and Ricci-Tersenghi, 2017), TAP corrections (Opper and Saad, 2001;
Fan et al., 2021; Celentano et al., 2023a,b), and variational boosting (Miller et al., 2017;
Locatello et al., 2018). Our method makes a contribution to this landscape of research,
providing a principled and theoretically supported approach to capture dependencies among
latent variables and to manage the statistical-computation tradeoff.

Several lines of recent research examine the statistical properties of VI approximations.
This work includes results on asymptotic normality (Hall et al., 2011b,a; Bickel et al.,
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2013; Wang and Blei, 2019), posterior contraction rates (Zhang and Gao, 2020; Zhang and
Zhou, 2020), finite-sample bounds (Alquier et al., 2016; Alquier and Ridgway, 2020; Yang
et al., 2020), and performance in high-dimensional settings (Basak and Mukherjee, 2017;
Ray et al., 2020; Ray and Szabd, 2022; Mukherjee and Sen, 2022; Mukherjee et al., 2023;
Qiu, 2024). We contribute to this research by proving frequentist guarantees—posterior
consistency and a Bernstein-von Mises theorem—for our proposed class of variational approximations.

Other research examines computational aspects of VI, including convergence rates for
coordinate ascent methods (Mukherjee and Sarkar, 2018; Plummer et al., 2020; Zhang and
Zhou, 2020; Xu and Campbell, 2022; Bhattacharya et al., 2025), black-box optimization
(Kim et al., 2023), and the trade-off between statistical accuracy and computational complexity
(Bhatia et al., 2022). Related work also analyzes VI through gradient flow techniques
(Yao and Yang, 2022; Lambert et al., 2022; Diao et al., 2023; Jiang et al., 2025). Our
paper contributes to these computational analyses by explicitly characterizing the trade-off
of accuracy for computational simplicity. We also expand the interface between VI and
optimal transport, in using entropic optimal transport methods (Cuturi, 2013; Lin et al.,
2022) in VI optimization.

2 =-variational inference

Again, we consider a general probabilistic model

(0, x) = m(6) exp{{(x; 0)}, (2.1)

where m(0) is the prior of the unknown parameter and ¢(x; ) is the log likelihood of the
data under §. While we use the log-likelihood throughout our methods and experiments
(Section3), all proposed techniques and theoretical results extend readily to generalized
posteriors in which £(x | 0) is a loss function (Bissiri et al., 2016; Knoblauch, 2019; Miller,
2021). We consider the prior 7 that is a product distribution of the form 7 () = [5, m:(6;).
Our goal is to approximate the posterior p(6|x).

In this section, we formally define Z-VI and analyze its structure. We reformulate =-VI
as a nested optimization, separating the problem into an outer optimization over marginals
and an inner optimization over their couplings, i.e., a representation of the dependency
structure in the variational approximation. We focus on solving the inner optimization,
showing how to correct mean-field (factorized) solutions using entropic optimal transport
(EOT). We present a computationally practical algorithm and discuss its interpretation.

2.1 The E variational objective and its nested formulation

We aim to find the distribution ¢} that solves the problem in Eq. (1.4). In this problem,
A > 0 is a user-defined regularization parameter, and the optimal q}(6) is called the =-
variational posterior. When it is not unique, q3 is one of the optimizers of Eq. (1.4).

We make two observations about the =-VI problem: (1) When A = 0, qj is the exact
posterior. When A\ = oo, g, is a mean-field variational posterior. (2) By the standard

duality theory, the Z-VI problem is equivalent to optimizing the standard ELBO over a
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neighborhood of the mean-field family:

qy = argmax ELBO(q).
q€P(©):E(q) <6

The =-VI posterior is the distribution over the latent variables closest to the posterior, but
within the neighborhood of expressivity.

We can rewrite =Z-VI as a nested minimization problem. Let m;(6;) denote a marginal
distribution of 6; and let M(©) denote the space of product distributions over ©,

D
M(0©) = {m(e) m(f) = Hmi(@-)} : (2.2)
=1

Given a set of D marginals let C (my,...,mp) denote the set of D-dimensional joint
distributions where m;(6;) is the 4% marginal,

C(ma,...,mp)={a(by,...,0p) 1 q;(0;) =m;(6;), j=1,...,D}. (2.3)

The set C(mq,--- ,mp) is called the set of couplings over the distributions {mq,---,mp}.
As shorthand, we write C(m) as the set of couplings over the marginal distributions of m(6).
Note the set C(m) is convex and closed in the Wasserstein distance (Nutz, 2021), and we
assume that there exists q € C(m) with finite (Boltzmann) entropy.

With these definitions in place, we write Z-VI as a double minimization problem,

i in Eq|—{(x;0 AD D . 2.4
Bl 28y Bl O AP )+ Diala 1 0

The equation follows from expressing the minimization set P(©) as {q € C(m), m € M(0)},
while the objective stays the same.

In Eq. (2.4), the outer variational problem minimizes the objective with respect to the
space of marginal distributions. Given a set of marginals, the inner variational problem
minimizes the objective over its set of couplings. Here we will focus on the inner variational
problem. Given fixed marginal distributions—such as those produced by mean-field VI—
the inner problem finds the optimal coupling that corrects these marginals, i.e., the A-
regularized optimal dependencies between the variables. We show this problem is solvable
using entropic optimal transport tools. Our method improves a given mean-field solution
to capture dependencies in the latent variables and better approximate the posterior.

2.2 Expressivity-corrected mean-field VI

We now derive an algorithm to correct mean-field variational inference using =-VI. We fix
the solution to the outer variational problem with a product distribution m(), obtained
from mean-field VI or another approximate method. We then solve Eq. (2.4) for the optimal
distribution q(€) that matches these marginals, i.e., by solving the inner variational problem
with respect to the coupling q € C(m). As we will see, we can optimize over the set of
couplings using tools from entropic optimal transport (EOT) (Villani, 2009; Nutz, 2021).
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Solving the inner variational problem with the Sinkhorn algorithm. We view the
inner variational problem as an EOT problem (Nutz, 2021). Again, we fix m and optimize
q- A simple calculation (in Section C) shows that

qi(0) = arg min Eq[—£(x;0)] + (A + 1) Dk(q [| m). (2.5)
q€C(m)

Theorem 25 (Section C) shows the unique solution to Eq. (2.5) has the following form:

= exp (an )+ mz (; 9)> m(0), (2.6)

where each ¢} : ©; — R is a measurable function, called an FOT potential.

The set of EOT potentials ¢* := (¢7,- - - , ¢7,) are identifiable up to an additive constant.
So we identify the solution by imposing D —1 constraints that each one has mean-zero under
the marginal,

B, ¢1(61) = -+ = Emp_,¢p_1(6p) = 0. (2.7)

Let E(m) denote the space of ¢ such that Eq. (2.7) holds. We find the optimal potentials
from Eq. (2.6) by maximizing the Lagrangian dual problem,

exp (Z ®i(6;) + )\7—#16 (z; 9))] (2.8)

D
* = arg max E,.. [¢:(0,)] — E,,
¢ g¢eE(m); (104(0)

See Section C for the derivation.

Finally, we solve Eq. (2.8) with a block coordinate ascent algorithm called the Sinkhorn
algorithm (Cuturi, 2013). Given the marginals m! at time ¢, the Sinkhorn algorithm
iteratively updates each ¢;,

¢§+1 = argmax E, ,:¢;(0 +ZE ¢t+1 Z B “bt B, [eXp(AH_l(gw‘g ))}
pieLl(m?) i j=i+1
(2.9)
where
i1
A (0;,0_;) = Z¢t+1 Z ¢j (a; 0;,0_;).
j=1 Jj=i+1

To solve for Eq. (2.9), the update has an explicit formula:

¢t (0:) = —1og B,y exp(A™1(0;,0-4)) +7f, Vb; € 6, (2.10)

KA
where

Ny =

. Byt log K, e exp(A7TH(0;,0_;)), fori< D -1,
0 otherwise.
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The updated EOT potentials satisfy the identifiability constraints (2.7). The solution g}
calculated with these EOT potentials is a valid probability distribution.

In practice, the expectations required of Eq. (2.10) might be difficult to compute. In
our algorithm, we approximate them with Monte Carlo.

Specifically, given samples Hil, e ,OlN ~ m! for i € [D], we approximate QSEH with the
Monte Carlo estimate ¢§+1:
N 1 A .
¢§+1(9i) = —log ND—1 Z eXP(AtH(@i)e{i)) +771T7 (2.11)
Je[N]P-1
where
i—1
AT0;,0-5) =Y o0, Z L0, —1—75(33 0:,60_;).
j=1 j=i+1
and

[

st {1{7 ey log (ﬁ D s[NPt exp(AF1(6;, 911‘))) , fori<D—1,
0

otherwise.

One-step expressivity-corrected mean-field VI. Algorithm 1 implements the entropic
correction in a single round of updates. In the first stage, it computes a set of pseudomarginals
{mi}ie[m, and draws samples from them. In the second stage, it uses those samples in a

multi-marginal Sinkhorn algorithm to compute the optimal EOT coupling.

Algorithm 1: Expressivity-corrected mean-field variational inference

Input:
Data «
Likelihood function ¢(x ; 0)

Prior distribution ()
Expressivity regularization parameter A > 0

Compute marginals from a mean-field algorithm
mq,--- ,mp < mean field inference(x, ¢, ).
Iteratively compute EOT potentials

gg,\J, e ,q~5)\7D <+ Sinkhorn(x, £, m1.p, \) Eqgs. (2.9) and (2.10)

Output: q,(0) = exp (Eil gEM(Qi) + %HE(:I: 9)) Hl D)

Note that in the first stage, we can use any algorithm for approximating the posterior
marginals, e.g., variational inference (Blei et al., 2017), expectation propagation (EP)
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(Minka, 2013), or MCMC (Robert and Casella, 2004). Ideally, the first step of Algorithm 1
would produce accurate estimates of the marginals of the exact posterior.

In practice, we recommend using an approximate method that yields overdispersed
marginals, such as EP, because the additional variability often improves downstream coupling
approximations. Intuitively, it produces more variation in the initial samples of {9}, ceey QZN }z‘e[ D]
for the Monte Carlo step (2.11), which leads to better downstream approximations. We
demonstrate this empirically in Section 3.

Algorithm 1 only outputs an approximate solution to the full Z-VI problem in Eq. (2.4).
However, by coupling the marginals mq, -+ ,mp, the final estimate @,(f) is guaranteed
to be at least as good as the initial approximation m(6) := ijzl m;(#;) in terms of KL
divergence to the exact posterior. The reason is that g, maximizes the regularized ELBO
in Eq. (1.4) over the coupling C(mn).

With a large number of variables, Algorithm 1 is computationally challenging because
the cost of averaging over NP~! term in step (2.11) scales exponentially in D. For this
reason, a stochastic (minibatch) approximation to step (2.11) is necessary in practice
when either IV or D is large. In Section A, we outline conditions on the likelihood for
the algorithm to be polynomial-time solvable. Specifically, we provide polynomial-time
complexity guarantees in two settings: (i) graphical models with bounded treewidth, and
(ii) models in which the likelihood evaluated at the sample points {6}, --- ,§¥ }ie[p) forms
a low-rank and sparse tensor. In the first setting, we show that the algorithm converges
in time polynomial in the dimension D, but exponential in the treewidth and inversely
proportional to the regularization parameter \.

2.3 =-VI Solution and Connection to GGeneralized Bayes

In this section, we discuss the structure of the =-VI solution and its connection to existing
theories of generalized Bayesian methods (Knoblauch et al., 2022).
As shown in Eq. (2.6), the Z-VI solution consists of three components: (i) a scaled log-

likelihood term, (ii) a set of potential functions {¢§7i}i’;1, and (iii) a product of marginals

mi(0) = Hg 1M} ;(0;). The regularization parameter A controls the temperature of the

likelihood term ¢(x;0).

Intuitively, A divides a sample size of n between the true posterior and the mean-field
solution by a factor of 1/(A+ 1) and A\/(A + 1), respectively. It thus quantifies the tradeoff
between the likelihood and a product distribution. Higher A allows the variational posterior
to be close to the mean field, while lower A\ allows the solution to better approximate
the exact posterior (but at computational cost). When A = 0, the likelihood term is
untempered—the variational solution is the exact posterior. When A\ = oo, the solution
matches the mean-field variational posterior. The curve of measures {q}, A € R} smoothly
interpolates between the mean-field variational posterior and the true posterior.

We can view g3 as a nonlinear tilt of a 1/(A+1)-tempered posterior (Miller and Dunson,
2018; Bhattacharya et al., 2019). Posteriors of this form have been studied extensively in
statistical learning theory for addressing model misspecification (Griinwald, 2012; Griinwald
and van Ommen, 2017), and in machine learning they have been studied for their predictive
performance where they are called “cold posteriors” (Aitchison, 2021; Wenzel et al., 2020;
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McLatchie et al., 2025). Write
fri(0i) == 83 ;(6:) + logm3(6;) — log mi(6;).

Then we can represent g3 as a nonlinear tilt of the tempered posterior q(’gk,

D
* * * * 1
G5(6) o exp (Z fwi)) @), where q§*(6) x exp (Mam;e)) 0).  (212)
i=1
Wainwright et al. (2008) shows that the mean-field variational posterior of the quadratic
interaction model amounts to a linear tilting of the prior. Eq. (2.12) extends this result,
where f},(0;) is the tilting function.

3 Examples

We apply Z-VI to three statistical models: a multivariate Gaussian model, a high-dimensional
Bayesian linear regression, and a hierarchical Bayesian model on the 8-schools data (Gelman
et al. (1995), Section 5.5).

e In the multivariate Gaussian example, =-VI is explicitly solvable. This example illustrates

the limitations of mean-field VI (Blei et al., 2017), and demonstrates how =Z-VI improves
it.

e In high-dimensional Bayesian linear regression, mean-field VI produces valid inference
under weak covariate interactions (Mukherjee and Sen, 2022; Mukherjee et al., 2023),
but fail when the interaction among the covariates is strong (Qiu, 2024; Celentano et al.,
2023a). Again, =-VI improves on the classical approach.

e Our analysis of the Bayesian hierarchical model shows how Z-VI provides more accurate
posterior inferences on a real-world dataset.

3.1 Multivariate Gaussian distributions

We first apply =-VI to approximating a multivariate Gaussian with the family of all
Gaussian distributions. In this demonstration, no algorithm is needed because =-VI admits
a closed form solution. In general, it is well known that mean-field VI underestimates
the marginal variance of its target posterior (Blei et al., 2017). Here we show how =-
VI interpolates between the mean-field and the target posterior, and strictly outperforms
mean-field VI in covariance estimation.

Assume that the exact posterior is a multivariate normal, qf = N(uo, Xo) with D-
dimensional mean vector po and a D x D full-rank covariance matrix Y. The =Z-VI
formulation is

qy = argmin Dkr,(q || q5) + A=(q). (3.1)
a=N(1,%)

The next result establishes the self-consistency equations for the =-VI solution and
establishes upper and lower bounds for the approximating covariance:
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Proposition 1 Suppose we solve the Gaussian Z- VI problem (3.1) with N (uo, Xo) the exact
posterior and X > 0. Then the minimizer g5 = N (u*, X*) where p*,X* satisfy the following
fized point equations:

B 1 A .
2 Ko, ( ) A+1 0+/\+1( dlag)
For any matriz norm ||.||, the following bounds hold:

<IET = %ol <

1 Aoy 17 A =
)\+1A0+ )\+120,diag — 20 Ao + 7A07dmg — 20

1
‘ [A+1 A+1
The proof can be found in Section E. Our result shows that A* is a convex combination of the
true precision Ag and the inverse of the variational marginal variances. As the regularizer
A — 00, the off-diagonal elements of A* converge to 0 while the diagonal elements approach
those of Ag.

The weight A controls the approximation error of a variational posterior covariance by
combining the marginal precisions of the exact posterior and the mean-field precision with
weights %‘H and %H’ respectively. For any A < oo, the =-variational posterior offers a
tighter approximation than the naive mean field. To see this, we note that Dy, (g} || gf) <
Dy, (ay || i) + A2(a}) < Dxu (dk || a), where Z(q3) > 0 implies the first inequality and
the optimality of q} implies the second inequality.

As a concrete demonstration of these ideas, we study a bivariate Gaussian posterior.
Here, the Z-variational posterior has an analytical solution that can be exactly computed
(see Proposition 38 in the Section E).

Figure lillustrates the interpolation, where the regularization downweights the off-
diagonal entries of the precision matrix by a factor of 1/(A + 1). It shows q, fitted to
a bivariate Gaussian, for different values of A\. The left panel shows ¢, as a smooth
interpolation between the true posterior and the mean-field variational posterior. Increasing
A smoothly reduces posterior dependence, with a sharp structural change only at A = oco.
The right panel paints a quantitative picture of this interpolation: when A < 107!, the
=Z-variational posterior closely approximates the covariance values of the exact bivariate
Gaussian posterior. For A > 10!, the covariance is close to zero, which indicates proximity
to the mean-field variational posterior. Both plots suggest that ¢, undergoes a ”phase
transition” phenomenon at A € [1071,101].

3.2 Bayesian Linear Regression with Laplace Prior

=Z-VI involves a tradeoff between statistical accuracy and computational complexity: as the
regularization increases away from the mean-field solution, the quality of VI approximation
improves at the cost of increased computational complexity.

To study this, we consider a a Bayesian linear model with Laplace prior,

y=X0+¢, e~ N(0,06°I,), 6;~ Laplace(0,1). (3.2)

The Laplace prior has density 7(6;) = % exp (— ‘%').

10
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=-VI Solutions for Varying A Covariance between X and Y
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Figure 1: =-VI solutions for a bivariate Gaussian posterior for varying A. The left panel
illustrates the transition of the variational posterior q} from closely approximating the
exact posterior (at low \) to resembling the mean-field approximation (at high A). The
right panel shows the covariance between the two normal coordinates versus A on a log
scale. Note that the Z-variational approximation to the covariance is very accurate up to a
critical A (= 107!), after which it degrades rapidly to 0.

We simulate a dataset consisting of n = 100 observations and d = 12 features. The
true regression coefficients is drawn randomly from a 12-dimensional standard Gaussian
distribution, and 02 = 1. Columns (1,2,3,8,9) of X are generated from a standard
Gaussian distribution. Then we set each of features (4,5, 6,11, 12) equal to each of features
(1,2,3,8,9) plus a standard Gaussian noise. This setup aims to simulate realistic multicollinearity.
Finally, we generate the response y using model (3.2). With this simulated data, we
calculate an “exact” posterior with a long-run MCMC algorithm of 3,000 iterations. The
MCMC draws produce an R of below 1.01 across coefficients (Gelman et al., 1995), which
is below the typical threshold of 1.1 for satisfactory mixing.

Since coupling all 12 coefficients is computationally expensive, we couple groups of
coefficients in the EOT step. We adopt a naive grouping approach where features (1,2, 3),
(4,5,6), (7,8,9), (10,11, 12) are grouped together. This effectively reduces the computational
cost by reducing a twelve-dimensional coupling problem into a four-dimensional one. While
it is beneficial to use an informed grouping, any choice of grouping will improve the
approximation accuracy of MFVI.

For each dimension, we use N = 20 points to represent each pseudomarginal. Recent
work by Frazier et al. (2024) shows that generalized Bayes posteriors can be sensitive to
the number of pseudo-samples used in stochastic likelihood estimation. In our setting,
the posterior ¢, depends on the EOT potentials computed via the Sinkhorn algorithm
(Eq. (2.6)). To assess this sensitivity, Table 1 in Section F reports the approximation quality
of =E-VI for various N under A = 10. Larger N offers only modest accuracy gains while the
memory cost scales as O(NP) (see Eq. (2.11)) and runtime increases sharply. Empirically,
N = 20 is sufficient to accurately compute Z-VI under a reasonable computational budget.

11
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Figure 2: Left. accuracy of Z-VI for Laplace linear regression, measured in Wy across
values of A\. Right. runtime of =-VI for Laplace linear regression with a Sinkhorn error of
10~°, measured in seconds across values of \.

With this simulated data, we use Algorithm 1 to compute the =-VI approximation.
In the first step, we use expectation propagation (EP) to compute the pseudomarginals.
For the analysis, we chose 100 A values on a logarithmic scale from 10™* to 10%, and
represented the variational posterior for each A by 2,000 sample points. Figure 2(a)
shows the approximation errors of =-VI as a function of A\, measured using the Wasserstein
distance (W3). These distances are computed between the posterior distributions sampled
via MCMC and those obtained from Z-VI. The =-VI approximation errors are benchmarked
against the baseline errors of EP at A = oo, mean-field VI, and the theoretical lower bound
at A = 0. A vertical line at A = D, the number of features, marks an inflection point where
the posterior variational approximation error transitions from rapidly converging to the EP
error (A < D) to relatively stable (A > D).

Figure 2(b) reports the runtime of the approximate coordinate-ascent algorithm for
Laplace linear regression, measured in seconds until convergence. The \ values are displayed
on a logarithmic scale to highlight the performance over several orders of magnitude. The
runtime decreases sharply for A < D and stabilizes once A > D. The inflection in both
the approximation error and runtime plots suggests that a regularization strength around
A = D offers an balanced tradeoff between approximation accuracy and computational
complexity.

3.3 Hierarchical Model

The 8-schools model (Gelman et al. (1995), Section 5.5) is a classical example of a hierarchical
Bayesian model. Each of the 8 schools run a randomized trial to assess the effect of
tutoring on a standardized test. Each school provides separate estimates for the mean
y; and standard deviation o; of their respective treatment effects.

12
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Let 0; be the treatment effect in school j. We treat the outcomes from each school as

independent:
yiloy ~ N(0j,07),  Oilu, 7~ N(p,7%), 1<j<8, 53)
i~ N(0,5), 7 ~ halfCauchy(0,5). '
where p and 7 are the global parameters common to all schools, 6; is a local parameter
specific to school j. The target of posterior inference are {6; }§:1> w and 72.
To match the =-VI formulation in Section 2.2, we define z; := (6; — p)/7 and rewrite
the model as follows:

y] | M?zjvTNN<M+TZj7U]2)’

3.4
zj ~N(0,1), p~ N(0,5), 7 ~ halfCauchy(0,5). (384)

This reparameterization transforms the joint prior of z;’s, i, and 7 into a product distribution.
We apply Algorithm 1 to solve the Z-VI problem for this model, expressed as:

8 2
) . | — T2 — -
q) € argminE, g W + Dki(q || ™) + AE(q). (3.5)
alz,u,7) = oj

In the first step, we use automatic differentiation variational inference (ADVI, (Kucukelbir
et al., 2017; Carpenter et al., 2015)) to compute a set of pseudomarginals. In the second
step, we use the Sinkhorn algorithm to solve the EOT problem:

qy = argmin
a(z,p,7)€C(a5)

8 2.2
T2 + 2 — y;)TZ .
Eq > — S A DDkal ). (3.6)
j=1

2
20j

The problem (3.6) is solvable in polynomial time using the Sinkhorn algorithm, as detailed
in Proposition 8 of Section A. Assumption 1 of Proposition 8 is upheld due to efficient
storage of the cost tensor as third-order tensors. Ultimately, we derive the joint distribution
ax(01,--- .03, p,7) by setting 6; = p + 7z; based on the optimal coupling in (3.6).

To benchmark the performance of our VI methods, we compute the true posterior using
MCMC draws with 4 chains for 1000 tune and 5000 draw iterations. For each of the VI
methods, we represent the approximate posterior with 10,000 sample points.

=-VI captures the dependency among the variables in the posterior. Figure 3 compares
the strength of association between #; and 67 under the true posterior, mean-field variational
posterior and Z-variational posteriors when A € {0,1,10,1000}. The true posterior shows
a strong positive correlation between 6 and 6, which is effectively captured by =-VI at
small A. As X increases, the correlation decreases to the MFVI level that attains a slope
estimate of 0.19.

=-VI excels in inference that involves multiple variables in the posterior. Figure 4
illustrates credible intervals for maximum and minimum treatment effects across schools,
comparing =Z-VI with MFVI, normalizing flow variational inference (NFVI), Stein variational
gradient descent (SVGD), and full-rank ADVI. E-VI achieves more accurate interval width
and coverage accuracy for both max and min treatment effects compared to other VI
methods. Specifically, for the maximum treatment effect, while MFVI, NFVI, and full-
rank ADVI produce overly large or small intervals, SVGD results in overly small intervals.
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Figure 3: Contour plots for the joint distribution of 6; and 6y across various
variational approximation of the Eight School model. The subplots compare the exact
posterior distribution with Z-variational posteriors for varying A values, and the MFVI
approximation. A linear regression fitted slope of 87 over 0; is provided for each subplot.
Each subplot includes a linear regression line showing the fitted slope of 67 over 6.

In contrast, Z-VI closely approximates the true 95% posterior credible interval. For the
minimum treatment effect, none of the VI methods precisely capture the true posterior
interval. MFVI, NFVI, and full-rank ADVI produce intervals with a downward-shifted
center, SVGD offers considerably undersized intervals, and =-VI generates reasonably-sized
intervals with less downward shift compared to MFVI.

Now we show the computation—statistical tradeoff of Z-VI in the 8-schools model. We
evaluate our procedure on 100 ) values logarithmically spaced from 1073 to 10°. Figure 5(a)
illustrates the approximation errors of the =Z-variational posterior relative to the exact
posterior, measured using KL, divergence and W5 distance. These errors are benchmarked
against those of MFVI at A = oo and a theoretical lower bound at A = 0. A vertical line
at A = D = 10 marks a critical transition: errors remain relatively stable for A < 1 and
approach MFVI for A > 100. Notably, the normalizing-flow VI also performs reasonably
well for this model and matches the performance of =-VI at A = 1 in W» distance and at
A = D in KL distance. Figure 5(b) shows the runtime of Algorithm 1 for the 8-schools
model, measured in seconds to reduce the Sinkhorn error (Algorithm 2) below 107°. The
regularization strength A is plotted on a logarithmic scale. The plot shows a sharp decline
right before and right after A = D. The phase transition in both plots confirms that
a choice of A = D offers a balance in the tradeoff between computational efficiency and
approximation accuracy. However, a computational-statistical gap exists in this model:
while A < 1 yields a closer approximation to the exact posterior, optimal runtime is only
achieved for A > 10.
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Figure 4: Comparison of the 95% posterior credible intervals for the maximum and minimum
treatment effects across schools in the Eight School model. The sequence from left to right
includes the exact posterior, Z-VI with A € {0, 1, 10,1000}, MFVI, normalizing flow (NFVI),
full-rank ADVI (Full-rank ADVI), and Stein variational gradient descent (SVGD).
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Figure 5: Left. approximation accuracy for the Eight School model of =-VI across varying
A compared with other VI methods, measured in KL divergence and W, distance. Right.
runtime for the Eight School model as a function of varying A with a Sinkhorn error of
1075, measured in seconds.

Finally, note that in the 8-schools model, the MFVI produces overdispersed results after
we apply the reparametrization. Generally, we recommend using overdispersed pseudomarginals
in Algorithm 1. The advantage comes from an intuitive understanding of the one-step
EOT correction: it seeks overlaps between the pseudomarginals and the exact posterior to
effectively capture the dependency information present in the exact posterior. When the
pseudomarginals are underdispersed, the one-step EOT correction still leads to underdispersed
samples. With overdispersed pseudomarginals, the one-step EOT coupling compensates for
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the overdispersion by subsampling points from the marginals that reflect the dependency
structure of the exact posterior distributions, as seen in Figure 3.

4 Asymptotic Theory
In this section, we study the asymptotic theory of Z-variational posterior g} ~in two regimes.

e In the regime where the parameter dimension D grows with n (Section 4.1), we provide
asymptotic approximation guarantees for qy, and identify the range of \,, for which =-VI
matches either exact posterior inference or a product distribution, under the assumption
of a compact parameter space.

e In the finite-dimensional regime (Section 4.2), where D is held fixed, we establish the full
set of frequentist guarantees for =-VI, including posterior consistency and a Bernstein—von
Mises (BvM) theorem. Under standard regularity conditions and a potentially unbounded
parameter space, we show that g} converges to a Gaussian distribution as n — co.

We set some notations for the theory. For two positive sequences a, and b,, we write
an < by, or ap, = O(by) or b, 2 ay, if there exists a constant C' > 0 such that a,, < Cb, for
all n. The constant C does not depend on n. The relation a, < b, holds if both a, < b,
and b, < a, are true. We write a, < b, or a, = o(b,) if a, < ¢,b, for all n, for some
sequence ¢, that converges to zero, ¢, — 0. We write a,, > b, if b, = o(a,).

Let P(©) denote the set of probability measures on the Euclidean metric space (O, || - ||)
that admit Lebesgue densities and P,(0) := {q € P(O) : Eq[||0||’] < oo}. For p > 1, the
(p'h)-Wasserstein distance is defined as W),(qq,q;) := (inf yec(qg,ap) EalllX — Y|[P])Y/P. The
space (P2(0), W) forms a metric space (Villani, 2009). We use BW(R”) to denote the
subspace of Po(RP”) consisting of Gaussian distributions, known as the Bures-Wasserstein
space (Bhatia et al., 2019). We use C2(0) to denote the space of twice continuously
differentiable functions on ©.

Assumption 1 (Standing Assumptions) Let (0, ] ||) be a metric space where © C RP
18 equipped with the Euclidean norm. The prior w admits a Lebesque density of the form
7(0) = exp(vo(0)) with vy € C3(O), and the exact posterior g lies in the Wasserstein space
(P2(©), Wa).

We make explicit the dependence on n of the regularizer A\, and the data (™. Under
this setup, the =-variational posterior is given by

qj\n = argminE, [—f(aj(n); 9)} + Dxr(q || ™) + ME(q). (4.1)
qGPg(@)

4.1 Asymptotic Approximation Guarantees with Growing Dimension

To explain the changes in approximation accuracy observed in Figure 2(a) and Figure 5(a),
we develop asymptotic approximation guarantees for the Z—variational posterior g} in
the regime where D,, — oo as n — oo. Our primary goal is to characterize the scaling
behavior of the regularization parameter A, under which ¢} = either behaves like a product
distribution or like the exact posterior. We begin with a theorem for general models with
compact parameter space and then focus on the high-dimensional linear model.
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General Case. For any function f : © — R, let wg(f) := supgeg f(#) — infpco f(0)
denote its oscillation. We now state the main result.

Theorem 2 Suppose that Assumption 1 holds, and let © = [—1,1]P. Assume further that
((x™);.) € C*(©). Define

€ 1.7
(42)

When X\, = D~'/?max <\/ P 10“,\/21 1 l,\/zz 1ZJ 1 ZZJ,DI/Q), there exists a

sequence of product distributions m} —such that, for any 1-Lipschitz function ¢ : R — R,
as n — oo, the E-VI optimizer ¢, satisfies

Py,
sup — 0. (4.3)

:I!(")EX”

1 D
=3 (Egg, [6(69)] — By [9(6)])

i=1

When A\, < D=7Y(q}), for any 1-Lipschitz function ¢ : R — R, as n — oo,

1 & 1 & |
sup  Eg (DZ¢(9i)—DZEq3[¢(9i)]) = 0. (4.4)

z(n)exn

The compactness of the parameter space is essential for establishing approximation
guarantees for variational inference in high dimensions. This assumption and the proofs
in Section E build on the theory of nonlinear large deviations (Chatterjee and Dembo,
2016; Yan, 2020). The choice © = [—1, 1]D and corresponding tools have been adopted
in the theoretical analysis of mean-field variational inference for Potts models (Basak and
Mukherjee, 2017), linear models (Mukherjee and Sen, 2022; Mukherjee et al., 2023), and,
in a related form, for latent variable models (Zhong et al., 2025). Our results also extend
to any compact subset © of RP.

As @ € [—1,1]P, all first- and second-order derivatives of £(z(™); .) are uniformly bounded,
which controls the oscillation quantities a, b;, and ¢;;. For unbounded parameter spaces,
alternative results are available under stronger shape constraints—when both the likelihood
and the prior are log-concave (Lacker et al., 2024). We do not pursue this direction here to
keep the presentation focused.

When D is fixed, the convergence in Eq. (4.3) and Eq. (4.4) imply that the expectations
of the averages % ZZD: 1 ¥(0;) under the pairs of posteriors (q} ,m} ) and (q} ,qp) are
the same up to an asymptotically negligible error, respectively. When D is fixed and ©
is compact, the results follow directly whenever the variational posteriors q3 , m} , and
qy are uniformly (weakly) consistent at the true parameter 6y, since weak consistency is
equivalent to convergence in the bounded—Lipschitz metric (see Remark 6.3 of Ghosal and
van der Vaart (2017)).

Eq. (4.3) defines a mean-field regime, where a product measure matches g} in any
1-Lipschitz statistic (first-order statistics). This regime characterizes when Z-VI can be

replaced by MFVI. The critical scaling term in the threshold is />, . cZ as the other

%,J T1)?
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terms are typically well controlled. Roughly, the equivalence between =-VI and MFVI is
determined by comparing A, to the (D~1/2)-scaled Frobenius norm of the Fisher information.

Eq. (4.4) defines a Bayes optimal regime, where Z-VI asymptotically recovers 1-Lipschitz
statistic of the exact posterior. If the dimension D = O(1) as n increases and the exact
posterior achieves consistency, then =(qf) converges to zero, and Eq. (4.4) holds for any
bounded sequence of A,. When D grows with n but at a slow rate (e.g. D < n~'/3), we
may still expect a form of posterior consistency to hold the Bayesian optimal regime to
contain non-trivial choices of A,,.

To match the computational complexity in Section A, we provide sufficient conditions
for A\, = D to be in the mean-field regime.

Corollary 3 In the setting of Theorem 2, if a < D,b; S D,cii S D fori € [D] and ¢;; S'1
for i # j, then for A\, = D, there exists a product distribution m} such that, for any

1-Lipschitz function ¥ : R — R, as n — oo,

Py,
sup — 0. (4.5)

z(n)exXn

D
B3 (B, 100)] ~ B, [906)

The result establishes the asymptotic equivalence between q) and a product measure for
A = D, which provides the following computational insight: when A, is large, the =-
variational posterior can be replaced by the mean-field approximation to the posterior. To
meet the assumptions of Corollary 3, it suffices that 1) the gradient and diagonal Hessian of
the log-likelihood scale slower than D entry-wise and 2) the off-diagonal Hessian is uniformly
bounded.

Now we consider the example of high-dimensional linear regression models.

High-Dimensional Linear Model. We observe {(z;,v;) : 1 <i <n}, y; € R, z; € RP.
Let y =[y1, - ,yn] € R" and X = [z1,...,2,]T € R"™P. We consider a high-dimensional
Bayesian linear regression model where both n, D are tending to infinity:

y=X0+¢, €e~N(0,0°1,), 6~ (4.6)
The =-VI problem for Bayesian linear model is given by

[Hy - X0|?

952 ] + Dxw(q [ 7) + AnE(q)- (4.7)

Y =arg min E
R Ol

For the matrix B := 02X " X, let Bgiag and Bog denote its diagonal and off-diagonal
components, respectively. Our main result characterizes the asymptotic behavior of the
optimizer q of Eq. (4.7).

Theorem 4 Suppose that Assumption 1 holds, and let © = [~1,1]P. Assume further that
there exist constants k1 > 0 and ko > 0 such that V2uy < —k1Ip and X ' X = kelp. The
following results hold:

When Ay, = ,/tr(Bgﬂ), there exists a sequence of product distributions m} = such that,
as n — oo,

sup Wa(gqy,,m3,) — 0. (4.8)
y(")eR”
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When A, > 1/D—ltr(Bgﬁc), there exists a sequence of product distributions mjn such that,
for any 1-Lipschitz function ¢ : R — R, as n — oo,

1 & 1 & ’ Py
sup  Eqr (D PRECHE 1) > Emg W(@i)]) = 0. (4.9)
i=1 i=1

y(n) eRn

When A < (k1 + ko) [tr (Covgs (Boﬁcﬁ))]fl, asn — 0o,

* « Foo
sup Wa(qy,, ) — O. (4.10)
y(")GR"

When X\, < D(k1 + K2) [tr(C’ovqs (Bogh))] _1, for any 1-Lipschitz function ¢ : R — R, as
n — 0o,

D 2
sup Eg (qup ; qs[q/}(ez-)]) g, (4.11)

y(MeRn

Eq. (4.8) and Eq. (4.9) form the mean-field regimes. When A, scales faster than 4/tr(B2;),

q), converges in the Wasserstein metric to a product distribution. This means all moment
statistics can be asymptotically transported between Z-VI and MFVI. When )\, scales faster

than /tr(B%;)/D, we can transport any 1-Lipschitz statistic between Z-VI and MFVIL. As

An increases, g ~shares more distributional information with mj .

Eq. (4.10) and Eq. (4.11) define the Bayes optimal regimes. When ), increases more
slowly than (k1 + k2) [tr (Covey (BOHH)))]_I, q3, converges to the exact posterior in the
Wasserstein metric. By relaxing a factor of D, q} achieves asymptotic Bayes optimality
for all 1-Lipschitz statistics. Since tr (COVqS(BOﬁ‘Q)) < || Bog]|2 tr (Covqs (0)), the Bayes
optimal regime is large when || Bogl|2 is small. When B,g = 0, any choice of \,, falls within
the Bayes optimal regime.

The log-concavity assumptions in Theorem 4 require the log-prior vy € C%(©) to be
r1-strongly concave, and the log-likelihood £(2(™);-) to be in C?(0) and o/ (202)-strongly
concave. The log-concavity parameters k1 and kg are not required for the mean-field regimes
but appear in the Bayes-optimal regimes. Larger values of k1 and ks enlarge the range of
A for which Bayes-optimal behavior is satisfied.

The mean-field regime (Eq. (4.8)) and the Bayes optimal regime (Eq. (4.10)) can both
hold for sufficiently large A,,. In that case, the =-VI solution g} can be computed efficiently
via MFVI while still closely approximating the exact posterior. For instance, in a linear
regression setup where X ' X is diagonal, the exact posterior qp is itself a product measure.
Then the upper bound in (4.10) is infinite, whereas the lower bound in (4.8) is zero. In this
case, any choice of \, satisfies both (4.8) and (4.10) simultaneously.

For 1-Lipschitz statistics, Eq. (4.9) and Eq. (4.11) both hold if

tr(B2y) || Bog3tr(Covgs (0)) < D*2(k1 + k). (4.12)

This criterion is satisfied, for example, when tr(BZ;) < D, || Baiagll2 S 1, and tr(Covg: (0)) S
D, which recovers the Bayes optimal condition for MFVI (Mukherjee and Sen, 2022). But
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our criterion is more flexible: for example, it is also satisfied when tr(B%;) < D, |B —
Bliagll2 S 1, and tr(Covs (0)) < D.

When no choice of A\, satisfies the overlap criterion, there is a gap between the mean-field
and Bayes optimal regimes. Achieving accurate posterior inference thus requires paying an
additional computational cost that scales inversely with A,, as discussed in Section A.

Let the eigenvalues of Bog be np > ... > n;. Then tr(B%;) = Zfil n?, and the mean-

field regime Eq. (4.8) corresponds to A, > \/Ziz 1 m?. To match the complexity bound
in Section A, we provide sufficient conditions for A, = D to be in the mean-field regime
Eq. (4.8).

Corollary 5 Letnp > --- > n1 denote the eigenvalues of Bog. In the setting of Theorem 4,
if Zil n? < D? as n — oo, then for any A, = D there exists m3 € M(O) such that

Py,
SUpy(m egn Wa(4y,.my,) — 0.

Data preprocessing often involves normalizing features to have unit variances. Thus, the
requirement that Zi 1 1722 < D? is often met in practice.

4.2 Asymptotic Normality in Finite Dimension

The second part of the theory deals with posterior consistency and asymptotic normality
of E-variational posteriors for finite-dimensional models. The asymptotic normality results
state that depending on the limit of ),,, Z-variational posterior converges in the limit to
one of three quantities: the mean-field minimizer of a normal distribution, the normal
distribution itself, or a Z-variational normal approximation.

We consider the setting where the observations Xi,..., X, u Py, , where 6y lies in the
interior of a Borel set © C RP. Unlike Section 4.1, here O is allowed to be unbounded. We

posit the following assumptions.

Assumption 2 (Prior Mass) The function vy is bounded in a neighborhood of 0y. For
some C' > 0, we have

sup IV (0)]2 < v/n, and sup 1V20(0) |2 < n.
[[6—60]l2<Cn=1/2 10—0oll2<Cn=1/2

Assumption 3 (Consistent Testability Assumptions) For every e > 0, there exists a
sequence of tests ¢y such that

/¢n(m) Po, (x) dx — 0, sup /(1 — ¢n(z)) po(x) de — 0.

0:]|0—0p||2>€

Assumption 4 (Local Asymptotic Normality (LAN) Assumptions) For every compact
set K C RP, there exist random vectors Ay g, bounded in probability and a nonsingular
matriz Vg, such that

1 P,
sup ‘e(m@); 0o + 0,h) — £(x™;0) — KTV, Ay, g, + 5thgoh 90,
(S

where d, is a D X D diagonal matriz whose entries converge to 0 as n — oo. For D =1,
we commonly take 6, = n~1/2.
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The first assumption ensures the prior is light-tailed. It is satisfied by, for example, the
flat prior or a sub-Gaussian prior.

The second assumption guarantees the existence of a sequence of uniformly consistent
tests for Hy : 0 = 6y versus Hj : |0 —60p||2 > € based on the data. This condition is satisfied if
there exists a consistent sequence of estimators T,, for 6§ and we set ¢, (z) := I{T,,—6 > €/2},
or when the Hellinger distance between {pp : |0 — 0p|l2 > €} and pg, is lower bounded by
some positive constant § (Ghosal and van der Vaart, 2017).

The third assumption states that the log-likelihood is locally well-approximated (up to
a vanishing error) by that of a normal location model centered at fy under an appropriate
rescaling. The rescaling sequence d,, is exactly the posterior contraction rate. In standard
finite-dimensional, correctly specified models, we typically have 6, = n~'/2 (Ghosal and
van der Vaart, 2017).

In line with Assumption 4, we consider a change of variable:

h:=6,1(0— 00 — 0,0 yp,), forf~gj . (4.13)

Our first result states that under this change of variable, Z-variational posterior satisfies a
Bernstein-von-Mises phenomenon with a phase transition.

Theorem 6 (Bernstein von-Mises Theorem) Suppose that Assumptions 1 to 4 hold,
and let 0y be an interior point of a Borel set ©. Let ¢y, = be the distribution of the rate-adjusted
parameter h defined in Eq. (4.13). The distribution g, converges in the Wasserstein metric
to a normal distribution under the following three regimes:

P,
1. If \, — oo, then Wy (~q,\n,N(0,((V90)dmg)*1)) i 0, where (Vp,)diag s the diagonal
submatriz of Vy,.

~ —1 Py
2. If \y = 0, then Wy (qAH,N(O,VgO )) — 0.

3. If limy, 00 A = Ao for some Aoo € (0,00), then

P
Wy <Z]>\n, argmin Dgz,(q || N(0, V@;l)) + )\ooE(Q)> 0.
q€P2 (RD)

The result aligns well with intuition. When A, diverges, q) converges to the mean-
field approximation. When )\, approaches zero, the constraint set in the Lagrangian dual
problem increases to include the true limiting posterior N (0, Vegl). When A, converges to
some finite value A, the Z-variational posterior converges to the Gaussian limit of the exact
posterior. In the regime where lim,,_,o A, does not exists but A\, = O(1), the Z-variational
posterior converges to a a “biased” estimate of the true Gaussian posterior N (0, Vegl) along
a subsequence of A\, that converges as n — oc.
The Bernstein von-Mises Theorem implies the (weak) posterior consistency for ay, -

Corollary 7 Under the assumptions of Theorem 6, Z-variational posterior is consistent in

P,
[Pa,|-probability in the sense that Wa(qy , g, ) 0.
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The convergence in Corollary 7 is stated in the Wasserstein metric, which is slightly stronger
than the typical metric used in posterior consistency results. The convergence in the
Wasserstein metric is equivalent to weak convergence plus the convergence of the second
moments (Theorem 5.11, Santambrogio (2015)). Thus, posterior consistency and the Bernstein—
von Mises theorem (Theorem 6) can be framed in terms of the weak convergence and Lo
convergence for the corresponding measures.

5 Discussion

We introduced =-VI, a new way of performing variational inference that extends MFVI
through entropic regularization. We characterized the asymptotic normality of Z-variational
posteriors in low-dimensional scenarios and analyzed the tradeoff between computational
complexity and statistical fidelity in high-dimensional settings. On both simulated and
empirical datasets, we demonstrated its advantages over traditional MFVI. Further, our
method explicitly connects VI to entropic optimal transport, using the Sinkhorn algorithm
to improve the fidelity of variational approximations.

One question prompted by our work is to understand the fundamental limits of high-
dimensional Bayesian models. It is known that many high-dimensional problems exhibit a
gap between what is statistically achievable (in a minimax sense) and what is achievable by
a polynomial-time algorithm, such as sparse PCA (Wang et al., 2016) and matrix denoising
(Chandrasekaran and Jordan, 2013). However, characterizing a statistical-computational
gap is a newer topic in probabilistic machine learning.

The theoretical results in Section 4 identify distinct asymptotic regimes that correspond
to the exact posterior and the mean-field approximation. The transition between these
regimes echoes classical phase transitions in spin glass models (Montanari and Sen, 2024).
While our analysis focuses on a regression setting, similar techniques could be extended
to models such as the Ising model or the quadratic interaction model. It would also be
interesting to explore the connection between =Z-VI and the rich literature on PAC-Bayes and
generalized Bayes learning (Alquier and Guedj, 2018; Alquier, 2021; Husain and Knoblauch,
2022; Wild et al., 2022, 2023), and to investigate how recent results in PAC-Bayes theory
(Alquier, 2024) interact with the observed phase transitions—especially given that the target
distribution is a general Gibbs measure. Another promising direction is to extend the
analysis in Section 4.1 beyond compact © to unbounded parameter spaces, for example
using the tools of Lacker et al. (2024), which require strong log-concavity of the exact
posterior.

Another challenge is to solve Z-VI efficiently for models with high-dimensional parameters.
The difficulty lies in implementing the multimarginal Sinkhorn algorithm efficiently for
large D in polynomial time. A stochastic approximation of the Sinkhorn step in Algorithm 1
could help mitigate these computational costs. Future work may focus on developing user-
friendly algorithmic tools to enable scalable applications of =Z-VI.

While this paper implemented the examples using EP and BBVI for approximating
posterior marginals, advanced mean-field methods such as the TAP approach may be
preferable in certain contexts, such as spiked covariance models (Fan et al., 2021) and high-
dimensional Bayesian linear regression (Celentano et al., 2023a). Exploring =-VI combined
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with the TAP method is a promising avenue for future research, potentially yielding more
accurate approximations of the true posterior.

Acknowledgments

David M. Blei was supported by NSF 11S-2127869, NSF DMS-2311108, ONR N00014-24-1-
2243, and the Simons Foundation. We thank Sumit Mukherjee, Marcel Nutz, Yixin Wang,
Eli Weinstein, Kaizheng Wang, and Chenyang Zhong for helpful discussions. We also thank
the three anonymous reviewers for their many insightful comments and pointers that helped
to improve the paper.

23



WU AND BLEI

References

Laurence Aitchison. A statistical theory of cold posteriors in deep neural networks. In 9th
International Conference on Learning Representations, 2021.

Pierre Alquier. Non-exponentially weighted aggregation: regret bounds for unbounded loss
functions. In International Conference on Machine Learning, pages 207218, 2021.

Pierre Alquier. User-friendly Introduction to PAC-Bayes Bounds. Foundations and Trends
i Machine Learning, 17, 2024.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data.
Machine Learning, 107, 2018. ISSN 15730565. .

Pierre Alquier and James Ridgway. Concentration of tempered posteriors and of their
variational approximations. Annals of Statistics, 48(3):1475-1497, 2020. ISSN 0090-
5364,2168-8966. .

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational
approximations of Gibbs posteriors. Journal of Machine Learning Research, 17:Paper
No. 239, 41, 2016.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time
approximation algorithms for optimal transport via Sinkhorn iteration. Advances in
Neural Information Processing Systems, 30, 2017.

Jason M Altschuler and Enric Boix-Adsera. Hardness results for multimarginal optimal
transport problems. Discrete Optimization, 42:100669, 2021.

Jason M Altschuler and Enric Boix-Adsera. Polynomial-time algorithms for multimarginal
optimal transport problems with structure. Mathematical Programming, 199:1107-1178,
2023.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows: In Metric Spaces and
In the Space of Probability Measures. Springer Science & Business Media, 2005.

Anirban Basak and Sumit Mukherjee. Universality of the mean-field for the Potts model.
Probability Theory and Related Fields, 168:557—600, 2017.

James O Berger. Statistical Decision Theory and Bayesian Analysis. Springer Science &
Business Media, 2013. ISBN 147574286X.

Kush Bhatia, Nikki Lijing Kuang, Yi-An Ma, and Yixin Wang.  Statistical and
computational trade-offs in variational inference: A case study in inferential model
selection. arXiv preprint arXiv:2207.11208, 2022.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures—Wasserstein distance between
positive definite matrices. Ezpositiones Mathematicae, 37:165-191, 2019.

Anirban Bhattacharya, Debdeep Pati, and Yun Yang. Bayesian fractional posteriors. Annals
of Statistics, 47:39-66, 2019.

24



BEYOND MEAN-FIELD

Anirban Bhattacharya, Debdeep Pati, and Yun Yang. On the convergence of coordinate
ascent variational inference. Annals of Statistics, 53(3):929-962, 2025.

Peter Bickel, David Choi, Xiangyu Chang, and Hai Zhang. Asymptotic normality of
maximum likelihood and its variational approximation for stochastic blockmodels. Annals
of Statistics, 41(4):1922-1943, 2013.

Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for
updating belief distributions. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 78:1103-1130, 2016.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112:859-877, 2017.

Andrea Braides. Local Minimization, Variational Evolution and I'-Convergence, volume
2094. Springer, 2014.

Guillaume Carlier. On the linear convergence of the multimarginal Sinkhorn algorithm.
SIAM Journal on Optimization, 32:786-794, 2022.

Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus A Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan: A
probabilistic programming language. Journal of Statistical Software, 2015.

Michael Celentano, Zhou Fan, Licong Lin, and Song Mei. Mean-field variational inference
with the TAP free energy: Geometric and statistical properties in linear models. arXiv
preprint arXiw:2311.08442, 2023a.

Michael Celentano, Zhou Fan, and Song Mei. Local convexity of the TAP free energy and
AMP convergence for Zs-synchronization. Annals of Statistics, 51:519-546, 2023b.

Venkat Chandrasekaran and Michael I Jordan. Computational and statistical tradeoffs via
convex relaxation. Proceedings of the National Academy of Sciences, 110:E1181-F1190,
2013.

S. Chatterjee and A. Dembo. Nonlinear large deviations. Advances in Mathematics, 299:
396-450, 2016.

Giovanni Conforti and Luca Tamanini. A formula for the time derivative of the entropic
cost and applications. Journal of Functional Analysis, 280:108964, 2021.

T. Cover and J. Thomas. FElements of Information Theory. Wiley-Interscience, 2006.

Imre Csiszar. I-divergence geometry of probability distributions and minimization problems.
Annals of Probability, pages 146-158, 1975.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances
in Neural Information Processing Systems, 26, 2013.

25



WU AND BLEI

Michael Ziyang Diao, Krishna Balasubramanian, Sinho Chewi, and Adil Salim. Forward-
backward Gaussian variational inference via JKO in the Bures-Wasserstein space. In
International Conference on Machine Learning, pages 7960-7991, 2023.

Stephan FEckstein and Marcel Nutz. Quantitative stability of regularized optimal transport
and convergence of Sinkhorn’s algorithm. SIAM Journal on Mathematical Analysis, 54:
5922-5948, 2022.

Jiaojiao Fan, Isabel Haasler, Johan Karlsson, and Yongxin Chen. On the complexity of
the optimal transport problem with graph-structured cost. International Conference on
Artificial Intelligence and Statistics, pages 9147-9165, 2022.

Zhou Fan, Song Mei, and Andrea Montanari. TAP free energy, spin glasses and variational
inference. Annals of Probability, 49, 2021.

David T Frazier, Jeremias Knoblauch, Jack Jewson, and Christopher Drovandi. Exact
sampling of Gibbs measures with estimated losses. arXiv preprint arXiv:2404.15649,
2024.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian Data Analysis.
Chapman and Hall/CRC, 1995.

Behrooz Ghorbani, Hamid Javadi, and Andrea Montanari. An instability in variational
inference for topic models. International Conference on Machine Learning, pages 2221—
2231, 2019.

Subhashis Ghosal and Aad van der Vaart. Fundamentals of Nonparametric Bayesian
Inference, volume 44. Cambridge University Press, 2017.

Ryan Giordano, Tamara Broderick, and Michael I Jordan. Covariances, robustness and
variational Bayes. Journal of Machine Learning Research, 19, 2018.

Peter Griinwald. The safe Bayesian: learning the learning rate via the mixability gap.
In International Conference on Algorithmic Learning Theory, pages 169—-183. Springer,
2012.

Peter Griinwald and Thijs van Ommen. Inconsistency of Bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis, 12, 2017.

Peter Hall, John T Ormerod, and M P Wand. Theory of Gaussian variational approximation
for a Poisson mixed model. Statistica Sinica, pages 369-389, 2011a.

Peter Hall, Tung Pham, Matt P Wand, and Shen SJ Wang. Asymptotic normality and valid
inference for Gaussian variational approximation. Annals of Statistics, pages 2502—2532,
2011b.

Hisham Husain and Jeremias Knoblauch. Adversarial interpretation of Bayesian inference.
In International Conference on Algorithmic Learning Theory, pages 553-572, 2022.

26



BEYOND MEAN-FIELD

Yiheng Jiang, Sinho Chewi, and Aram-Alexandre Pooladian. Algorithms for mean-field
variational inference via polyhedral optimization in the Wasserstein space. Foundations
of Computational Mathematics, pages 1-52, 2025.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37:183-233,
1999.

Kyurae Kim, Jisu Oh, Kaiwen Wu, Yian Ma, and Jacob R Gardner. On the convergence
of black-box variational inference. Advances in Neural Information Processing Systems,
36:1-2, 2023.

Jeremias Knoblauch. Frequentist consistency of generalized variational inference.
arXiw:1912.04946, 2019.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view
on Bayes rule: Reviewing and generalizing variational inference. Journal of Machine
Learning Research, 23:1-109, 2022.

Alexey Kroshnin, Nazarii Tupitsa, Darina Dvinskikh, Pavel Dvurechensky, Alexander
Gasnikov, and Cesar Uribe. On the complexity of approximating Wasserstein barycenters.
International Conference on Machine Learning, pages 3530-3540, 2019.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei.
Automatic differentiation variational inference. Journal of Machine Learning Research,
18:430-474, 2017.

Daniel Lacker, Sumit Mukherjee, and Lane Chun Yeung. Mean field approximations via
log-concavity. International Mathematics Research Notices, 2024:6008-6042, 2024. ISSN
1073-7928.

Marc Lambert, Sinho Chewi, Francis Bach, Silvere Bonnabel, and Philippe Rigollet.
Variational inference via Wasserstein gradient flows. Advances in Neural Information
Processing Systems, 35, 5 2022.

Tianyi Lin, Nhat Ho, Marco Cuturi, and Michael I Jordan. On the complexity of
approximating multimarginal optimal transport. Journal of Machine Learning Research,
23:1-43, 2022.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian
inference algorithm. Advances in Neural Information Processing Systems, pages 2378—
2386, 2016.

F Locatello, R Khanna, and J Ghosh. Boosting variational inference: an optimization
perspective. International Conference on Artificial Intelligence and Statistics, 2018.

Yann McLatchie, Edwin Fong, David T Frazier, and Jeremias Knoblauch. Predictive
performance of power posteriors. Biometrika, page asaf034, 2025.

27



WU AND BLEI

Andrew C Miller, Nicholas J Foti, and Ryan P Adams. Variational boosting: Iteratively
refining posterior approximations. International Conference on Machine Learning, pages
2420-2429, 2017.

Jeffrey W Miller. Asymptotic normality, concentration, and coverage of generalized
posteriors. Journal of Machine Learning Research, 22:161-168, 2021.

Jeffrey W Miller and David B Dunson. Robust Bayesian inference via coarsening. Journal
of the American Statistical Association, 2018.

Thomas P Minka. Expectation propagation for approximate Bayesian inference. arXiv
preprint arXiw:1501.2294, 2013.

Andrea Montanari and Subhabrata Sen. A Friendly Tutorial on Mean-Field Spin Glass
Techniques for Non-Physicists. Foundations and Trends in Machine Learning, 17, 2024.
ISSN 19358245. .

Soumendu Sundar Mukherjee and Purnamrita Sarkar. Mean field for the stochastic
blockmodel: Optimization landscape and convergence issues. Advances in Neural
Information Processing Systems, 2018.

Sumit Mukherjee and Subhabrata Sen. Variational inference in high-dimensional linear
regression. Journal of Machine Learning Research, 23(304):1-56, 2022.

Sumit Mukherjee, Bodhisattva Sen, and Subhabrata Sen. A mean field approach
to empirical Bayes estimation in high-dimensional linear regression. arXiv preprint
arXiw:2309.16843, 2023.

Marcel Nutz. Introduction to FEntropic Optimal Transport. Lecture notes, Columbia
University, 2021.

Manfred Opper and David Saad. Advanced Mean Field Methods: Theory and Practice. MIT
press, 2001.

Felix Otto and Cédric Villani. Generalization of an inequality by Talagrand and links with
the logarithmic Sobolev inequality. Journal of Functional Analysis, 173:361-400, 2000.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

Sean Plummer, Debdeep Pati, and Anirban Bhattacharya. Dynamics of coordinate ascent
variational inference: A case study in 2D Ising models. Entropy, 22:1263, 2020.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning.
Cambridge university press, 2025.

Jiaze Qiu. Sub-optimality of the naive mean field approximation for proportional high-
dimensional linear regression. Advances in Neural Information Processing Systems, 36,
2024.

28



BEYOND MEAN-FIELD

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference.
International Conference on Artificial Intelligence and Statistics, pages 814-822, 2014.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models.
International Conference on Machine Learning, pages 324-333, 2016.

Kolyan Ray and Botond Szabd. Variational Bayes for high-dimensional linear regression
with sparse priors. Journal of the American Statistical Association, 117(539):1270-1281,
2022. ISSN 0162-1459,1537-274X. .

Kolyan Ray, Botond Szabd, and Gabriel Clara. Spike and slab variational Bayes for high
dimensional logistic regression. Advances in Neural Information Processing Systems, 33:
1442314434, 2020.

Jack Raymond and Federico Ricci-Tersenghi. Improving variational methods via pairwise
linear response identities. Journal of Machine Learning Research, 18, 2017. ISSN
15337928.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
32nd International Conference on Machine Learning, 2, 2015.

C Robert and G Casella. Monte Carlo Statistical Methods. Springer-Verlag, 2004.

Filippo Santambrogio. Optimal Transport for Applied Mathematicians, volume 55. Springer,
2015.

Dustin Tran, David Blei, and Edo M Airoldi. Copula variational inference. Advances in
Neural Information Processing Systems, 28, 2015.

Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and
likelihood-free variational inference. Advances in Neural Information Processing Systems,
30, 2017.

Ramon Van Handel. Probability in high dimension. Lecture Notes (Princeton University),
2014.

C Villani. Optimal Transport: Old and New. Springer, Berlin, 2009.

Martin J Wainwright.  High-Dimensional Statistics: A Non-Asymptotic Viewpoint,
volume 48. Cambridge University Press, 2019.

Martin J Wainwright, Michael I Jordan, et al. Graphical Models, Exponential Families,
and Variational Inference. Foundations and Trends in Machine Learning, 1(1-2):1-305,
2008.

Bo Wang and D M Titterington. Lack of consistency of mean field and variational Bayes
approximations for state space models. Neural Processing Letters, 20:151-170, 2004.

Tengyao Wang, Quentin Berthet, Richard J Samworth, et al. Statistical and computational
trade-offs in estimation of sparse principal components. Annals of Statistics, 44:1896—
1930, 2016.

29



WU AND BLEI

Yixin Wang and David M. Blei. Frequentist consistency of variational Bayes. Journal of
the American Statistical Association, 114(527):1147-1161, 2019.

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swik atkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How
good is the Bayes posterior in deep neural networks really? In International Conference
on Machine Learning, 2020.

Veit D. Wild, Robert Hu, and Dino Sejdinovic. Generalized variational inference in
function spaces: Gaussian measures meet Bayesian deep learning. In Advances in Neural
Information Processing Systems, volume 35, 2022.

Veit David Wild, Sahra Ghalebikesabi, Dino Sejdinovic, and Jeremias Knoblauch. A
rigorous link between deep ensembles and (variational) Bayesian methods. Advances
in Neural Information Processing Systems, 36:39782-39811, 2023.

FEric P Xing, Michael I Jordan, and Stuart Russell. A generalized mean field algorithm for
variational inference in exponential families. arXiv preprint arXiv:1212.2512, 2012.

Zuheng Xu and Trevor Campbell. The computational asymptotics of Gaussian variational
inference and the Laplace approximation. Statistics and Computing, 32, 2022.

J. Yan. Nonlinear large deviations: Beyond the hypercube. Annals of Applied Probability,
30:812-846, 2020.

Yun Yang, Debdeep Pati, and Anirban Bhattacharya. a-variational inference with statistical
guarantees. Annals of Statistics, 48(2):886-905, 2020.

Rentian Yao and Yun Yang. Mean field variational inference via Wasserstein gradient flow.
arXiv preprint arXw:2207.08074, 2022.

Arnold Zellner. Optimal information processing and Bayes’s theorem. The American
Statistician, 42(4):278-280, 1988.

Anderson Y Zhang and Harrison H Zhou. Theoretical and computational guarantees of
mean field variational inference for community detection. Annals of Statistics, 48(5):
2575-2598, 2020.

Fengshuo Zhang and Chao Gao. Convergence rates of variational posterior distributions.
Annals of Statistics, 48(4):2180-2207, 2020.

Chenyang Zhong, Sumit Mukherjee, and Bodhisattva Sen. Variational inference for latent
variable models in high dimensions. arXiv preprint arXiw:2506.01893, 2025.

30



BEYOND MEAN-FIELD

Appendix A. Implementation and Computational Complexity

Algorithm 1 is a two-stage algorithm to approximate the =-variational posterior. A natural
question to ask is how tractable is it in high-dimensional models? In the first stage, existing
methods for the pseudomarginal computation (such as mean-field variational inference) are
known run in polynomially with respect to the parameter dimension (Jiang et al., 2025).
But the second stage is a Sinkhorn algorithm, which is not necessarily scalable (Altschuler
and Boix-Adsera, 2023). In this section, we discuss sufficient conditions for our algorithm
to run in polynomial time.

A.1 The Sinkhorn algorithm

We use discrete points to represent distributions. The set of marginals {m;}c;p) is a
nonnegative matrix M = (M, ..., Mp) € RV*P where each M; contains N design points.
The EOT potentials {¢;};cp] are represented by a matrix F' = (Fy,...,Fp) € RNXD  The
negative loss —¢(x"; ) is represented as a cost tensor C = (Cj,.. ;) € (RV)®P and the
variational posterior q is a nonnegative tensor Q = (Qi,....i,) € (RV)®P.

Numerically, the EOT problem (2.5) can be posed as a linear program with DN marginal
constraints and NP decision variables:

00, Tir(rg?:ri(M)<C, Q)+ (A+1)(logQ —logM, Q).

The Sinkhorn algorithm (2) returns the potentials F'* by iteratively performing log-sum-exp
updates between Fi,..., Fp.

A.2 The complexity of the Sinkhorn algorithm

Assuming the cost tensor is uniformly bounded, the best-known complexity bound for the
multimarginal Sinkhorn algorithm is O(D3NP (X 4 1)72) (Lin et al., 2022). Unfortunately,
the exponential dependence on D cannot be improved in general (Kroshnin et al., 2019).
Polynomial-time solvability requires structural assumptions on C. Altschuler and Boix-
Adsera (2021) show that if the cost tensor has bounded treewidth or is the sum of a low-rank
tensor and a sparse tensor, then multimarginal EOT is solvable in poly(N, D) time.

Proposition 8 (Altschuler and Boix-Adsera (2023)) Let C € (RV)®P satisfy one of
the following:

1. C has graphical structure with constant junction tree width w; or
2. C = R+ S where R has constant multilinear rank and S has poly(N, D) sparsity.
Then for any X > 0, Algorithm 2 terminates in poly(N, D, Cpax /€, (A + 1)71) time.

Remark 9 The bounded-treewidth assumption ensures polynomial-time solvability of the
Junction-tree algorithm (Wainwright et al., 2008). Examples include state-space models,
topic models, and sparse linear regression.

Remark 10 The “low-rank plus sparse” structural assumption is less commonly used in
Bayesian inference. Roughly, it requires the posterior to be well approximated by a mirture
of product distributions up to a poly(N, D)-sparse error term.
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Algorithm 2: (Multimarginal) Sinkhorn Algorithm
Input: Cost tensor C, marginals M, tolerance ¢, regularization parameter .
Initialize: F; = —ml —log M; for all i € [D].
while E > ¢ do

Select the greedy coordinate j = arg min;e(p) [[7:(Q) — M1
for i € [D] do
Update
I F, — log(m(Q)) +log(M;), i=j,
' F; otherwise.
Compute
D
Q) ZlgkggN, 0 ©XP |: Zé:l F,, — %ﬂckl“'kD} My, ...k,
T == .
D
Z1gk4§N, ve eXP[Zezl Fy, — %Hckl"'kD} My, ..k
end
Set E= Y"1, |r:(Q) — M1
end

Output: An N x D matrix F.

For general graphs G with bounded treewidth, Fan et al. (2022) propose implementing

the Sinkhorn algorithm using junction-tree message passing, yielding the following complexity
bound:

Corollary 11 Let C € (RY)®P have constant treewidth w. Then Algorithm 2 implemented
with the junction tree method converges in

O(D3Nw+l(/\ + 1>_1€_l)
iterations.

This result is adapted from Theorem 4 of Fan et al. (2022), which shows that computational
cost decreases as A increases. Polynomial dependence on D requires only that the treewidth
w(G) grows slower than log D, so multimarginal EOT may still be feasible for “locally tree-
like” graphs.

Counterintuitively, when A grows faster than D, the computational complexity decreases
as D increases. However, as Corollaries 3 and 5 show in Section 4, in this regime the
variational posterior collapses to the naive mean-field approximation.

Remark 12 There are well-known models that violate the assumptions in Proposition 8.
For example, an Ising model on a complete D x D graph has treewidth D, and its cost tensor
is neither low rank nor sparse. Multimarginal Sinkhorn becomes NP-hard in this setting
(Altschuler and Boiz-Adsera, 2021). A practical workaround is to group variables and couple
only the groupwise marginals. For instance, in an Ising model with 100 variables, one may
group the first 50 and last 50 variables, yielding two 50-dimensional marginals. This still
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yields a strict improvement over MFVI. Moreover, when the number of groups is fized,
the Sinkhorn complexity becomes polynomial because it is insensitive to the dimensionality
within each group (Altschuler et al., 2017).

A.3 Finite-Sample Convergence

Here we analyze convergence properties of the Z-variational posterior g when A tends to
0 or oo, while keeping n fixed. Understanding this setting justifies the stability of the
algorithmic output after we replace the marginals of gy with a set of pseudomarginals in
Algorithm 1. Moreover, the convergence results of the Z-variational posterior for both large
and small X\ values are useful from a classical Bayesian perspective that treats the observed
data as known (Berger, 2013).

We show that =-variational posterior converges to the mean-field variational posterior
as A tends to infinity, and converges to the exact posterior as A tends to zero. Then we
establish a stability property for q} when we replace its marginals with another set of
marginals, which helps justify Algorithm 1.

Let us define a cost function Cy over A € R, as Cy := gp}a&a) ELBO(q) — AE(q).

qelz
Limits as A — oo or A — 0. We start with the convergence of q§ and Cy as A tends to
infinity.

Theorem 13 Assume that Dgr(q|| ¢) < oo for some q € M(O). For each A € R, define
the set Qy as the set of minimizers for the functional ¢ — Dgr(q || ¢) +A=(q) in P2(O). If
@& € Quo, there exists a sequence gy € Qy such that limy oo Wa(gl, ¢5) = 0. Furthermore,
the Z-VI cost converges to the mean-field ELBO, i.e. limy_, [Cx — Coo| = 0.

The result shows that every mean-field variational posterior is an accumulation point of
some sequence of =Z-variational posteriors. This type of result is called ”large-time limits”
in the optimal transport literature. When the likelihood is quadratic, it is possible to prove
an exponential rate of convergence for C\ under more restrictive conditions (Conforti and
Tamanini, 2021). However, this setting is uninteresting for Bayesian inference and we do
not pursue it in this paper.

As )\ tends to zero, we provide analog results to show that Z-variational posterior
converges to the exact posterior in the Wasserstein metric.

Theorem 14 Assume that Z(q}) < 0o [Py, ]-almost surely. For each A € R, define the set
Qy as the set of minimizers for the functional ¢ — Dgr(q || ¢5)+AE(q) in P2(O). If g5 € Qy
converges as X — 0 in the Wasserstein metric, then limy_,o Wa(qg, ¢3) = 0. Furthermore,
the Z-VI cost converges to the true posterior ELBO, i.e. limy_,o|Cy — Co| = 0.

Algorithmic Stability. Let m} be the product of marginals of q}. In Section 2.2, we
produce to replace idealized Algorithm 3 with a simple, efficient approximate Algorithm 1.
A natural question to ask is whether the solution is stable after we replace m} with
pseudomarginals m. To answer this question, we leverage the tools of quantitative stability
from OT theory (Eckstein and Nutz, 2022). We make two assumptions: a Lipschitz cost
assumption, and transportation cost inequality.
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Assumption 5 (Lipschitz Cost Assumption) We assume that there exists a constant
L >0 and ¢; : ©; = R such that for all ¢ € C(m}) and g € C(m),

D
=1

This assumption is slightly more general than the Lipschitzness of £(z(™); ) minus additive
correction factors. As an example, the Gaussian likelihood satisfies Assumption 5 (Lemma
3.5, Eckstein and Nutz (2022)).

Assumption 6 (Transportation Cost Inequality) A product distribution m over © satisfies
the transportation cost inequality if there exists a constant C' such that

Wa(q1, ) < VDl || a2),  for all ¢1, g5 € C(m).

Assumption 6 is standard in high-dimensional statistics (Wainwright, 2019). When O is
compact, the assumption follows from Pinsker’s inequality. Otherwise, this assumption
holds when each marginal has a finite exponential moment.

We now state the main stability result which upper bounds the approximation error of
Algorithm 1 using the approximation error of the pseudomarginals.

Theorem 15 (Stability of Algorithm 1) Let Assumption 5 hold with a Lipschitz constant
L. Let m} be the marginals of Z-variational posterior ¢y and m € M (©) be another product
distribution. Suppose m} satisfies Assumption 6 with a fived constant C. Then for the
one-step approrimation ¢, defined in Algorithm 1 with pseudomarginals m, the following
upper bound holds:

1
Walgs, @) < Wa(m, ) + 2CLiW, (m3, ). (A.2)

The proof uses an OT technique called shadowing. See Section E for details.

The result highlights the stability of Algorithm 1, as the approximation error of q} is
only Lipschitz in the approximation error of the pseudomarginals. If m is close enough to
m} in terms of the Wy metric, the output of Algorithm Algorithm 1 is guaranteed to well
approximate true variational posterior q3.

Corollary 16 Assume Assumption 5 with Lipschitz constant L, and Assumption 6 for the
pseudomarginals. Then the following limits hold:

x(00)

1. Let qf\(oo) be the optimizer of Eq. (2.5) with marginals {5, ; }ic(p)- Thenlimy—o Wa(qy s @3) =
0.

2. Let qj(o) be the optimizer of Eq. (2.5) with marginals {q; ; }ie;p)- Then limy—o I/Vz(qi(o)7 ) =

0.

The Corollary is a consequence of Theorem 13, Theorem 14, and Theorem 15. As A tends
to 0 or 0o, the error of replacing the idealized Algorithm 3 with Algorithm 1 vanishes when
we use exact posterior marginals or mean-field variational posteriors, respectively. If we
plug in a consistent estimate of the exact posterior marginals (e.g. TAP approximation
of a linear model with i.i.d. Gaussian design (Celentano et al., 2023a)), then Algorithm 1
asymptotically recovers the exact posterior as A tends to zero.
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A.4 Full Coordinate Ascent Algorithm

In this section, we present a full coordinate descent algorithm to exactly optimize the =-VI
objective.

A.4.1 OUTER VARIATIONAL PROBLEM

We now derive steps to solve the outer variational problem of Eq. (2.4). Treating ¢1,...,¢p
as fixed, we optimize over the marginals m;’s:

mg&?e)m (A+1) (Zgbz Z)exp(Z@ +7z(m 9)) + Dgp(m || 7). (A.3)

surrogate loss

Eq. (A.3) is equivalent to a mean-field VI problem with a surrogate log-likelihood.
To solve Eq. (A.3), we follow a method based on coordinate ascent variational inference
(CAVI) (Blei et al., 2017).

Denote 6—1' = Hj;éi @j, Q_Z' = (H[D]\{l}), and

= [T ) [T mj9)
7<i >

Define v/71(;) as

t+1(9) — mt

’L

. (A4)

D
(A+1) (Z gth ) exp (Z gbtﬂ )+ 7€(m 0;,0_ ))

Given marginals m! = (mi,...,m}) and potentials ¢*! = (¢/™,... ¢31) € E(m?),
CAVT iteratively updates each marginal i € [D] by solving:

mg“ = argmin E,,, [V t“(@i)] + Dxr.(m; || m;).
mzeM(e )

This yields the explicit update

mHl(Qi) o ;i (6;) exp( — Vf“(@i)), Vo, € 9,. (A.5)

7

A.4.2 FurLL COORDINATE ASCENT ALGORITHM

Algorithm 3 presents the full coordinate ascent algorithm. It monitors the change in the
ELBO as the criterion for convergence, which is equivalent (up to a constant) to the KL
divergence between the variational posterior and the exact posterior.

Unfortunately, Algorithm 3 is difficult to implement because we cannot compute the
expectations required in Eq. (2.10) or Eq. (A.4). When the ¢;’s are represented implicitly,
there is no practically stable MFVI procedure for such implicit log-likelihoods, especially in
high-dimensional models.
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Algorithm 3: Coordinate Ascent Algorithm
Input: Log-likelihood ¢(x; @), prior 7, tolerance €, regularization parameter .

Initialize: marginals m(l), ey mOD; EOT potentials qﬁ(l], . ,d)o ;1 =0.
while ELBO has not converged do
for i € [D] do
| Update ¢:™(6;) using Eq. (2.10).
end
for i € [D] do
‘ Update m/*1(6;) using Eq. (A.5). // Challenging step
end
Compute

t+1 _ 2 t+1/p. L . < t+1g.
QO = exp| D6 (0) + g U 0) | [T (00).

i=1

Compute

ELBO(q'™) = Eger1[6(z; 0) + log 7(6)] — Ee+1 [log g ()]

Increment ¢t =t + 1.
end

Output: q(0).

Appendix B. Support Results

Lemma 17 (Gibbs variational principle) For probability measures p on O,

log By [exp(f(0))] = e {E,[f(0)] = Drr(v || 1)} - (B.1)

Lemma 18 Let A be a symmetric, positive definite matriz. For all j € [D], it holds that
(A5 > 4

Proof Given that A is symmetric and positive definite, there exists another symmetric
positive definite matrix B such that B2 = A. We note that Aj; = e;fAej = e;fBTBej =
| Be;||3 and similarly, (A™1),; = || B~ te;|3.

By the Cauchy—Schwarz inequality, we have

(Bej, B~'e;)? < || Bej|3]| B e;ll5 = Aj;(A71)jj

However,
(Bej, B 'ej) = e?(Bil)TBej = e]TBleej = e?ej =1.
Therefore, we have A;;(A™!);; > 1, which simplifies to (471);; > Ai“ This completes the

proof. [ ]

36



BEYOND MEAN-FIELD

Lemma 19 For g € P(0O), the following variational characterization of its expressivity
holds:

E(g) = SIJ{PEq[f] —logEq,Eq_, [exp(f(6:,0-)) | 0i].
Proof Apply Donsker—Varadhan lemma. We obtain

E(q) = St}p Eqf] —logEqE,_ [exp(f(6i,0-:))].

Apply Donsker—Varadhan lemma again to Dgr(q(6;,0—;) [ |

Theorem 20 (Theorem 5.11, Santambrogio (2015)) In the space P,(R?), we have Wy (pin, it) —
0 if and only if pu, — p weakly and

[1at? = [ 1ol d

where p > 0 is a given exponent.

Lemma 21 Let g, be a sequence of measures in Po(©). If Wa(q,,q) — 0 for some q €
P»(©), then
liminf =(q,) > Z(q).

n—oo

Let qy be another measure in P2(©). We have
liminf Dk, (g, || 90) = Drr(q|l q0)-
n—oo

Proof The second property follows from the fact that functional Dkr,(- || qf) is continuous

in the Wasserstein metric (Proposition 7.1, Santambrogio (2015)). For any q,, We q,
Theorem 20 implies that q,, weakly converge to qy. The convergence Ws(q,,,qy) — 0 implies
the convergence Wa(q,, ;,q0,;) — 0 for each i € [D]. Since Dkp, is lower semicontinuous in
both arguments (Theorem 4.8, Polyanskiy and Wu (2025)), we get

D D
liminf =(q,,) = lim inf Dgy, (qn | an,i> > Dy, (% | qu,z) =Z(@,  (B2)

=1 =1

where D is fixed with respect to n. |

Definition 22 (Shadow) Let p € [1,00] and m,m be product measures within P,(O).
Assume ki € C(m;,m;) is a coupling that achieves Wy, (m;, m;) and let k; = m;QK; represent
a disintegration. For a given q € C(m), its shadow ¢° € C(m) is defined as the second
marginal of ¢ K € P(O x O), where the kernel K : © — P(0O) is constructed as a direct
sum K(x) = K1(21) ® ... ® Kp(zp).

Given a coupling q € C(m), its shadow ¢ satisfies the following properties.
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Lemma 23 (Lemma 3.2, Eckstein and Nutz (2022)) For product distributions m,m €
P2(©) and coupling q € C(m), its shadow ¢* € C(1m) satisfies

Wa(q, ¢°) = Wa(m,m), Dg(q’ || m) < Dy(q || m),
where D¢(-) is any f-divergence.

Theorem 24 (Theorem 12, Lin et al. (2022)) Let {¢'};>0 be the iterates generated by
Algorithm 2. The number of iterations t required to reach the stopping criterion E < € 1is
upper bounded by:

2D?[||Clloo/(A + 1) = log (miny << N 1<j<D Mij)]

7 .

t<2+4

€

Appendix C. Proofs of Section 2

Proof [Derivation of Eq. (2.5)] Let m be given. Then to optimize q*, we have

q*(¢) = arg min Bq[—£(2; 0)] + ADxr(q | m) + Dxu(q || 7)

q€C(m)

= arg r(ni;ﬂ]Eq[—f(w; 0)] + ADkw(q || m) + Dxw(q || m) + Dgr(m || «)
qeC(m

= argminE,[—{(x;0)] + (A + 1)Dkw(q || m).
q€C(m)

The first line uses the fact that m is a product distribution. The third line drops Dxr,(m || 7)
as it does not depend on q. |

The next result states that the solution to the EOT problem (2.5) has a unique representation.

Theorem 25 (Structure Theorem for Multi-Marginal EOT) Assume that

inf {-E,[l(x;0)]+ (A +1)=(q)} <oo and supl(x;0) < oco.
qeC(m) 0co

Then there exists a unique minimizer ¢* to the inner variational problem (2.5) that is
absolutely continuous with respect to m (denoted ¢* < m), and the following hold:

(1) There exist measurable functions ¢} : ©; — R for i € [D] such that

D

* X 1

q'(0) = exp (Z ¢; (0i) + mﬁ(ﬂx 9)) m(6), (C.1)
i=1

m-almost surely. The collection ¢* := (47, ..., ¢7,) is referred to as the EOT potentials.

Each ¢ is m;-almost surely measurable and unique up to an additive constant. Moreover,
if Ep,[0F] > 0, then ¢f € L*(my;) for all i € [D].

(2) Conversely, suppose q € C(m) admits a density of the form in FEq. (C.1), m-almost
surely, for some functions ¢; : ©; — R. Then ¢ minimizes the inner variational problem
in FEq. (2.5), and the functions ¢; are the EOT potentials.
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This result first appeared heuristically in Carlier (2022). For D = 2, the uniform boundedness
assumption can be relaxed to ¢(x;-) being integrable (Theorem 4.2, Nutz (2021)).
Proof [Proof of Theorem 25| Define the auxiliary distribution q,,, € P(0) as

Ga(0) = Za ()L exp ()\leé(w; 9)> m(0), (C.2)

where Z,(\) is the normalizing constant. Since supgeg ¢(x;0) < 00, Z,(\) < 0o, and hence
Qaux 1S Well-defined and absolutely continuous with respect to m.

Minimizing the objective function in Eq. (2.5) is equivalent to minimizing the KL loss
to Quux-

min Eq [—€(x;0)] + (A +1)Dkr(q || m)
q€C(m)

= min Eq

—(x; 0 D
qeC(m) [ R )]+ KkL(q [| m)

q(9)

= min q(#0) log do
qu(m)/@ exp (ﬁlz (x; 9)) m(6)

1
— i D1 (a | Guu) ~ Tog B exp (¢ (2:0) )

£ min Dir(q || daue)- (C.3)
qeC(m)

Since C(m) is displacement convex and the KL functional is displacement convex (Villani,
2009), the solution is unique.

Let q* be the optimizer. Then, by the method of Lagrange multipliers, there exist dual
variables ¢} € L>(m;) such that

D

q* = arg min DKL(quaux) + Z (Emb [gb;k] - Eqi [¢:<]) .
q€P(O) i=1

This is equivalent to

) X exp (Z ¢; (6;) + 76(.% 0)) m(6), (C4)

after normalizing. Since the potentials ¢; are uniformly bounded, the resulting normalization
constant is finite. By adding the normalizing constant to ¢p, we obtain

= exp (qu )+ mf(m 9)) m(6).

“only if” direction: Assume that the optimal coupling q* is given by

q" = exp (Z i (0;) + /\7+1€ (z 9)) m(0).
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where ¢ = (¢1,--- ,¢p) € Hfil L (m;) are some potential functions.
Plugging the solution in the EOT primal problem, for each i and [m;]-a.s.0;, the potentials
satisfy a set of fixed point equations called the Schrddinger system:

exp(6s(0)) /@ exp | 30500, —1—74(1: O | m 0 )do=1.  (C5)
-t JFi

The Schréodinger system (Eq. (C.5)) satisfies the Euler-Lagrange optimality condition for
the primal EOT problem (Carlier, 2022). Precisely, the EOT potentials solve

exp (Z di(0;) + —E(m e))]

which is the dual problem to the multimarginal EOT problem (Eq. (2.5)). Since the EOT
problem is convex (Nutz, 2021), the primal-dual gap closes, which means the probability
measure q defined under ¢ solves Eq. (2.5).

To see that ¢; € L>®(0;) for i € [D]. Assume that E,,,[¢;] > 0, which is possible under
the Euler-Lagrange condition:

max En, ¢ — En,
¢EH~LD:1 mz) ;

Z}Eml(z)z = min DKL(q ” Qaux) >0
i=1 aec(m)

By Eq. (C.5), we apply Jensen’s inequality to obtain that

$i(6;) = —log /@ exp [ > o;(0; A+1 0(x:0) | dm_i(6_;)
- JFi

1
DA /\+ (L (@0)| < —mEmﬂv [¢ (23 0)],
J#i

thus supy, cg, ¢i(0i) < —supgee |£(x;6) [/ (A + 1) for all i € [D].

For the other direction, since supgcg I (x;0) < 0o, we have

$i(0;) = —log / exp [ > o;(0; ol (@:0) | dmi(6-)

O J#i
supgyeeo ! (x;0) i
—— a1 log exp Z ®i(0;5) | dm—;(6_;).

O J#i

Since the right-hand side of the inequality does not depend on 6;, infy,co, ¢i(6;) > —oo0 as
longas } ., 4; ¢;(0;) < oo holds [m_;]-almost surely. Since supy,cg, #i(0i) < —supgee £ (z;0) /(A+
1), we have that infy.co, ¢i(6;) > —oo for all i € [D]. [ |
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Proof [Proof of Eq. (A.3)] We make the following derivation,

i in Eq—¢(x;0 A+1)D D
Bl ofty (O (o DDt )+ Dram [
q*(0)

~ i 0+ [ g Ol T @ 0)m(d)
o (32,6000 + 1t 6:0)
exp(Hlf(fE'G))

df + DKL(m || TF)

= min (A + 1)/ 6) log df + Dk (m || 7)
©

meM(O)

D
:m?&?@)Em (A+1) (Z@ Z)exp(Zqﬁ, +me<w 9)) + Dk (m || 7).

surrogate loss

Appendix D. Proofs of Section A

Proof [Proof of Proposition 8 By Theorem 14 of Lin et al. (2022), Algorithm 2 reaches
the stopping criterion E < € in t iterations, where t satisfies

QDZHCHOO - log(maxij MZ])

t<2
=27 Ot 1)

This implies
t < poly (D, Cumax/e, (A+1)71). (D.1)

Algorithm 2 calls the following oracle D times:

Zl<k-<N j 'eXP[Epzl F,. — ﬁ Chyoke } M, ...
Compute 74(Q) = <k;j<N, j#i J J + 1kp 1kp . (D.2)

D 1
Z1§kj§N,je[D] exp |:Zj:1 ijj T Ckr--kp} My, ..k,

All other steps are computed in linear time.

By Theorems 5.5 and 7.4 of Altschuler and Boix-Adsera (2023), this oracle can be
computed in poly(N, D) time. Repeating the oracle evaluation Dt times and using Eq. (D.1),
the algorithm terminates in poly(N, D, Cpax/e, (A + 1)_1) time. |

Proof [Proof of Corollary 11] We consider Algorithm 1 of Fan et al. (2022). The algorithm
implements the marginalization step of Algorithm 2 using the sum—product method. Consider
agraph G = ([D], E, K), where [D], E, and K denote the nodes, edges, and maximal cliques,
respectively. If the log-likelihood ¢(x (n). ; 0) factorizes according to G, by the Hammersley—Clifford
theorem, {(x;0) = >°  c x la(ba) Where each £, is defined on [

]Ea

41



WU AND BLEI

Define C},_, as the tensor of ¢,(6,) evaluated at support points (01(5),2' € a)e(n)- The
full cost tensor decomposes as

Ci,.kp = § Ck,-
aEK

Let ¢ be the number of iterations for Algorithm 1 of Fan et al. (2022) to reach tolerance
€. By Theorem 1 of Fan et al. (2022),

E[t] = O <D2 max |G, [|oo (A+ 1)~ e_1> .
ae

Let 7 be a minimal junction tree for G. Marginalizing over each factor in 7T costs
O(N¥(@)), and message passing costs O(d(7T) N“(©)), where d(T) is the average leaf distance
inT.

Since maxaek ||Ck, |lco is uniformly bounded, the sum-product implementation of the
Sinkhorn algorithm requires O (d(7) N¥(%) D2 (X + 1)~ €7!) iterations. Because d(T) < D,
the complexity is also O(N“’(G) D3(A+1)"te ). [ |

Appendix E. Proofs of Section 4
Proofs of Section 4.2

We define the set ©,, as the set of all & defined in Eq. (4.13), and H(q) := Jga(8) logq(0)de
as the Boltzmann’s H-functional (Villani, 2009).

Lemma 26 (Transformation Identities) For h := 6,1(0 — 0y — 6,An9,) where § ~ g,
we have

q(0) = |det(5,)| " (h), and  q;(0) = 6, 3G (h) for i € [D],

Moreover, we have
H(q) = H(g) — log |det(d,)[, and H(g;) = H(g;) — logdnii,
and
D
E(g) = (1) + log |det(8,)| — D 108 bnjiis
i=1
and for any distribution q, g; over ©, we have
Dii(a || 2) = Drn(@ || %),
where @y, ¢y are densities defined via Eq. (4.13).

Proof [Proof of Lemma 26| We obtain the first equality by applying the change-of-variables
formula to Eq. (4.13).

q(0) = |det(6,)|"'a(h), and qu(0) = o, La,(h),i € [D],

n
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For the second equality, we have

H(q) Z/Idet(5n)IQ(9) 10g(|det(5n)IQ(9))dh=/Q(Q) log q(#)df + log|det(d,)| "

The univariate case follows from this.
For the third equality, we can write

=1
D D D

=H(q) — Y H(q;) — log|det(d,)| + > _logdnii = Z(q) — log|det(5,)| + > _1og dnii-
=1 1=1 =1

For the fourth equality, we have
Diwl@ | ) = H(@) ~ [ logay (), (h)dn

— H(q) + log|det(s,)] — / 0(0), (0)d8 — log det(5,)|
= Dxr(qy || 92)-

This concludes the proof. |

To establish the Bernstein von-Mises theorem, we introduce the tool of I'-convergence
(Braides, 2014).

Definition 27 (I'~-Convergence) Let X be a metric space and consider a set of functionals
F.: X — R indexed by € > 0. A limiting functional Fy exists and is called the I'-limit of
F. as e — 0, if the following conditions are met:

1. Liminf Inequality: For all x € X and for every sequence x. — x,

Fy(x) < liminf F.(z.).

e—0

2. Limsup Inequality / Existence of a Recovery Sequence: For each x € X, there
erists a sequence T. — x such that

Fy(z) > limsup F.(Z.).

e—0

The first condition requires Fj to be asymptotically upper bounded by F.. When paired
with the second condition, it ensures that Fy(z) = 1ir% F.(z¢), thereby confirming that the
E—

lower bound is tight.

Definition 28 (Equi-Coerciveness of Functionals) A sequence of functionals F, : X —
R is said to be equi-coercive if for every bounded sequence x. with F.(x:) < t, there exists
a subsequence xj of . and a converging sequence x; satisfies F. (z}) < F;(x;) + o(1).
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Equi-coerciveness ensures the existence of a precompact minimizing sequence for Fy,
which helps establish the convergence z. — .

Theorem 29 (Fundamental Theorem of I'-Convergence) Let X be a metric space
and F. an equi-coercive sequence of functionals. If F' = F—liII(l) F., then
E—

arg min F' = lim arg min F.
zeX e—0 zeX

This theorem implies that if minimizers x. for all F exist, the sequence converges, potentially
along a subsequence, to a minimizer of F'. We note that the converse is not necessarily true;
there may exist minimizers for F' which are not limits of minimizers for F.

Note that when 4, = )\711/2511, we have |det(d,)| = )\7?/2|det(5n)] and 0y, ; = )\i/zén,u-.
We can explicitly characterize the transformed variational posterior:

da, (h) := |det(0n)|q), (o + 0nh + 00D 6,), (E.1)
where q is the original Z-variational posterior.

Lemma 30 Under Definition Eq. (E.1), the distribution @, solves the following variational
problem

gy = argmin Dgr(q || 39) + AE(q).
q€P2(0)

This Lemma is a direct consequence of the transformation identities (Lemma 26) and

Eq. (4.1), thus the proof is omitted.

Proof [Proof of Theorem 6] WLOG, we assume that © = RP. Otherwise, we use the same

proof by adding an indicator of the minimizing set to the sequence of functionals.
Regime 1: )\, — oco. It suffices to show

Fo(q) == Dxw(q || Gp) + MnZ(q),

T"-converge to
Fo(q) := Dkr(q || N(0, V")) + 00Z(q),

in [Py, ]-probability as n — oco.

P
By Theorem 29, I' convergence implies Wa(q,,,, arg mingep, o) Fo(q)) =2 0, where qp is
the minimizer of Fj.
To prove the I'-convergence, we rewrite F,.

Fo(q) := Dxi(a || @) + MZ(q)
= E, [—z (a:(”); 0o + Onh + 5nAn790)] + Dxw(q || 7) + log [det(6n)] + AnE(q)

+ / (00 + Onh 4 600 00) (2™ 0 + 8,k + 5,0, 9, )dh.
1
= —0(x™; 0y) + K, [QhTVgOh] + H(q) — Eq [log (6o + onh + 0,2 0,)] + AZE(q)

+ log / 700 + Onh 4 000 0,) (@™ 0 + 6,k + 6,0, 9,)dh + 0p(1).
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Applying LAN expansion and Laplace approximation to the log-normalizer, we have
log / (00 + Snh + 6,8 00) (2™ 00 + 8,1 + 8, 9, )d D
=5 log 27 — 5 log det(Vp,) + log w(6p) + £(x'™";6p) + op(1).

After cancellation, we have

1 — D 1
Fu(a) = Eq | 317 Vagh] + H(@) + \,5(0) + (5 og2m — 1 logde (V)

— {Eq [log m(0p + dnh + 6,0p9,)] — logw(6p)} + op(1).

Using Assumption 2 to bound the prior tail via Taylor expansion, we have an expression
for F,

1 D 1
Fo(q) =Eq |=hTVy h| + H A2 —log 2m — = log det 1).
(a) q[2 Voo ]+ (@) +AnE(q) + 5 log 2m — 5 log det(V, ) + op(1) (£.2)
= Dxwi(a || N0,V 1)) + AnZ(q) + op(1).
Now we rewrite Fp(q).
Fo(q) == Dxr(a | N0,V ")) + 00E(q)
L7 - D 1
=E, §h Voo h| + H(q) + 00Z(q) + glog 21 — 510g det(Vp,).
= F,(q) + o0Z(q) + op(1).

Now we prove the I' convergence.

First, we verify the liminf inequality. Let q,, We q. When q is not mean-field, we have:
liminf F(a,) > liminf { Dicr.(a, || N0, Vi) + AnZ(a,) | —
n—oo n—oo
.. -1 .. s ee— .
> liminf Dgr,(q, || N(0, Vg, ")) + liminf A, lim inf =(q,,) — €
> Dxr(q || N(0,Vy 1)) 4+ 00E(q) — € = 00 > Fy(q).

The second inequality follows from the definition of liminf. The third line is due to
Lemma 21, which states that the KL functional and = functional are lower semicontinuous.

. . 3 1 _1 :

liminf F(a,) > liminf { Dicr.(a, || N0, Vi) + AnZ(a,) | —
> liminf Dy (g, || N(0, V5, 1) — e
> Dyau(a || N(0, V")) — e

Since this holds for all €, we verified that liminf,,_,~ Fy(q,) > Fo(q).
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Next, we show the existence of a recovery sequence. When ¢ is not mean-field, Fy(q) =
400, and the limsup inequality is automatically satisfied. When q is mean-field, choose
q, ‘= q, then:

lim sup F, (q,,) = limsup Dk (q || N(0, V1)) 4+ op(1) < Fo(q).
n—oo

n—0o0

Thus, Fj is the I'-limit of the sequence F,.

Next we prove that the sequence F), is eqi-coercive. Take n; — oo and Un; such that
F;(an,) <t for all j. Then Ay ;E(qy,) is bounded as Ay; — oo, thus Z(q,,) = o(1). Using
this and Eq. (E.2), we have

Dxy, (qnj | N (O, Vegl)> <t+1, for sufficiently large j.

Since Dk, ( | N(0, Vegl)) is a Wasserstein (geodesically) convex functional, it is coercive

by Lemma 2.4.8 of Ambrosio et al. (2005). This implies that the set {q € P2(0O) |
Dxu (q || o) < t+1} is compact under the Wasserstein metric, thus q,,; has a subsequence
dp, that converges to " in the Wasserstein metric of and Dkr, (q* || §o) <t + 1. Thus we
have F;(qp,,) < Fn;(dy,) +0o(1) by Eq. (E.2) where q;,; is a converging subsequence of q,, .
This verifies the equi-coercivity of F,.

Lastly, we note that Fy attains its minimum at N (A, g,, Véo_l) where Vglo_l is the MFVI
covariance. As a result of Theorem 29, we conclude that the desired convergence takes
place:

Dk, (an | N (O, Vegl)> <t+1, for sufficiently large j.

Regime 2: A\, — 0.
In this regime, we show that the functionals

Fo(q) == Dkwi(q || Go) + AnZ(q),

I'-converge to
FO(q) = DKL(q ” N(Oa ‘/931))7

in [Py, ]-probability as n — oco.
Given that F), is defined analogous to Regime 1, we will skip the derivation:

2
= D (a | N0, V) + ME(a) + op(1)

1 D 1
Fo.(q) = Eq [2hTV90h} + H(q) + MZE(q) + = log 27 — 3 log det(Vp,) + op(1).

Now we prove the I' convergence. First, we verify the liminf inequality. Let q,, We q.
We have:

liminf F(a,) > liminf { Dicr.(a, || N0, Vi) + AnZ(a,) | —
n—oo n—o0
.. 1 .. s e _
> hnrggf Dxr(ay [| N(0, Vg ")) + hnrgloréf An lhrggéf_(qn) €
> Dxw(a || N(0, Vg, ") —e.
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Since this holds for all €, we verified that liminf,,_, F},(q,) > Fo(q).
For the recovery sequence, we take q,, := q. Since q is absolutely continuous with respect
to the product of its marginals, Z(q) is finite. Then we have:

lim sup F,(q,,) = limsup Dki,(q || N(0, V:ggl)) +op(1) < Fy(q).
n—oo

n—oo
The equicoercivity of F), follows from the argument in regime 1. By Theorem 29, we
conclude with the desired convergence:

WZ(q/\nv N(Oa Végl)) — 0.

Regime 3: \,, — A € (0,00).
In this regime, we show that the functionals

Fa(a) = Dxw(a || do) + AnE(a),
I'-converge to
Fo(q) == Dxu(a | N(0, V1)) + AcE(q),

in [Py, ]-probability as n — oco.
Recall that

1 — D 1
Fo(q) = Eq [2hTV90h} + H(q) + \E(q) + 5 log 2 — 3 log det(Vp,) + op(1).

= Dkr(a || N0,V 1)) + AnZ(q) + op(1).

Now we prove the I' convergence. First, we verify the liminf inequality. Let q,, We q.
We have:

lim nf F,(q,) > lim inf {DKL(% I N, V1) + )\nE(qn)} —e

n—oo

.. -1 .. s e .
> liminf Dgr,(q, || N(0, Vg, ")) + liminf A, lim inf =(q,,) — €
> Dxr(a |l N(0, Vg h)) + AscZ(a) — e

The second inequality follows from the definition of liminf, and the last inequality is due to
Lemma 21, which states that the KL functional and = functional are lower semicontinuous.
For the recovery sequence, we take q,, := q. As long as Z(q) is finite, we have:

lim sup F),(q,,) = limsup Dkr,(q || N(0, Vggl)) + ME(q) + op(1) = Fy(q).
n—oo n—oo
The equicoercivity of F;, follows from the argument in regime 1. By Theorem 29, we have
the convergence:

Wa(q,,,, arg min Fy(q)) — 0.
qEPQ(@)
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Proof [Proof of Corollary 7| Recall the definition of Wasserstein distance:

Wa(p,q) = (inf E[|X - Y[J*])"/2
7€C(p,q)

Given the change-of-variables definition (Eq. (4.13)), we have

Wa(dy , N(u,2)) = inf E.[||h — #||?])'/?
2(ay,,, V(1. X)) (WGC%’N(ME» [l 1°1)

= |det(8,)]( inf E.[|6 — 9/||2])1/2
m€C(ay,, N (Onp+00+0nly 00,05 Lon))

= |det(6,)| T Waldh s N(Snp + 00 + 00 00, 01 £65)).-
If Wa(dy,, N(u,%)) tends to 0, then Wa(qy , N(dnp + 6o + 60 0y, 0L 35,)) tends to 0.

Since N (01400 + 600 05, 6I'%36,,) weakly converge to dp,, it converges to dp, in Wasserstein
metric. By Theorem 6, we have q} converges in Wasserstein metric to dg,, as desired. W

Proofs of Section 4.1
We first prove a useful proposition.

Proposition 31 (Optimality to fixed point) Let m}(6) = HZD:1 m}, ;(0:) be the product
of optimal marginals, and ¢y be the optimal EOT potentials. Then my and ¢y satisfy the
fized point equations:

m} ;(0:) = Z; ' exp(—=(A+ )¢5 ,(0:))mi(6:), and

" 1
¢>A,i(9i)=—10g/@ie><p 11 (w ) AY 650 | [T 7i005)d0- E3)

- J# J#i
+ Zlog/ exp (—(A+1)¢3 ;(0;)) m;(6;)db;,
J#

where Z;’s are the normalizing constants.

Proof [Proof of Proposition 31| Define f)(0) as follows,

D
f0) = —(A+1) (Zm )em(Z% AHé(az“%&))+Zlogm-(0>
=1

(E4)

By Theorem 25 and the uniform boundedness of ¢ (:c(”); -), the function f) is integrable

with respect to m). From the derivation in Section 2.2, the distribution m} attain the

minimum,

in —E 0)] + H(m). E.5

min <Ey, [7,(0)]+ H(m) (E:5)

Define fxi(0;) = Epms[fr(0) | 64 for [m} J-as. 0; € ©; Since m € M(O), H(m) =
ZZZ 1 H(m;) and by the tower property, we have

m3i(0:) = argmin (Em, [~ fi(0:)] + Hmy)) (E:6)
m; EM(O;)
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By the Gibbs variational principle (Lemma 17), the minimum is uniquely attained by

m34(6:) o< exp(fx,i(6:)). (E.7)

Recall that the optimal EOT potentials satisfy the Schrodinger system:

Oxi0i) = —log/ exp (Z éx.i(05) + )\7—%16< (n);9)) H’mAJ )do_;. (E.8)

-t J#i J#i

This allows us to simplify fy;(6;):
Fri(0:) = Ems[/2(0) | 6]
~(A+1) (Z@Z )exp<Z¢M +—£( ))+Zlogm ]
Ens_, (S0 03:00)) exp (X 63,(05) + x£ (@750) )|
exp (~03,,(6))

—|—Em§7_i !Z log 7;(0; ] + log 7;(6;)
JFi

=E,

—(A+1)

— —(A+ 1)65,,(6:) + log w(6:) — (A + 1E {Z% ]
J#i

where h (6_;)  exp (Z#Z 93,,;(05) + /\+1£( (”);9)) [1;.;m3 ;(0:). Since ha(0-:) oc ai (60—, 0:),
we have for all 6;,

) {Z ¢§,j(9j)] =Eqz0_:.00) [Z ¢’§7j(93')] = Eng, [63,060)] (E.9)
J#i J#1 J#i
The last equality uses the fact that mj\z is the i*" marginal of qy-

Since >, ; Em; [—(/\ + 1)¢3 ;(05) + log 7rj(0j)] does not depend on 6;, we obtain

myi(0:) oc exp(—(A + 1)@ ;(6:))mi(6s). (E.10)
Using Eq. (E.10), we conclude

(b;z(el) = —log/@ .exp ()\—1#1 <33 ) AZ%,] ) HTU )do_;

J#i J#i

+3 log / exp (—(\ + 1)65,5(6))) (6,

JFi
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Proof [Proof of Theorem 2| Since the parameter space © is compact and £(z(™;-) € C%(0),
both the gradient V¢(z(™);-) and the Hessian V2¢(x(™);.) are uniformly bounded over ©.

Let u; := %inf,ge@[v%(m(”);e)]ii, v; is chosen such that supgeg |[VE(2™;0)]; — v; —
2u;0;| = b;, and w is chosen such that supgeg |((2™;0) — w — >, vl — >, uif?| = a. We
define a new log-likelihood £(x(™); #) that shift ¢(2(™;0) by a quadratic function:

D D
Uz 0) .= t(x™;0) —w — Zv,ﬂi - Z uif?.
i=1 i=1

Some calculation yields that

sup [0(x™;0)] = a, sup|[VE(x™;0)];| = bi, sup|[VZ(x™;0)]u| = ¢.
0cO 0cO 0cO

Given the optimal m3 , the inner variational problem is

a5, = argmin {~Eq[f(2™;0)] + (O + DD || m3,) }
qeC(m3,,)

where we replace £(x(™; §) with £(x(™); §) since adding a tensorized function —(w+3"2 | v;0;+
ZZD: L 1;6?) to the cost does not change the optimal EOT coupling.
By Theorem 25, we can write q} as follows,

D D
* 1 7 n * *
a3, (0) = exp <)\ n lf(m( );0) + ZQS,\”(@')) Hm/\n,i(e)
n i=1 i=1

where m} ,’s are the marginals of g and ¢} .’s are the EOT potentials.

Define another product distribution my, (6) o exp (Zil o3, 1(61)> m} ;(0). We can
rewrite g as the product of a tempered likelihood and a m,,,.

.0) = 55y 0 (5@ :0) ) o, (), (E11)
where the normalizing constant is given by

Zp(Ap) = /@exp ()\nl—i- 157(:11(");0)) may, (0)d6. (E.12)
First, we want to show that
lim - [log Zp(A) —  sup { L &, [i@™;0)] —ED:DKL(mZ- EN )}] ~0.
n—oo D meM(©),m<iiy, | Ant1 — "
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Let || f||loo denote the supremum norm of a function f. Fix some € > 0. Let Sy, (€) C © be
a finite set such that for any 6 € ©, there exists s € Sy, (€) satisfying

D

1 -
> 9il(x™; 0) — si||%, < €D. (E.14)
i=1 An +1

Denote by |Sy, (€)| the cardinality of Sy, (€). Theorem 1 of Yan (2020) implies that

1

log Zp(An) — sup W]

mEM(G),m<<ﬁL)\n

D D D D
4 <azcu+zbz> - HQZZ”% L 153 SL'ES 3) i

i=1 j=1

Epm[0(2™; 0 ZDKL mi || i) | <
=1

1/2

1 D 1/2 8 D 1/2 4 D
4 —— N2 12D 2 4DY/? S i+ 2D
+ ((/\n+1)2;1+6 > 1(;%) + ¢ +>\n+1;C +2De

+log 2 + log |Sy,, (€)|.

(E.15)
Consider ), = D~'/? max <\/ ZZ 1 Cii \/Zz 1 b7, \/ZZ 123 1 %,Dl/Q). Then,
Zfilzfﬂbi% \/Zz 1 z\/Zz 12; 1 zg — o(D)
(An +1)2 (An +1)2 ’
D
Zi.il ZjDzl bibjCij < Ez 1 ZJ 1 ’L] Zz 1 b12 _ 0(D3/2)
(An+1)2 7 (An + 1) '
by the Cauchy—Schwarz inequality. With the other terms being o(D), we have
1 ) D
log Zp(An) — sup En[f(z™;0)] =Y Dgr(m; || iy, 1)
meM(0),m<Kmy,, )\" +1 ; (ElG)
< o(D) + 2De + log2 + log|Sy,, (¢)|.
To upper bound |S), (¢)|, we can construct an e-covering by covering [— )\: st bi ] with

balls of size 2¢e. We consider a candidate set S \, (€) as the product of these coverings. Since

~ D
83, (0)] = kg5, we have

D
log|Sy,, (€)] < Zlog b — Dlog(A, + 1) — Dloge.
i=1

Define b := Zil b;. Since A\, > D_l/Q\/Zzal b?, we have DX, > Dl/Q\/Zzal b? > Db.

By Jensen’s inequality,

D
Dlog(A, + 1) = Dlog(b+ 1) > Z log(b;)
i=1
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To complete the bound of log |Sy, (¢)|, we choose a specific sequence €, := %. The

inequality above shows that € = o(1).
Thus,

b+1
An 41

_ 1
log |Sy, (en)| < Dlog(b+1) — Dlog(A\, + 1) — Dloge, = §Dlog < ) — —o0. (E.17)

Plugging the definition of ¢, into Eq. (E.16), we get

D
1 .
log Zp(An) =  sup E.[0(x™;0)] =Y Dxi(m; || my, ;)| = o(D).
meM(©),m<iiy, | An+1 ;
(E.18)
For any m € M(©), we have
Dicu(om | 5,) = [ (0) |1og Zp(0) — 5 1:0) + log 5" .
" © An +1 [L:21 m,i(67)
1 ) D
=108 Zp(hn) = 3 =B ll@: O+ 3 Dicuom [, i(61).
Eq. (E.18) implies that for m} € argmin,,cyye) DxL(m || 4} ), we have
Dxi, (m3, || a3,) = o(D). (E.19)

For any 1-Lipschitz function f under the L; norm, consider the random variable f(6), where
0 ~ a3, This variable satisfies the inequality log Eq; [exp((t, f(6) —Eq; [f()]))] < 2D||t||3,
which is derived from the assumption that © = [~1,1]”. Thus, ¢} is (4D)-subGaussian.
By the Ti-transportation inequality (Theorem 4.8, Van Handel (2014)), for any m € M(©),
the following upper bound holds:

Wi(m,q3,) < /8D Diu(m || a3,) = o(D), (E.20)

where W is the 1—Wasserstein distance.
Let m3 ~denote the minimizer of the left hand side Eq. (E.19). Consider a function v

that is 1-Lipschitz on R. The function 6 — Zi’il ¥ (0;) is also 1-Lipschitz with respect to
the L norm. This follows from the inequality:

D D D D
[ D w0:) = D v < D [w(0:) — ()] < D10 = 05| < |10 = ¢/ (B.21)
i=1 i=1 i=1 i=1
Applying Kantorovich duality, we obtain the bound:
D
sup |37 (Eqg [9(6)] — By, [6(60)])| < Wil m5,) = o(D). (E.22)
YeLip(R) |3
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Since the bound in Eq. (E.15) does not depend on the value of (™), we have

% 3 (Eqin [¥(0:)] — By [1/1(91')})

i=1

1 * * Pag
sup < 5W1(qkn,m/\n) — 0. (E.23)

:I:(")EX”

Consider the regime )\, < DZ71(qf). Recall that the the Z-VI has the Lagrangian
formulation as ming(q)<,(r,) Pkr(q || q) for some constant r(\,) depending on A,. If
2(qp) < 7(An), then g} = qp, which implies Z(qf) > Z(q3 ) for all A,. For fixed n, we
have

Dxw(ay, I'ao) = Dxrlao || o) < An(Z(qp) — E(a3,,)) < AnZ(qg) = o(D).

By the Ti-transportation inequality and Kantorovich duality, we have

1 1 Py
—_— * ; — * ; < — * * < . * * 9 .
v 1D ; (qun [¥(6:)] — Eq; [ww»]) < 5" (as, @) S \/ D Dxi(aj, [la5) = 0
(E.24)
n

Proof [Proof of Corollary 3| Under the assumptions,

D
Y /DSD, > A<D
i=1 0,

When we plug these terms in the upper bounds (2), Eq. (4.3) follows as the desired result.
|

For the linear model, denote w := ¢ 2XTy and d; = [Baiaglii, where [Bgiagii is the ith
diagonal entry of matrix Bgjas. The next result shows =-VI respects log-concavity of the
exact posterior.

Lemma 32 Let the assumptions of Theorem 4 hold. For A\, € R, the solution Q, to
Eq. (4.1) is (k1 + k2)-log-concave. Moreover, for each i, the optimal EOT potential Py, i 1S
K2/ (An + 1)-conver and marginal my ., is (k1 + k2)-log-concave.

Proof [Proof of Lemma 32] We first prove existence. By Lagrangian duality, Z-VI (Eq. (4.1))
is equivalent to ming(q)<,(x,) PkrL(q || q5). An optimizer of the latter problem exists because
Z(-) has weakly closed sublevel set in P2(©) and because Dxy,(- || qf) has weakly compact
sub-level sets.

Recall the =-variational posterior be represented in term of optimal marginals m} and
optimal EOT potentials ¢} :

D
q, (0) = exp <Z Orni(01) + 1€(w("); 9)) mj,, (6). (E.25)
i=1 n
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By Proposition 31, m} and ¢} satisfy the following fixed point equations:

m3, (0:) = Z; " exp(—(An + 1)@}, ;(0:))mi(6;), and

A 1 *
brnil8) = o5 [ e (An it (=70 - A”Z%"”’(ejv Lt .

i
—i—Zlog/ exp (—(n + 1)653,(67)) 7;(0;)d6.
J#i

Using equations Eq. (E.26) to replace m} in Eq. (E.25), the variational posterior qj
satisfies

D
a3, (0) o exp ( N 1+ @:0) = Y ¢§n,i<e,~>> m(9). (E.27)
n i=1

We now establish the log-concavity of q . Applying Eq. (E.26) to Eq. (E.27), we get

D
1 1
X (n). (n).
a3, (0) o< exp (/\n+1€(w ;0) + A E log Er_, exp (/\n+1€< 9) An E Do, (0 )) m(0).

i=1 jF#i

(E.28)
For a € [0,1] and 69,0} € ©;, we have

177

1
_ _ (). 009 + (1 — 1
¢>\nz(069 + (1 —a)f}) =logE,_, |: Xp (/\n n 1€ (m ;ab; + (1 —a)b;, ) An ]éél P, (05 )}

The log-likelihood is ka-concave, thus

M. 000 + (1 — )0 0., (n) m. g1 g )20 =) o g1y
e(sc L + (1 a)al,e_z)zae( 69.0_ ) (1- )e( 0L 0_ )+ 5 (00012,
By the Prékopa—Leindler inequality (Theorem 19.16, Villani (2009)), we have
al (;09.0_;) + (1 — a)t (z™;6L,0_,))
Eﬂﬂ' |:6Xp ( A\, +1 —An qu/\nﬂ
J#i
(a™); 69 : (xm); ! e
14 " 5‘917 ] L " 7017 ]

>E,_, |:exp ()\n-i-l - An ;‘%nd )] Er_, |:exp (W— - ;‘bkng )] :

Since the logarithmic function is concave, we conclude

— @mi(aeg + (1 — Ct)el)
0 (™69 6_; 1—a)t (z™;0},0_;) 1-—
> logE,_, |:exp (a (a: ik )+( ) ( — — A Z¢)\n,3 M(@(‘)—@})Q

const An+1 g ()\n + 1)
koar(1 — )
2 —adx,i(07) = (1= ), i(01) + Z0 (00 = 00)°,
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Thus, the function — ¢y, () is K2/ (An+1)-concave. By the fixed point representation (E.26),

m} is (k2 + k1)-log-concave. Using the representation (E.27), we conclude that the

distribution q3 is (k2 + k1)-log-concave. [ |
We introduce some notations to streamline the two subsequent proofs.

Definition 33 (Nonlinear quadratic tilt) Let p be a probability measure on R. For

(¢77) € Ll(R) € (0’ OO), set

cu(6.2) =1og | [ exp (~0(0) - 36%) auto)]. (E.20)
and define the probability distribution pe . on R by setting

o (0) := exp (=6(0) = 20% = cu(6,7)) u(0), VO €R. (E-30)

For any probability measure p, we have c¢,(¢,7) < oo for any (¢,7) € Li(R) € (0,00).

Given the base measure p, the tilted measure pg4~(0) has an exponential family density

that has (¢(6),6%) as the sufficient statistics. We call p14 a nonlinear quadratic tilt of p.
Using Theorem 25 and Proposition 31, we have

D
]. 9 Boﬂ‘e T dZ
)= — 2] - )\n * L . . ) 91 ,
QAn( ) Zp(An) exp ( ()\ +1) + ZC i ( ¢>‘”’Z An + 1>) le,An%\n,i»)\jzﬂ( )
(E.31)

Here ¢, ( n®X, i +1> is defined in Eq. (E.29), and 7, 4; is the nonlinear quadratic

)\”qs)\n i Ap+1
tilt of m; with parameters (A3 ;, 5. le) The constant Zp(\,) is defined as:

Zp(An) :z/@exp( G(ABff Te)Hw 4 (6;)df.

LAY o X T

When A\, =0, Zp(0) is the normalizing constant of the exact posterior. When A, > 0,
we can view Zp(A,) as an approximation to Zp(0).

The log-concavity of q}, implies an upper bound of E(q’j\n) using the covariance matrix,
the design matrix, and the regularization parameter.

Lemma 34 Let the assumptions of Theorem 4 hold. The solution ¢, to Eq. (4.7) satisfies

AN tr(COUq’;\n (Boﬂ6)>
=(q,) = A(k1 + ko) (A + 1)

Proof [Proof of Lemma 34| Any constant shift in q} is preserved by its marginal distribution
m} . Since the KL divergence is invariant to constant shift, Z(q} ) is the same if we shift
q3, by a constant. WLOG, we can assume that Eqs [0] = 0.
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Let m;(6;) x exp (—%93 Jr'wit%) 7(0;), and m(0) = HZD:1 m;(6;). By the variational

representation of mutual information, we have

E(ax,) = Dxr(ay, [[m3,) < Dxe(ay, [ 7).

By Lemma 32, ¢3  is k2/(An + 1)-convex. Since 7 is ki-log-concave, m is (k1 + K2)-
log-concave. By the log—Sobolev inequality, we have:

g [1Bort2]
A =

<0TBdiag9 - HTB0> 2
0

1
Z(q* )< D \, | m) <
(a3,) < Dku(ay, || m) < /6 v 2\, + 1)

K1+ K2

, D A(r1 + K2) O + 1)2°

Under the assumed constraint Eqx [0] = 0, we conclude with the desired inequality:

n

tr (Covq; (Boffe))
< - .
= A(k1 + £2) (o + 1)2

Proof [Proof of Theorem 4]
Define Byg := and 7; ;= . 4 (6;).

LARGY 0 N T
We can write

q)\n(e) - ZD()\n) exp ( 2()\71, +1 9_‘_267& < ?’qu/\n,z? )\ n 1>> Hﬂ-z

By Lemma 32, q3 is a (k1 + 2)-log-concave. By Theorem 1 of Lacker et al. (2024), we
have:

)\—l—l

. D D P [Bosl?
log Zp(A\,)— sup [—;Em [Q]TBoﬁEm 0] + wT]Em[G] — ZDKL(mi [ 7?1)] < (%1];11%%)12_(;[” +ff]1)]2’

meM(O)
(E.32)

where E,,[] is the mean vector of m.
For any m € M(©), we have

log ZD()\ ) QTBOHQ wTO + IOg D7/n(~0)9)] de.

i=1 T

Dy (m || ) = /@ m(0)

1 -
=log Zp(An) + 5Em 0] BogEm[0] — w'E,,[0] + Z Dx(m; || 7).
=1

We invoke the upper bound on the log normalizer Eq. (E.32):

Z‘D—l Z'D—l[Boﬁ”]z'
inf D 1)< S = Y
mellgl/ll(@) KL(m || QAn) = (Hl + 52)2()\n n 1)2

(E.33)
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By the Th-transportation inequality (Theorem 1 and 2, Otto and Villani (2000)), we upper
bound the Wasserstein metric with the square root of KL divergence:

2 2 Z'D—l Zp—l[Boff]z'
inf  Wa(q} < nf D )< S = Y (E.34
mEIII\lﬂ(G)) 2(di,.,m) < \/m + K1 melM(G)) k(m | ay,) < \/(m + k2)3(Ap +1)2 ( )

P
For \,, = y/tr(BZ;), we have inf,,cpi(e) Walay , m) 0.
Consider the second regime A, > w/tr(Bgﬁ) /D. By the triangle inequality, we have

1 D 1 D 2 1/2
P mati(e) (D 200 = 55 3 En [z,z)(ei)])
1 D 1 D 2 1/2 ) D
< sup Eg;, (D Z;z/)(ei) -5 ;Eq;n W(&-)]) + 5 z; (B, [0 Em[w(ei)])l .
(E.35)

Since ) is 1-Lipschitz, we apply Kantorovich duality to bound the second term.

( inf
meM(O)

S 1nf ZWI q)\n“mz) S lnf ZW2 q)\n,wml)

my~mp D my,m -
= i=

D

2
1
5 2 (Bas, [0(00)] ~ Ewlv(61)) D

1=

By the subadditivity inequality of Wasserstein distance and Eq. (E.34), we have

D D
2 Zj:l Zi:l [Boff]?j

f W2( )< inf Wi(qt ,m) < E.36
m11,n ; 2 Q)\n i Ty ) = mellglﬂl(e)) 2 (q)\n m) = (Fﬂl + H2)3(An + 1)2 ( )
Thus,
D D D 2
1 2y i=1 E‘:ﬂBoﬁ“]“
f — E,.[v(6; < J ! Y E.37
mEIRr}JI(e ; ( %, ¥ i )])‘ - \/D(Hl + £2)3(An + 1) (E.37)

The Lipschitzness implies ||V (|2 < 1. To bound the first term, we apply Poincaré inequality
to the function z — P ().

1 & 1 & ? 1 &
sup Eqs (D D v(:) — 5> Ea, wwm) < sup Vargy (D Zw(ea)
i=1 i=1 yeRn i=1

(E.38)
1 1

<— N Ep [[|[VYR] < ——.
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Combining bounds Eq. (E.37) and Eq. (E.38), we have

n eM
yER™ M i=1 i=1 (E.39)
< (/11 + Fﬂ2)2(/\n + 1)2 +2 ZjDzl Zz‘zl[Boﬁ“]?j
- D(k1 + k2)3(An +1)2

For ), > y/tr(B%;)/D, the bounds implies the Eq. (4.9).

Consider the third regime X, < (k1 + k2) [tr (Covg: (Bogd))] ~' Recall that =-VT has
a dual problem of the form mingy)<,(x,) DxL(q || qg) for some constant r(),) depending
on A,. If Z(q5) < 7(An), then q = qg, hence Z(qg) > =(q} ). For t < A, and fixed n, we
apply Lemma 34 to obtain an upper bound,

* * * * — * — * — * Pg
Dxw(a3, | ag) — Dxu(a; | a5) < Mn(E(q)) — E(q},)) < ME(q) — 0.

Finally, consider the fourth regime X, < D(k1 + k2) [tr (Covqs (Boﬁrﬂ))]_l. We follow an
analogous derivation as the third regime:

Dxr(d}, II'ap) — Dxr(ay || ap) < Aa(E(ar) — E(d},)) < ME(qg) = o(D).

Since qf is (k1 + K2)-log-concave, we invoke the Th-transportation inequality:

Wa(a}, dp) < \/

D * ).
o KL(ay, I 9)

The proofs for the third and fourth regimes are the same as the first two regimes, where we
plug in the upper bounds for the KL divergence to upper-bound the Wasserstein distance.
We skip repeating the details. |

Proof [Proof of Corollary 5| Given tr(B%;) = S 12, Theorem 4 ensures that the

1
convergence of Wa(q} ,m} ) holds for A, - \/Zﬁl n?. Since Zi’;l n? < D? we have
Wa(ay, ,m} ) converges in probability to zero, for any choice of A, = D. [ |

Proofs of Section A.3

We first state an auxiliary lemma to Theorem 13.

Lemma 35 Let g} be the Z-variational posterior. Then ELBO(g3) and Cy are monotonically
decreasing function of \.

Proof [Proof of Lemma 35| Since ¢} is a maximizer of ELBO(q) — A=(q), we have

Cx = ELBO(q}) — AZ(qy).
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For A\{ < A2, we have

By Lagrangian duality, we have ELBO(q}) = (n)m}%)\) ELBO(q) for t(A) monotonically
=(q) <t
decreasing in .

For A\ < )\2, t()\l) > t()\g) hence

ELBO(q%.) = ma ELBO > max ELBO(q)=ELBO(q%.).
(@) = _ e ) (@2 max (@ (@)

Proof [Proof of Theorem 13| Let (P2(0), Wa) be the metric space. We want to show that
the functionals

Fx(q) == Dxw(q || a5) + A=(q).
T'-converge to
Feo(a) = Dxwr(a || ag) + o0=(a),

as A — 0o.

To verify I' convergence, we make use of the property that the KL divergence functional
Dk (- || af) and =Z(.) functional are lower semicontinuous (l.s.c.) in Wasserstein metric.
This is provided in Lemma 21.

Let q € P2(©) and Wa(qy,q) — 0. If q is a product measure, then

Fwo(a) = Dxr(q || qp) < liminf Dk (qy || q9) < liminf F)(q,).
A—00 A—00

The first inequality holds because Dxy,(. || qf) is Ls.c.
If q is not a product measure, we have liminf, ,- =(q,,) > E(q) > 0 by the lower
semicontinuity of Z. Since the KL term is nonnegative, we have

Fo(q) = oo = liminf F)(q,).
A—00

Thus the liminf inequality is verified.
Next we show the existence of a recovery sequence. For any q € P3(0), we take q, = q.
If q is a product measure, then

Foo(a) = Dxi(q || a5) = Dxr(q || a5)-

Otherwise,
Fio(q) = 00 > limsup Fi(qy)-

A—00
This verifies the limsup inequality. Combining the liminf and limsup inequalities, we obtain
that Foo =I- lim/\*)OOF)\.
Next we prove that the sequence F) is eqi-coercive. Take \; — oo and Ay, such that
Fy;(ay,) <t for all j. Then E(qy,) = o(1) because A\;E(qy,) is bounded as A; — oo.
Moreover, Dxr(qy; || qj) is upper bounded by ¢. Since Dkp(. || qj) is Wasserstein
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(geodesically) convex, it is coercive by Lemma 2.4.8 of Ambrosio et al. (2005). Thus, there
exists a converging sequence q’Aj such that DKL(q’Aj | a5) < Dxw(ay, [l a5) + o(1). Since
E(qy,;) = o(1), we obtain that F),(q}) < Fx;(q;) + o(1). This verifies the equi-coercivity of
Fy.

Finally, by the fundamental theorem of I" convergence (Theorem 29), we conclude that

Wa(dh,ay) — 0, as A — oo,

and
ICx —Cx] — 0, as X\ — oo.

By Corollary 2.1 of Braides (2014), every minimizer of F, is the limit of some converging
minimizing sequences of F). For any q}, € Q, this implies the existence of a sequence
qy € Qy such that

Wa(dsi,ax) = 0, as A — oo.

Proof [Proof of Theorem 14] We define P, (0) as P5(©) = {q € P2(0) : E(q) < co}. The
space (P4(©), Ws) is a metric space. We want to show that the sequence of functionals

Fx(q) := Dxw(a || 45) + A=(q)-

I'-converge to
Fo(q) := Dxw(q || o),

as A — 0. Both F)\(q) and Fy(q) are defined on (P,(0), Ws).

We make use of Lemma 21 which shows that the KL divergence functional Dky,(- || qf)
and =(.) functional are lower semicontinuous (l.s.c.) in Wasserstein metric.

Let q € P4(0) and Wa(qy,q) — 0. We have

Fo(q) = Dxr(q || qp) < liminf Dkr.(qy || qp) < liminf F(qy)-
A—0 A—0

The first inequality holds because Dki,(. || q) is L.s.c. The second inequality holds because
=(-) is nonnegative.

Next we show that the existence of a recovery sequence. For any q € Py(0), we take
qy = q. Since E(q) < oo, we have

Fo(q) = Dkr(q || af) > hlil sup Dx1(q || ap) + AZ(q)-
%

This verifies the limsup inequality. Combining the liminf and limsup inequalities, we obtain
that F =1 — lim)\*)OOF)\.

We proceed to establish equi-coercivity of the sequence F\. Consider a sequence A\; — 0
and qy, € P5(0) for which F);(qy,) < ¢ holds for all j. Given that Z(qy,) > 0, it follows
that Dkr,(q || q5) < t. Owing to the geodesic convexity of the Kullback-Leibler divergence
Dki(- || qfy) in the Wasserstein space, Lemma 2.4.8 from Ambrosio et al. (2005) ensures
that it is coercive, implying that the set {q € P5(©) | Dxr(q || qj) < t} is compact in the
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metric space (P4(©), Wa). Sequential compactness guarantees the existence of a convergent
subsequence of q , which converges to some qq in P5(0). Since Dkr(- || qf) is lower
semicontinuous (1.s.c.), we conclude that:

Fy;(do) = Dxr(qo || d9) + AjE(do) < Dxr(ay, || 9p) + AjE(qp)
< Fy(ay,) +AE(qe) = Fy;(ay,) +o(1),

Finally, by the fundamental theorem of I" convergence, we conclude that
Wa(qg,ay) =0, as A—0,
where qq is a minimizer of Fp, and
ICx —Co| =0, as A—0.

Since qp) is the unique minimizer of Fp, we conclude that qy = qj.
To prove the convergence of optimal cost, we note that

Fx(q}) < Fa(qp) = Fo(ag) + A=(qp)-
Thus,
ICx — Col = |Fa(d}) — Folag)| < A=(qp)-
]

Define a functional ®, that combines the objective functional of the inner variational
objective problem and Assumption 5:

D
Ox(q) = Eq |—L@™;0) + D ¢i(0:) | + (A + 1)E(q), (E.40)
i=1

where ¢; : ©; — R are the one-dimensional function in the Lipschitz cost assumption
(Assumption 5). Since ¢; are tensorized, minimizing ®, over C(m) is equivalent to solving
the inner variational problem over C(m).

For proving Theorem 15, we introduce a Pythagorean theorem for the inner variational
problem.

Lemma 36 Let ¢, € C(m) be a optimizer of ®x over C(m). Then

Dkr(g, q)) < ®x(q) — ®a(qy), for all g€ C(m).

Proof [Proof of Lemma 36| We recall definition of the auxiliary measure q,,, in the proof

n), D 40
of Theorem 25, q,,,(0) = a lexp (Z(m( )79);%:11-:1 @(Gl)) m(6), where « is the normalizing

constant. Then
®x(q) = DkL(4 || Gaux) — log o, (E.41)
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so that the entropic optimal transport problem is equivalent to minimizing Dkr, (- || Quux)-
In particular, q, = argming(,,) DKL(q || Qaux) and the Pythagorean theorem for relative
entropy (Theorem 2.2, (Csiszar, 1975)) yields

Dkr(q || daux) 2 Dxr(ax || daux) + Dxr(a [ ay) - for all g € C(m).
In view of Eq. (E.41), the desired claim holds. |

The next Lemma is also auxiliary to the proof of Theorem 15.

Lemma 37 Let ¢ € C(m*) be a optimizer of ®y over C(m”*), and ¢} € C(m) be its shadow.
Then

[@A(63) = PA(QR)] < LW2(qy, 4})-

Proof [Proof of Lemma 37| Using the Lipschitz cost assumption and Lemma 23, we have

(@) = Eqg [ +Z¢z + A+ 1DE(4))-

> Eqgg [—f(w(n); o) + Z @'(90] — LWa(ay,q}) + (A + 1D)ZE(a3)

= ®y(q}) — LWa(q}, q3)-

The claim follows by a symmetric argument. |

Proof [Proof of Theorem 15| Consider the optimizers q, € C(m) and q} € C(m}). Let
q} € C(m) be the shadow of q}. By Lemma 23 and the Lipschitz cost assumption, we have:

Dx(q}) — Palay) < /e ( o(z™;0 Zdh ’ ) — q3(6))do
< LW (a3, an) < LW2(m>\a m).
Lemma 37 implies ®5(qy) — ®a(q}) < LWa(m},m). Adding the inequalities shows:
[@2(Ax) — @a(ad)] < 2LWa(my, ).

By Lemma 36, we have that Dgp (7, 7*) < 2LWs(m},m), and the transport inequality
assumption implies:

1
Wp(qia 61)\) < Cp(2LW2(m§n m)) 2p

By Lemma 23, we get Wa(q3,q3) = Wa(m},m). We conclude the proof via the triangle
inequality,

1
Wa(ay, @) < Walay, @3) + Wa(ay, @) < Wa(my,m) + Cq(2LW2(m3, m)) 2
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Details of Section 3.1

Proof [Proof of Proposition 1| Let the true precision matrix be Ag. Let f(u,X) be the
objective function Eq. (3.1) parameterized by the variational mean p and covariance . A
direct calculation shows

D
1
F(2) = 5 | (o = )" oo — ) + A D log Biee + tr {AoT} — (A + 1) log 3] | -
K=1

First, we confirm that the optimal p* is equal to the true pg. The first-order optimality
condition of f with respect to u yields

Ouf (1, X) =0 = Ao(p — po) = 0.

Since ¥ is full-rank, its inverse Ag is full-rank hence the equality above yields pu* = ug.
Now we turn to X*. The first-order optimality yields the following characterization of
the optimal precision matrix A*:
8 _ * -1 A A= A* _ 1 A A * -1
Ef(”ﬁz)_0:>>‘(zdiag) + 0_()‘+1) =0 = _A—Fl 0+)\+1(Ediag) )
(E.42)

where Egiag, ¥* ¢ denote the diagonal and off-diagonal minor of ¥*, respectively. By Eq. (E.42),
we have

* 1 )\ * — * * —
Adiag = m/\o,diag + m(zdiag) = ()\ + 1)Adiag - )‘(Zdiag) b= AO,diag

By Lemma 18, we have the inequality
*71 *
z:diag < Adiag < AO,diag- (E43)
By the Woodbury identity (Eq.(156) in Petersen et al. (2008)) with C' = Ip, we have

-1

" 1 A =1 -1 A+1_, A w1 A2 w1 w1
v [H P 12“4 TN e {A I

Taking the diagonal elements on both sides, we have

1, A 1 2 w1 w1 -1
XEdiag = <|:A+12diag + Mzdiagzoxdiag} )
diag
1
)\ *—1 )\2 —1 *—1 AZ *—1 *—1
= mzdiag + mzziagzo,diagzdiag + mzdiagZO,Osziag

A B diag

7

Note that B is a matrix with zero diagonal entries. By Lemma 18, we have

1 % -1 -1 -1
deiag = ([A + B] )diag > [A + B]diag =4
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This implies that

A A2

~1
1 *
Xzziag 2 Ediag |:)\_|_12diag A+ 120 dlag:| Zrliaga

which after simplification yields
E:liag S Z:O,diag- (E44)

By Hua’s identity, we have

1 A a7 1 1
S = A sl S 1)s — A
R W dlag} A+ 1% [A+1 TN T D)

-1

It follows that

1 1
YYo= A2 — A
0= A%0 [A+1 T XOF 1)

-1

By Eq. (E.44), the matrix ¥X* — X is negative semidefinite. By Eq. (E.43), we have iag =

1
Aq diag" Then
|2F — ol < [|AS 1A+ 1 AA A_1
Since X% Jiag < 20,diags We obtain a lower bound with analogous techniques.
15 — ol > [As LW S WS B
of = 0 A+ 1 0 )\()\+1) 040,diag4}0

This lower bound holds when the matrix on the right hand side is negative semidefinite. To
see that, we have

1 1
ATy — A
0 [A+1 CTNOT D)

-1 1 A -1
AUZO,diagAO] = -2+ |:)\ T 1A0 A+ 120(111ag:| )

Since Ag giag = X ! we have

0,diag’

1 Ao, 17
<_ZO * [A ot clhag:| ) < —X0,diag + Yo,diag = 0-
diag

This completes the proof. |

Next, we provide the explicit formula for the Z-VI solution when the exact posterior is
bivariate Gaussian.

Proposition 38 Let the exact posterior g be a bivariate Gaussian distribution with mean
aop bo

b e ) Then the Z-variational solution in Fq. (3.1) is
0 Co

o and precision matriz Ag = (
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a bivariate Gaussian distribution with mean pg and the following precision and covariance
matrices:

2 2
ag ag X\ aobg 1
A= | 2 + \/4 D)2 <o 100
Lb co + ﬁ — #%
2170 2 4 7 (\F1)2 ao

b
S @ TR
apgCo — bg —w(&) ag ’
2
=4 (1514 (-3 8 o).

Compared to the exact covariance, the variational covariance matrix is adjusted by a factor
depending on the regularizer A. The adjusting function ¢ : [0,00) — [0,00) is strictly
increasing. Thus, as A increases, we have element-wise strictly decreasing convergence to

-1
. . . 0
the mean-field covariance, i.e. limy_,oo 2% = (ag c_l).
0

. b). The inverse is
b ¢

« 1 c —b
> ~ac— b2 <—b a>'

As shown in Section 3.1, we have
a by 1 ag by n A a—% 0
boc) A+1\b ) A+1{ 0 d-%2)°

a+ A2 (A1) (ao bo)
A+1)b c+A2 by o)’

This translates to a system of equations

Proof [Proof of Proposition 38| Denote A* = <

This implies

(A+1)b= by
b2
a+A—=ap
c
2
c—+ A— = Cco.
a
The first Equation yields b = )\b—ﬁl. The other two equations yield
b2
@:CLC—F :1:>c:C—0a.
coa  ac+ b2 aop
Substituting ¢ gives us
agh?
a4+ A—— = ap.
coa
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2 2
. . . ap ag A aobg
which yields a = ¢ + \/—4 OED? o

2 2
Similarly, substituting a with c yields ¢ = § + %0 — ﬁ%.

Finally, use the fact that A* = Ay when A = 0 to obtain the solution set

a=@+ &%—7)\ —aobg, b= b07 C:@+ Cj_ A CLb%_
2 4 (>\+1)2 Co A+1 2 4 ()\+1)2 agp

To obtain the covariance matrix, note that

A Ab? 1
A =ac—b? =200 (41— 0 _ b2,
| | e 2 + ()\ + 1)2 apCo A+1 0

By the matrix inversion formula,

2

coy [B__ A _cotf
2 4 (A+1)?2 a9 _ bo
agcg P 4b% _ 1 32 200 A Y 1
o 1 C —b <1+ ! (A+1)2 a0c0> Hlbo (M'l)( 2 1+ (A+1)2 ageo A+1
‘A*‘ —b a ag 4 af  a agb3
_ bo 2 47 D2 <
Arny( 208 (14 /1o A ) 1 e agco (140 /1o 2 M) 1 g
( + ) 2 + 7()\+1)2 agco TAF10 2 + 7()\+1>2 agcq T AF170
co _ bo
p) 2
apco— by 462
2 agcq 2 20 | 42
)\+1+\/()\+1)27)\a40bgo 2 <)\+1+ (A+1) Aaoﬂo) b
=1 _ bo ag
apcp oy 403 2 Goco— - 2 b
To (MR AP =AZES |5 A+1+\/(A+1)2—Aa40bg0
bo
C _——
_ 1 o eVl
apCy — w_l()\)bo _77/)(%\) ag
1 2bg—a000 2 4b(2) 2
Where ¢(A) = 5 )\ + 1 + )\ — W + % (GOC[) — bO) . [ |

Proof [Proof of Corollary 16| We use the well known property of the 2-Wasserstein metric
that for any qq,q; € P2(0),

D

D D
W22<H o,i» qu,i) < Z W5 (dg,i d1,) < Ws'(do, da)- (E.45)
=1 i=1 =1

By Theorem 13, Wa(q},qk,) — 0 as A — oo, hence Wa(m3,q%,) — 0 by the identity
A2 Moo A Moo

Eq. (E.45) which implies WQ(qj(oo) ,q}) — 0 by Theorem 15. An analogous derivation holds
for A — 0. |

Appendix F. Additional Simulation Results
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[1Ea;0, 5 () —Eqz (O)1l2

|Covaygy (O)—Coves (Ol

30 0.026 |0.024,0.032
35 0.026 [0.024,0.028

0.582 0.538,0.596
0.545 0.538,0.565

0.188 10.176,0.195
0.178 [0.173,0.182

N [EROIF [Coveg @) Wa(Gion ) Runtime (sec)
5 0.069 [0.059,0.078]  0.813 [0.767,0.884]  0.321 [0.307,0.336]  0.017 [0.017,0.017]
10 0.049 [0.041,0.052]  0.672 [0.633,0.724]  0.243 [0.231,0.263]  0.222 [0.220, 0.225]
15 0.040 [0.035,0.044]  0.639 [0.611,0.664]  0.221 [0.215,0.231]  1.076 [1.074, 1.081]
20 0.031 [0.029,0.035]  0.588 [0.570,0.605]  0.196 [0.191,0.204]  3.458 [3.428,3.494]
95 0.032 [0.027,0.035]  0.583 [0.550,0.604]  0.192 [0.184,0.201]  8.528 [8.475,8.602]
[ ] [ ] [ ]
[ ] [ ] [ ]

17.848 [17.723,18.021]
32.286 [32.016, 32.531]

Table 1: Median and interquantile range of the approximation errors of the =-VI posterior
dyo,n for varying Monte Carlo support sizes IV in Laplace linear regression. For each N,
we run Algorithm 1 with A = 10 and compare ¢, y to the exact posterior qj obtained via
MCMC. Across 20 experimental replicates, we report the median and interquantile range
of the relative mean error, relative covariance error, the Wy distance, and the runtime.
Although larger IV improves posterior accuracy, the computational cost increases sharply
and the accuracy gains beyond N & 20 are modest, thus IV = 20 is a reasonable choice for
accurate and scalable inference in this problem.

Posterior Covariance Approximation

e =V
== EP (A=)
= = Lower Bound (A=0)
—-=— MFVI
— A=D

0.0550

0.0525

0.0500

0.0475

0.0450

Frobenius Norm Difference
3
I
w

0.0400

Figure 6: Approximation errors for posterior covariance for Laplace linear regression. The
experiment implements Algorithm 1 with expectation propagation as the first step. Errors
are quantified using the Frobenius norm and contrasted across a spectrum of A values,
including the theoretical lower bound at A = 0 and the diagonal EP approximation at
A = o0o. The vertical line marks the regularization parameter A = D.

Appendix G. Additional Analysis of the 8-Schools Model

In this section, we present additional results for the eight school example in Section 3.3.
Here the goal is to compare treatment effects between schools. We compute the posterior
credible intervals for the differences in treatment effects 6; — 6; between schools 7 and j.
Table 2 shows credible intervals for 6;—6; across ten randomly chosen school pairs, calculated
under the exact posterior, MFVI, and Z-VI with A € {0,1,10,1000}. The results show =-
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Table 2: 95% posterior credible intervals for 6; —6; for 10 randomly selected pairs of schools.

Method (92 — 95 06 — 97 92 — (94 94 — 98 (91 — 92
MFVI | [12.08, 18.48] | [-20.12, 11.37] | [-13.99, 15.79] | [-15.37, 14.97] | [-13.47, 17.10]
True [-8.50, 14.90] | [-17.74, 7.30] | [-11.28, 12.40] | [-13.02, 12.52] | [-9.21, 16.55]
A=0 | [-7.81,13.77] | [-16.17, 6.49] | [-10.42, 12.06] | [-11.19, 12.70] | [-8.12, 15.81]
A=1 | [-9.02,13.54] | [-16.71, 7.44] | [-11.57, 11.87] | [-11.73, 13.33] | [-9.09, 15.97]
A=10 | [-10.43,13.01] | [-15.77, 8.75] | [-12.57, 12.82] | [-12.21, 14.50] | [-10.54, 15.41]

A =1000 | [-10.51, 12.93] | [-15.86, 9.53] | [-12.55, 13.19] | [-12.71, 14.47] | [-10.79, 15.64]

Method 92 — 98 93 — 98 95 — 96 92 - 07 03 - 94
MFVI | [-14.83, 17.07] | [[17.71, 13.88] | [-16.77, 14.19] | [-17.30, 13.41] | [-17.62, 13.49]
True | [-12.09, 12.73] | [-16.08, 11.05] | [-12.62, 10.31] | [-14.97, 9.20] | [-14.79, 10.45]
A=0 | [10.15,13.41] | [-14.54, 11.56] | [-11.12, 9.70] | [-13.66, 8.31] | [-14.33, 10.41]
A=1 | [11.26,13.57) | [-14.31, 12.75] | [-11.49, 10.27] | [-15.28, 8.95] | [-14.95, 11.25]
A=10 | [11.58, 14.47] | [-14.69, 13.74] | [-11.15, 10.96] | [-15.09, 10.55] | [-15.18, 12.35]

A =1000 | [-12.14, 14.34] | [-14.48, 14.32] | [-12.00, 11.09] | [-14.75, 10.63] | [-15.21, 13.12]

VI, especially with lower A values, yields intervals that more accurately reflect those derived

from the exact posterior, while MFVI produces the most inaccurate intervals.
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