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ABSTRACT
Researchers have access to large online archives of scientific arti-
cles. As a consequence, finding relevant papers has become more
difficult. Newly formed online communities of researchers sharing
citations provides a new way to solve this problem. In this paper, we
develop an algorithm to recommend scientific articles to users of an
online community. Our approach combines the merits of traditional
collaborative filtering and probabilistic topic modeling. It provides
an interpretable latent structure for users and items, and can form
recommendations about both existing and newly published articles.
We study a large subset of data from CiteULike, a bibliography shar-
ing service, and show that our algorithm provides a more effective
recommender system than traditional collaborative filtering.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—information filtering; I.2.6 [Artificial Intelligence]:
Learning—Parameter learning

General Terms
Algorithms, Experimentation, Performance

Keywords
Scientific article recommendation, Topic modeling, Collaborative
filtering, Latent structure interpretation

1. INTRODUCTION
Modern researchers have access to large archives of scientific

articles. These archives are growing as new articles are placed online
and old articles are scanned and indexed. While this growth has
allowed researchers to quickly access more scientific information,
it has also made it more difficult for them to find articles relevant
to their interests. Modern researchers need new tools for managing
what is available to them.

Historically, one way that researchers find articles is by following
citations in other articles that they are interested in. This is an
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effective practice—and one that we should continue—but it limits
researchers to specific citation communities, and it is biased towards
heavily cited papers. A statistician may miss a relevant paper in
economics or biology because the two literatures rarely cite each
other; and she may miss a relevant paper in statistics because it was
also missed by the authors of the papers that she has read. One of
the opportunities of online archives is to inform researchers about
literature that they might not be aware of.

A complementary method of finding articles is keyword search.
This is a powerful approach, but it is also limited. Forming queries
for finding new scientific articles can be difficult as a researcher may
not know what to look for; search is mainly based on content, while
good articles are also those that many others found valuable; and
search is only good for directed exploration, while many researchers
would also like a “feed” of new and interesting articles.

Recently, websites like CiteULike1 and Mendeley2 allow re-
searchers to create their own reference libraries for the articles
they are interested in and share them with other researchers. This
has opened the door to using recommendation methods [13] as a
third way to help researchers find interesting articles. In this paper,
we develop an algorithm for recommending scientific articles to
users of online archives. Each user has a library of articles that he
or she is interested in, and our goal is to match each user to articles
of interest that are not in his or her library.

We have several criteria for an algorithm to recommend scientific
articles. First, recommending older articles is important. Users
of scientific archives are interested in older articles for learning
about new fields and understanding the foundations of their fields.
When recommending old articles, the opinions of other users plays
a role. A foundational article will be in many users’ libraries; a less
important article will be in few.

Second, recommending new articles is also important. For ex-
ample, when a conference publishes its proceedings, users would
like see the recommendations from these new articles to keep up
with the state-of-the-art in their discipline. Since the articles are
new, there is little information about which or how many other users
placed the articles in their libraries, and thus traditional collaborative
filtering methods has difficulties making recommendations. With
new articles, a recommendation system must use their content.

Finally, exploratory variables can be valuable in online scientific
archives and communities. For example, we can summarize and
describe each user’s preference profile based on the content of the
articles that he or she likes. This lets us connect similar users to
enhance the community, and indicate why we are connecting them.
Further, we can describe articles in terms of what kinds of users
like them. For example, we might detect that a machine learning

1http://www.citeulike.org
2http://www.mendeley.com



article is of strong interest to computer vision researchers. If enough
researchers use such services, these variables might also give an
alternative measure of the impact of an article within a field.

With these criteria in mind, we develop a machine learning al-
gorithm for recommending scientific articles to users in an online
scientific community. Our algorithm uses two types of data—the
other users’ libraries and the content of the articles—to form its
recommendations. For each user, our algorithm can finds both older
papers that are important to other similar users and newly written pa-
pers whose content reflects the user’s specific interests. Finally, our
algorithm gives interpretable representations of users and articles.

Our approach combines ideas from collaborative filtering based
on latent factor models [17, 18, 13, 1, 22] and content analysis
based on probabilistic topic modeling [7, 8, 20, 2]. Like latent
factor models, our algorithm uses information from other users’
libraries. For a particular user, it can recommend articles from other
users who liked similar articles. Latent factor models work well for
recommending known articles, but cannot generalize to previously
unseen articles.

To generalize to unseen articles, our algorithm uses topic mod-
eling. Topic modeling provides a representation of the articles in
terms of latent themes discovered from the collection. When used in
our recommender system, this component can recommend articles
that have similar content to other articles that a user likes. The topic
representation of articles allows the algorithm to make meaningful
recommendations about articles before anyone has rated them.

We combine these approaches in a probabilistic model, where
making a recommendation for a particular user is akin to computing
a conditional expectation of hidden variables. We will show how
the algorithm for computing these expectations naturally balances
the influence of the content of the articles and the libraries of the
other users. An article that has not been seen by many will be
recommended based more on its content; an article that has been
widely seen will be recommended based more on the other users.

We studied our algorithm with data from CiteULike: 5, 551 users,
16, 980 articles, and 204, 986 bibliography entries. We will demon-
strate that combining content-based and collaborative-based meth-
ods works well for recommending scientific articles. Our method
provides better performance than matrix factorization methods alone,
indicating that content can improve recommendation systems. Fur-
ther, while traditional collaborative filtering cannot suggest articles
before anyone has rated them, our method can use the content of
new articles to make predictions about who will like them.

2. BACKGROUND
We first give some background. We describe two types of recom-

mendation problems we address; we describe the classical matrix
factorization solution to recommendation; and we review latent
Dirichlet allocation (LDA) for topic modeling of text corpora.

2.1 Recommendation Tasks
The two elements in a recommender system are users and items.

In our problem, items are scientific articles and users are researchers.
We will assume I users and J items. The rating variable rij ∈
{0, 1} denotes whether user i includes article j in her library [12].
If it is in the library, this means that user i is interested in article j.
(This differs from some other systems where users explicitly rate
items on a scale.) Note that rij = 0 can be interpreted into two
ways. One way is that user i is not interested in article j; the other
is that user i does not know about article j.

For each user, our task is to recommend articles that are not in
her library but are potentially interesting. There are two types of

Figure 1: Illustration of the two tasks for scientific article rec-
ommendation systems, where

√
indicates “like”, × “dislike”

and ? “unknown”.

recommendation: in-matrix prediction and out-of-matrix prediction.
Figure 1 illustrates the idea.

In-matrix prediction. Figure 1 (a) illustrates in-matrix predic-
tion. This refers to the problem of making recommendations about
those articles that have been rated by at least one user in the system.
This is the task that traditional collaborative filtering can address.

Out-of-matrix prediction. Figure 1 (b) illustrates out-of-matrix
prediction, where articles 4 and 5 have never been rated. (This is
sometimes called “cold start recommendation.”) Traditional col-
laborative filtering algorithms cannot make predictions about these
articles because those algorithms only use information about other
users’ ratings. This task is important for online scientific archives,
however, because users want to see new articles in their fields. A
recommender system that cannot handle out-of-matrix prediction
cannot recommend newly published papers to its users.

2.2 Recommendation by Matrix Factorization
The traditional approach to recommendation is collaborative fil-

tering (CF), where items are recommended to a user based on other
users with similar patterns of selected items. (Note that collaborative
filtering does not use the content of the items.) Most successful rec-
ommendation methods are latent factor models [17, 18, 13, 1, 22],
which provide better recommendation results than the neighborhood
methods [11, 13]. In this paper, we focus on latent factor models.

Among latent factor methods, matrix factorization performs well [13].
In matrix factorization, we represent users and items in a shared
latent low-dimensional space of dimensionK—user i is represented
by a latent vector ui ∈ RK and item j by a latent vector vj ∈ RK .
We form the prediction of whether user i will like item j with the
inner product between their latent representations,

r̂ij = uTi vj . (1)

Biases for different users and items can also be incorporated [13].
To use matrix factorization, we must compute the latent represen-

tations of the users and items given an observed matrix of ratings.
The common approach is to minimize the regularized squared error
loss with respect to U = (ui)

I
i=1 and V = (vj)

J
j=1,

minU,V
∑
i,j(rij − u

T
i vj)

2 + λu||ui||2 + λv||vj ||2, (2)

where λu and λv are regularization parameters.
This matrix factorization for collaborative filtering can be gener-

alized as a probabilistic model [18]. In probabilistic matrix factor-
ization (PMF), we assume the following generative process,

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u IK).

2. For each item j, draw item latent vector vj ∼ N (0, λ−1
v IK).



3. For each user-item pair (i, j), draw the response

rij ∼ N (uTi vj , c
−1
ij ), (3)

where cij is the precision parameter for rij .

(Note that IK is a K-dimensional identity matrix.) This is the
interpretation of matrix factorization that we will build on.

When cij = 1, for ∀i, j, the maximum a posteriori estimation
(MAP) of PMF corresponds to the solution in Eq. 2. Here, the
precision parameter cij serves as a confidence parameter for rating
rij . If cij is large, we trust rij more. As we mentioned above,
rij = 0 can be interpreted into two ways—the user i is either not
interested in item j or is unaware of it. This is thus a “one-class
collaborative filtering problem,” similar to the TV program and news
article recommendation problems studied in [12] and [16]. In that
work, the authors introduce different confidence parameters cij for
different ratings rij . We will use the same strategy to set cij a higher
value when rij = 1 than when rij = 0,

cij =

{
a, if rij = 1,
b, if rij = 0,

(4)

where a and b are tuning parameters satisfying a > b > 0.
We fit a CF model by finding a locally optimal solution of the

user variables U and item variables V , usually with an iterative
algorithm [12]. We then use Eq. 1 to predict the ratings of the
articles outside of each user’s library.

There are two main disadvantages to matrix factorization for
recommendation. First, the learnt latent space is not easy to interpret;
second, as mentioned, matrix factorization only uses information
from other users—it cannot generalize to completely unrated items.

2.3 Probabilistic Topic Models
Topic modeling algorithms [5] are used to discover a set of “topics”

from a large collection of documents, where a topic is a distribution
over terms that is biased around those associated under a single
theme. Topic models provide an interpretable low-dimensional
representation of the documents [8]. They have been used for tasks
like corpus exploration, document classification, and information
retrieval. Here we will exploit the discovered topic structure for
recommendation.

The simplest topic model is latent Dirichlet allocation (LDA) [7].
Assume there areK topicsβ = β1:K , each of which is a distribution
over a fixed vocabulary. The generative process of LDA is as follows.
For each articlewj in the corpus,

1. Draw topic proportions θj ∼ Dirichlet(α).
2. For each word n,

(a) Draw topic assignment zjn ∼ Mult(θj).
(b) Draw word wjn ∼ Mult(βzjn).

This process reveals how the words of each document are assumed to
come from a mixture of topics: the topic proportions are document-
specific, but the set of topics is shared by the corpus.

Given a collection, the posterior distribution (or maximum likeli-
hood estimate) of the topics reveals the K topics that likely gener-
ated its documents. Unlike a clustering model, where each document
is assigned to one cluster, LDA allows documents to exhibit multi-
ple topics. For example, LDA can capture that one article might be
about biology and statistics, while another might be about biology
and physics. Since LDA is unsupervised, the themes of “physics”
“biology” and “statistics” can be discovered from the corpus; the
mixed-membership assumptions lead to sharper estimates of word
co-occurrence patterns.

Figure 2: The graphical model for the CTR model.

Given a corpus of documents, we can use variational EM to learn
the topics and decompose the documents according to them [7].
Further, given a new document, we can use variational inference
to situate its content in terms of the topics. Our goal is to use
topic modeling to give a content-based representation of items in a
recommender system.

3. COLLABORATIVE TOPIC REGRESSION
In this section, we describe the collaborative topic regression

(CTR) model. CTR combines traditional traditional collaborative
filtering with topic modeling.

A first approach to combining collaborative filtering and topic
modeling is to fit a model that uses the latent topic space to explain
both the observed ratings and the observed words. For example,
we can use the topic proportion θj in place of the latent item latent
vector vj in Eq. 3,

rij ∼ N (uTi θj , c
−1
ij ). (5)

(We note that [19] proposed a similar approach to Eq. 5, but based
on correlated topic models [4]. It showed modest improvement over
matrix factorization on several movie recommendation datasets.)

This model suffers from the limitation that it cannot distinguish
topics for explaining recommendations from topics important for
explaining content. Consider two articles A and B that are both about
machine learning applied to social networks. They are similar and,
therefore, have similar topic proportions θA and θB . Now further
suppose that these articles are interesting to different kinds of users:
Article A might give an interesting machine learning algorithm that
is applied to social network applications; article B uses standard
machine learning techniques, but gives an important piece of data
analysis on social network data.

Users that work in machine learning will prefer article A and
rarely consider article B; users that work in social networks will
prefer the opposite. However, using the topic proportions as in Eq. 5
will be likely to make similar recommendations for both articles to
both types of users. Collaborative topic regression can detect this
difference—that one type of user likes the first article and another
type likes the second.

As above, collaborative topic regression (CTR) represents users
with topic interests and assumes that documents are generated by
a topic model. CTR additionally includes a latent variable εj that
offsets the topic proportions θj when modeling the user ratings. As
more users rate articles, we have a better idea of what this offset
is. This offset variable can explain, for example, that article A is
more interesting to machine learning researchers than it is to social
network analysis researchers. How much of the prediction relies on
content and how much it relies on other users depends on how many
users have rated the article.

Figure 2 shows the graphical model. Again, assume there are K
topics β = β1:K . The generative process of CTR is as follows,

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u IK).



2. For each item j,

(a) Draw topic proportions θj ∼ Dirichlet(α).
(b) Draw item latent offset εj ∼ N (0, λ−1

v IK) and set the
item latent vector as vj = εj + θj .

(c) For each word wjn,
i. Draw topic assignment zjn ∼ Mult(θ).

ii. Draw word wjn ∼ Mult(βzjn).

3. For each user-item pair (i, j), draw the rating

rij ∼ N (uTi vj , c
−1
ij ). (6)

The key property in CTR lies in how the item latent vector vj is
generated. Note that vj = εj + θj , where εj ∼ N (0, λ−1

v Ik), is
equivalent to vj ∼ N (θj , λ

−1
v IK), where we assume the item latent

vector vj is close to topic proportions θj , but could diverge from it
if it has to. Note that the expectation of rij is a linear function of θj ,

E[rij |ui, θj , εj ] = uTi (θj + εj).

This is why we call the model collaborative topic regression.

Learning the parameters. Given topic parameter β, computing
the full posterior of ui, vj and θj is intractable. We develop an EM-
style algorithm to learn the maximum a posteriori (MAP) estimates.

Maximization of the posterior is equivalent to maximizing the
complete log likelihood of U , V , θ1:J , and R given λu, λv and β,

L = −λu
2

∑
i u

T
i ui − λv

2

∑
j(vj − θj)

T (vj − θj) (7)

+
∑
j

∑
n log

(∑
k θjkβk,wjn

)
−
∑
i,j

cij
2

(rij − uTi vj)2.

We have omitted a constant and set α = 1. We optimize this func-
tion by coordinate ascent, iteratively optimizing the collaborative
filtering variables {ui, vj} and the topic proportions θj .

For ui and vj , maximization follows in a similar fashion as for
basic matrix factorization [12]. Given the current estimate of θj ,
taking the gradient of L with respect to ui and vj and setting it
to zero leads to (recall the matrix definition U = (ui)

I
i=1 and

V = (vj)
J
j=1)

ui ← (V CiV
T + λuIK)−1V CiRi (8)

vj ← (UCjU
T + λvIK)−1(UCjRj + λvθj). (9)

where Ci is a diagonal matrix with cij , j = 1 · · · , J as its diagonal
elements and Ri = (rij)

J
j=1 for user i. For item j, Cj and Rj are

similarly defined. Eq. 9 shows how topic proportions θj affects item
latent vector vj , where λv balances this effect. Finally, we note
that the complexity is linear in the number of articles in the users’
libraries. This follows from the special structure of cij defined in
Eq. 4. (See [12] for details.)

Given U and V , we now describe how to learn the topic propor-
tions θj .3 We first define q(zjn = k) = φjnk. Then we separate
the items that contain θj and apply Jensen’s inequality,

L(θj) ≥ −λv
2

(vj − θj)T (vj − θj)
+
∑
n

∑
k φjnk

(
log θjkβk,wjn − log φjnk

)
= L(θj ,φj). (10)

Let φj = (φjnk)N×K
n=1,k=1. The optimal φjnk satisfies

φjnk ∝ θjkβk,wjn . (11)

The L(θj ,φj) gives the tight lower bound of L(θj). We cannot
optimize θj analytically, so we use projection gradient [3]. We use
3On our data, we found that simply fixing θj as the estimate from
vanilla LDA gives comparable performance and saves computation.

coordinate ascent to optimize the remaining parameters, U , V , θ1:J
and φ1:J .

After we estimate U , V and φ, we can optimize β,

βkw ∝
∑
j

∑
n φjnk1[wjn = w]. (12)

Note this is the same M-step update for topics as in LDA [7].

Prediction. After all the (locally) optimal parameters U∗, V ∗,
θ∗1:J and β∗ are learned, the CTR model can be used for both in-
matrix and out-of-matrix prediction. Let D be the observed data, in
general each prediction is estimated as

E[rij |D] ≈ E[ui |D]T (E[θj |D] + E[εj |D]) . (13)

For in-matrix prediction, we use the point estimate of ui, θj and εj
to approximate their expectations,

r∗ij ≈ (u∗
i )
T (θ∗j + ε∗j ) = (u∗

i )
T v∗j , (14)

where recall that vj = θj + εj .
In out-of-matrix prediction the article is new, and no other ratings

are available. Thus, E[εj ] = 0 and we predict with

r∗ij ≈ (u∗
i )
T θ∗j . (15)

To obtain the topic proportions θ∗j for a new article, we optimize
Eq. 10. The first term is dropped because vj = θj .

Related work. Several other work uses content for recommen-
dation [15, 14, 1, 2]. Among these, the closest work to ours is fLDA
by [2]. FLDA generalizes the supervised topic model (sLDA) [6],
using the empirical topic proportions z̄j = (1/N)

∑N
n=1 zjn as

well as several other covariates to form predictions. In our set-
tings, where we do not have additional covariates, their approach
is roughly akin to setting vj = θj . We show in Section 4 that a
similar setting does not perform as well as the CTR model because
it largely ignores the other users ratings.

Other recent work considers the related problem of using topic
modeling to predict legislative votes [21, 10]. Neither of these
methods introduces offset terms to account for votes (i.e., ratings).
Legislative votes might be an interesting application for the CTR
model.

4. EMPIRICAL STUDY
We demonstrate our model by analyzing a real-world community

of researchers and their citation files.4

Dataset. Our data are users and their libraries of articles obtained
from CiteULike.5 At CiteUlike, registered users create personal
reference libraries; each article usually has a title and abstract. (The
other information about the articles, such as the authors, publications
and keywords, is not used in this paper.)

We merged duplicated articles, removed empty articles, and re-
moved users with fewer than 10 articles to obtain a data set of 5, 551
users and 16, 980 articles with 204, 986 observed user-item pairs.
(This matrix has a sparsity of 99.8%; it is highly sparse.) On aver-
age, each user has 37 articles in the library, ranging from 10 to 403.
93% of the users have fewer than 100 articles.

For each article, we concatenate its title and abstract. We remove
stop words and use tf-idf to choose the top 8, 000 distinct words as
the vocabulary [5]. This yielded a corpus of 1.6M words. These
articles were added to CiteULike between 2004 and 2010. On

4A demo of the results can be found at
http://www.cs.princeton.edu/˜chongw/citeulike/
5http://www.citeulike.org/faq/data.adp



average, each article appears in 12 users’ libraries, ranging from 1
to 321. 97% of the articles appear in fewer than 40 libraries.

Evaluation. In our experiments, we will analyze a set of articles
and user libraries. We will evaluate recommendation algorithms
on sets of held-out articles and ratings. We will (hypothetically)
present each user with M articles sorted by their predicted rating
and evaluate based on which of these articles were actually in each
user’s library.

Two possible metrics are precision and recall. However, as we
discussed earlier, zero ratings are uncertain. They may indicate that
a user does not like an article or does not know about it. This makes
it difficult to accurately compute precision. Rather, since ratings of
rij = 1 are known to be true positives, we focus on recall. Recall
only considers the positively rated articles within the top M—a
high recall with lower M will be a better system. For each user, the
definition of recall@M is

recall@M =
number of articles the user likes in top M

total number of article the user likes
.

The recall for the entire system can be summarized using the average
recall from all users.

The recall above we defined is user-oriented. We also consider
article-oriented recall for testing the system’s predictive performance
on a particular article. For article j, we consider the population of
users that like the article and the proportion of those for whom that
article appears in their top M recommended articles. This evaluates
the predictive power of the system on a chosen set of articles.

As we discussed in section 2, we consider two recommendation
tasks users, in-matrix prediction and out-of-matrix prediction.

In-matrix prediction. In-matrix prediction considers the case
where each user has a set of articles that she has not seen, but that
at least one other user has seen. We ask the question, how good is
each system at rating that set of articles for each user?

As discussed in section 2.1, this task is similar to traditional
collaborative filtering. We split the data into a training set and
test set, ensuring that all articles in the test set have appeared in
the training set. Content information is not required to perform
recommendations—though we will see that it helps—and thus ma-
trix factorization can be used.

We use 5-fold cross-validation. For every article that appears at
least 5 times in the users’ libraries, we evenly split their user-item
pairs (both 1’s and 0’s) into 5 folds. We iteratively consider each
fold to be a test set and the others to be the training set. For those
articles that appear fewer than 5 times, we always put them into
the training set. This guarantees that all articles in the test set must
appear in the training set. (9% of the articles are always in the
training set, since they appear fewer than 5 times.)

For each fold, we fit a model to the training set and test on the
within-fold articles for each user. (Note: each user has a different
set of within-fold articles.) We form predictive ratings for the test
set, and generate a list of the top M recommended articles.

Out-of-matrix prediction. Out-of-matrix prediction considers
the case where a new set of articles is published and no one has seen
them. Again we ask, how good is each system at rating that set of
articles for each user?

We again use 5-fold cross validation. First, we evenly group all
articles into 5 folds. For each fold, we fit the model to the submatrix
formed by the out-of-fold articles and then test the recommendations
for each user on the within-fold articles. Note that in this case, each
user has the same set of within-fold articles and we are guaranteed
that none of these articles is in the training set for any user. Again,
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Figure 3: Recall comparison on in-matrix and out-of-matrix
prediction tasks by varying the number of recommended arti-
cles. For CTR, we set λv = 100. Error bars are too small to
show. The maximum expected recall for random recommenda-
tion is about 6%. CF can not do out-of-matrix prediction. CTR
performs best.

we form predictive ratings for the test set, and generate a list of the
top M recommended articles.

These two experimental set-ups—in-matrix and out-of-matrix
predictions—are designed to be comparable—the top M articles are
computed from the same size of candidate populations.

Experimental settings. For matrix factorization for collabo-
rative filtering (CF), we used grid search to find that K = 200,
λu = λv = 0.01, a = 1, b = 0.01 gives good performance on held
out recommendations. We use CF to denote this method.

For collaborative topic regression (CTR), we set the parameters
similarly as for CF, K = 200, λu = 0.01, a = 1 and b = 0.01. In
addition, the precision parameter λv balances how the article’s latent
vector vj diverges from the topic proportions θj . We vary λv ∈
{10, 100, 1000, 10000}, where a larger λv increases the penalty of
vj diverging from θj .

We also compare to the model that only uses LDA-like features,
as we discussed in the beginning of section 3. This is equivalent to
fixing the per-item latent vector vj = θj in the CTR model. This
is a nearly content-only model—while the per-user vectors are fit
to the ratings data, the document vectors θj are only based on the
words of the document. We use LDA to denote this method. (Note
that we use the resulting topics and proportions of LDA to initialize
the CTR model.)

The baseline is the random model, where a user see M random
recommended articles. We note that the expected recall for the
random method from a pool of Mtot articles is irrelevant to library
size. It is always M/Mtot.

Comparisons. Figure 3 shows the overall performance for
in-matrix and out-of-matrix prediction, when we vary the number
of returned articles M = 20, 40, · · · , 200. For CTR, we pick
λv = 100; Figure 4 shows the performs when we change λv for the
CTR model compared with CF and LDA when we fix M = 100.

Figure 3 and 4 shows that matrix factorization works well for
in-matrix prediction, but adding content with CTR improves perfor-
mance. The improvement is greater when the number of returned
documents M is larger. The reason is as follows. Popular articles
are more likely to be recommended by both methods. However,
when M becomes large, few user ratings are available to ensure that
CF gives good recommendations; the contribution of the content
becomes more important.

Compared to both CF and CTR, LDA suffers for in-matrix pre-
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Figure 5: These scatter plots show how the number of articles a user has affects his or her recall. Red lines indicate the average. In
these plots, the number of recommended articles is 100. CF can not do out-of-matrix prediction. This shows that CTR performs the
best over user-oriented recall.
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Figure 6: These scatter plots show how the number of users that like an article affects its recall. Red lines indicate the average. In
these plots, the number of recommended articles is 100. CF can not do out-of-matrix prediction. This shows that CTR performs best
over article-oriented recall as well.
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Figure 4: Recall comparison on in-matrix and out-of-matrix
prediction tasks by fixing the number of recommended articles
at M = 100. Error bars are too small to show. This shows how
the precision parameter λv affects the performance of CTR.
The expected recall of random recommendation is about 3%.
CF can not do out-of-matrix prediction.

diction. It does not account enough for the users’ information in
forming its predicted ratings. The gap between CF and LDA is
interesting—other users provide a better assessment of preferences
than content alone.

Out-of-matrix prediction is a harder problem, as shown by the
relatively lower recall. In this task, CTR performs slightly better than
LDA. Matrix factorization cannot perform out-of-matrix prediction.
(Note also that LDA performs almost the same on both in-matrix
and out-of-matrix predictions. This is expected because, in both

settings, it makes its recommendations almost entirely based on
content.) Overall, CTR is the best model.

In Figure 4 we study the effect of the precision parameter λv .
When λv is small in CTR, the per-item latent vector vj can diverge
significantly from the topic proportions θj . Here, CTR behaves more
like matrix factorization where no content is considered. When
λv increases, CTR is penalized for vj diverging from the topic
proportions; this brings the content into the recommendations. When
λv is too large, vj is nearly the same as θj and, consequently, CTR
behaves more like LDA.

We next study the relationship, across models, between recom-
mendation performance and properties of the users and articles. For
this study we set the number of recommended articles M = 100
and the precision λv = 100. Figure 5 shows how the performance
varies as a function of the number of articles in a user’s library;
Figure 6 shows how the performance varies as a function of the
number of users that like an article.

As we see from Figure 5, for both in-matrix and out-of-matrix
prediction, users with more articles tend to have less variance in
their predictions. Users with few articles tend to have a diversity in
the predictions, whose recall values vary around the extreme values
of 0 and 1. In addition, we see that recall for users with more articles
have a decreasing trend. This is reasonable because when a user has
more articles then there will be more infrequent ones. As we see
next, these articles are harder to predict.

From Figure 6, on in-matrix prediction for CF, CTR and LDA
articles with high frequencies tend to have high recalls for in-matrix
prediction and their predictions have less variance. This is because
these articles have more collaborative information than infrequent
ones, and, furthermore, CF and CTR make use of this information.
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Figure 7: Maximum likelihood from incomplete data via the EM
algorithm. Here, “theta” denotes θj and “theta correction” de-
notes the offset εj . The 10 topics are obtained by joining the
top 5 topics ranked by θjk and another top 5 topics ranked by
|εjk|, k = 1, · · · ,K. Under CTR, an article of wide interest
is likely to exhibit more topics than its text exhibits. For ex-
ample, this article brings in several other topics, including one
on “Bayesian statistics” (topic 10). Note that the EM article
is mainly about parameter estimation (topic 1), though is fre-
quently referenced by Bayesian statisticians (and scholars in
other fields as well).

For LDA, this trend is much smaller. In out-of-matrix predictions,
since predictions are made on new articles, these frequencies do not
have an effect on training the model.

We now turn to an exploratory analysis of our results on the CTR
model. (In the following, the precision λv = 100.)

Examining User Profiles. One advantage of the CTR model
is that it can explain the user latent space using the topics learned
from the data. For one user, we can find the top matched topics
by ranking the entries of her latent vector ui. Table 1 shows two
example users and their top 3 matched topics along with their top
10 preferred articles as predicted by the CTR model.

The learned topics serve as a summary of what users might be
interested in. For user I, we see that he or she might be a researcher
working on machine learning and its applications to texts and images.
Although the predicted top 10 articles don’t contain a vision article,
we see such articles when more articles are retrieved. For user II, he
or she might be a researcher who is interested in user interfaces and
collaborative filtering.

Examining the Latent Space of Articles. We can also examine
the latent space of articles beyond their topic proportions. Here we
inspect the articles with the largest overall offsets εj . Table 2 shows
the top 10 articles with the largest offsets measured by the distance
between vj and θj , εTj εj = (vj − θj)T (vj − θj). The last two
columns show the average of predicted ratings over those users who
actually have that article (avg–like) and those users who do not have
that article (avg–dislike).

These articles are popular in this data. Among the top 50 articles
by this measure, 94% of them have at least 50 appearances. Articles
with large offsets enjoy readership from different areas, and their
item latent vectors have to diverge from the topic proportions to
account for this. For example, Figure 7 illustrates the article that is
the main citation for the expectation-maximization algorithm, “Max-
imum likelihood from incomplete data via the EM algorithm” [9].
Its top topic (found by k = arg maxk θjk), is shown as topic 1. It
is about “parameter estimation,” which is the main focus of this
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Figure 8: Phase-of-firing coding of natural visual stimuli in pri-
mary visual cortex. This figure was created in the same way as
Figure 7. It shows that a less popular article might also have a
high offset value εj . In this case, it changes the actual magni-
tudes in θj , but does not bring in other topics.

article. We can also examine the topics that are offset the most,
k = arg maxk |εjk| = arg maxk |vjk−θjk|. The maximum offset
is for topic 10, a topic about “Bayesian statistics.” Topic 10 has a
low value in θj—the EM paper is not a Bayesian paper—but readers
of Bayesian statistics typically have this paper in their library.

Examining the offset can yield the opposite kind of article. For
example, consider the article “Phase-of-firing coding of natural vi-
sual stimuli in primary visual cortex” in Figure 8. Its most probable
topic is topic 1 (about “Computational Neuroscience”). Taking into
account the offset, the most probable topic does not change and
nor are new topics brought in. This indicates that the offset εj only
adjusts vj so that the objective function is well minimized. This
article is not as interesting to users outside of Neuroscience.

5. CONCLUSIONS AND FUTURE WORK
We proposed an algorithm for recommending scientific articles

to users based on both content and other users’ ratings. Our study
showed that this approach works well relative to traditional matrix
factorization methods and makes good predictions on completely
unrated articles.

Further, our algorithm provides interpretable user profiles. Such
profiles could be useful in real-world recommender systems. For
example, if a particular user recognizes her profile as representing
different topics, she can choose to “hide” some topics when seeking
recommendations about a subject.
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