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Abstract

We consider causal inference in the presence of unobserved confounding. We
study the case where a proxy is available for the unobserved confounding in the
form of a network connecting the units. For example, the link structure of a social
network carries information about its members. We show how to effectively use
the proxy to do causal inference. The main idea is to reduce the causal estimation
problem to a semi-supervised prediction of both the treatments and outcomes.
Networks admit high-quality embedding models that can be used for this semi-
supervised prediction. We show that the method yields valid inferences under
suitable (weak) conditions on the quality of the predictive model. We validate
the method with experiments on a semi-synthetic social network dataset. Code at
github.com/vveitch/causal-network-embeddings.

1 Introduction

We consider causal inference in the presence of unobserved confounding, i.e., where unobserved
variables may affect both the treatment and the outcome. We study the case where there is an observed
proxy for the unobserved confounders, but (i) the proxy has non-iid structure, and (ii) a well-specified
generative model for the data is not available.

Example 1.1. We want to infer the efficacy of a drug based on observed outcomes of people who are
connected in a social network. Each unit i is a person. The treatment variable ti indicates whether
they took the drug, a response variable yi indicates their health outcome, and latent confounders zi
might affect the treatment or response. For example, zi might be unobserved age or sex. We would
like to compute the average treatment effect, controlling for these confounds. We assume the social
network itself is associated with z, e.g., similar people are more likely to be friends. This means that
the network itself may implicitly contain confounding information that is not explicitly collected.

In this example, inference of the causal effect would be straightforward if the confounder z were
available. So, intuitively, we would like to infer substitutes for the latent zi from the underlying social
network structure. Once inferred, these estimates ẑi could be used as a substitute for zi and we could
estimate the causal effect [SM16].

For this strategy to work, however, we need a well-specified generative model (i.e., joint probability
distribution) for z and the full network structure. But typically no such model is available. For
example, generative models of networks with latent unit structure—such as stochastic block models
[WW87; Air+08] or latent space models [Hof+02]—miss properties of real-world networks [Dur06;
New09; OR15]. Causal estimates based on substitutes inferred from misspecified models are
inherently suspect.
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Embedding methods offer an alternative to fully specified generative models. Informally, an embed-
ding method assigns a real-valued embedding vector λ̂i to each unit, with the aim that conditioning
on the embedding should decouple the properties of the unit and the network structure. For example,
λ̂i might be chosen to explain the local network structure of user i.

The embeddings are learned by minimizing an objective function over the network, with no re-
quirement that this objective correspond to any generative model. For pure predictive tasks, e.g.,
classification of vertices in a graph, embedding-based approaches are state of the art for many real-
world datasets [e.g., Per+14; Cha+17; Ham+17; Ham+17; Vei+19a]. This suggests that network
embeddings might be usefully adapted to the inference of causal effects.

The method we develop here stems from the following insight. Even if we knew the confounders
{zi} we would not actually use all the information they contain to infer the causal effect. Instead, if
we use estimator ψ̂n to estimate the effect ψ, then we only require the part of zi that is actually used
by the estimator ψ̂n. For example, if ψ̂n is an inverse probability weighted estimator [CH08] then we
require only estimates for the propensity scores P(Ti = 1 | zi) for each unit.

What this means is that if we can build a good predictive model for the treatment then we can plug
the outputs into a causal effect estimate directly, without any need to learn the true zi. The same
idea applies generally by using a predictive model for both the treatment and outcome. Reducing
the causal inference problem to a predictive problem is the crux of this paper. It allows us to replace
the assumption of a well-specified model with the more palatable assumption that the black-box
embedding method produces a strong predictor.

The contributions of this paper are:

• a procedure for estimating treatment effects using network embeddings;
• an extension of robust estimation results to (non-iid) network data, showing the method

yields valid estimates under weak conditions;
• and, an empirical study of the method on social network data.

2 Related Work

Our results connect to a number of different areas.

Causal Inference in Networks. Causal inference in networks has attracted significant attention
[e.g., SM16; Tch+17; Ogb+17; OV17; Ogb18]. Much of this work is aimed at inferring the causal
effects of treatments applied using the network; e.g., social influence or contagion. A major challenge
in this area is that homophily—the tendency of similar people to cluster in a network—is generally
confounded with contagion—the influence people have on their neighbors [ST11]. In this paper, we
assume that each person’s treatment and outcome are independent of the network once we know that
person’s latent attributes; i.e., we assume pure homophily. This is a reasonable assumption in some
situations, but certainly not all. Our major motivation is simply that pure homophily is the simplest
case, and is thus the natural proving ground for the use of black-box methods in causal network
problems. It is an import future direction to extend the results developed here to the contagion case.

Shalizi and McFowland III [SM16] address the homophily/contagion issue with a two-stage estimation
procedure. They first estimate latent confounders (node properties), then use these in a regression
based estimator in the second stage. Their main result is a proof that if the network was actually
generated by either a stochastic block model or a latent space model then the estimation procedure is
valid. Our main motivation here is to avoid such well-specified model assumptions. Their work is
complementary to our approach: we impose a weaker assumption, but we only address homophily.

Causal Inference Using Proxy Confounders. Another line of connected research deals with causal
inference with hidden confounding when there is an observed proxy for the confounder [KM99;
Pea12; KP14; Mia+18; Lou+17]. This work assumes the data is generated independently and
identically as (Xi, Zi, Ti, Yi)

iid∼ P for some data generating distribution P . The variable Zi causally
affects Ti, Yi, and Xi. The variable(s) Xi are interpreted as noisy versions of Zi. The main question
here is when the causal effect is (non-parametrically) identifiable. The typical flavor of the results is:
if the proxy distribution satisfies certain conditions then the marginal distribution P (Zi, Ti, Yi) is
identifiable, and thus so too is the causal effect (though weaker identification conditions are possible
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[Mia+18]). The main differences with the problem we address here are that the network surrogate has
non-iid structure, we expect that the information content of the exact confounder can be recovered in
the infinite-sample limit, and we do not demand recovery the true data generating distribution.

Double machine learning. Chernozhukov et al. [Che+17a] addresses robust estimation of causal
effects in the i.i.d. setting. Mathematically, our main estimation result, theorem 5.1, is a fairly
straightforward adaptation of their result. The important distinction is conceptual: we treat a different
data generating scenario.

Embedding methods. Veitch et al. [Vei+19b] use the strategy of reducing causal estimation to
prediction to harness text embedding methods for causal inference with text data. In particular, that
paper views the embeddings as a dimension reduction strategy and asks how the dimension reduction
can be achieved in a manner that preserves causal identification.

3 Setup

We first fix some notation and recall some necessary ideas about the statistical estimation of causal
effects. We take each statistical unit to be a tuple Oi = (Yi, Ti, Zi), where Yi is the response, Ti is
the treatment, and Zi are (possibly confounding) unobserved attributes of the units. We assume that
the units are drawn independently and identically at random from some distribution P , i.e., Oi

iid∼ P .
We study the case where there is a network connecting the units. We assume that the treatments and
outcomes are independent of the network given the latent attributes {Zi}. This condition is implied
by the (ubiquitous) exchangeable network assumption [OR15; VR15; CD15], though our requirement
is weaker than exchangeability.

The average treatment effect of a binary outcome is defined as
ψ = E[Y | do(T = 1)]− E[Y | do(T = 0)].

The use of Pearl’s do notation indicates that the effect of interest is causal: what is the expected
outcome if we intervene by assigning the treatment to a given unit? If Zi contains all common
influencers (a.k.a. confounders) of Yi and Ti then the causal effect is identfiable as a parameter of the
observational distribution:

ψ = E[E[Y | Z, T = 1]− E[Y | Z, T = 0]]. (3.1)

Before turning to the unobserved Z case, we recall some ideas from the case where Z is observed.
Let Q(t, z) = E[Y | t, z] be the conditional expected outcome, and Q̂n be an estimator for this
function. Following 3.1, a natural choice of estimator ψ̂n is:

ψ̂Qn =
1

n

∑
i

[
Q̂n(1, zi)− Q̂n(0, zi)

]
.

That is, ψ is estimated by a two-stage procedure: First, produce an estimate for Q̂n. Second, plug Q̂n
into a pre-determined statistic to compute the estimate.

Of course, ψ̂Qn is not the only possible choice of estimator. In principle, it is possible to do better by
incorporating estimates ĝn of the propensity scores g(z) = P(T = 1 | z). The augmented inverse
probability of treatment weighted (A-IPTW) estimator ψ̂A

n is an important example [Rob+00; Rob00]:

ψ̂A
n =

1

n

∑
i

Q̂n(1, zi)− Q̂n(0, zi) +
1

n

∑
i

(
I[ti = 1]

ĝn(zi)
− I[ti = 0]

1− ĝn(zi)

)
(yi − Q̂n(ti, zi)). (3.2)

We call η(z) = (Q(0, z), Q(1, z), g(z)) the nuisance parameters. The main advantage of ψ̂A
n is that

it is robust to misestimation of the nuisance parameters [Rob+94; vR11; Che+17a]. For example,
it has the double robustness property: ψ̂n is consistent if either ĝn or Q̂n is consistent. If both are
consistent, then ψ̂A

n is the asymptotically most efficient possible estimator [Bic+00]. We will show
below that the good theoretical properties of the suitably modified A-IPTW estimator persist for the
embedding method even in the non-iid setting of this paper.

There is a remaining complication. In the general case, if the same data On is used to estimate the
nuisance parameters η̂n and to compute ψ̂n(On; η̂n) then the estimator is not guaranteed to maintain
good asymptotic properties. This problem can be solved by splitting the data, using one part to
estimate η̂n and the other to compute the estimate [Che+17a]. We rely on this data splitting approach.
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4 Estimation

We now return to the setting where the {zi} are unobserved, but a network proxy is available.

Following the previous section, we want to hold out a subset of the units i ∈ I0 and, for each of these
units, produce estimates of the propensity score g(zi) and the conditional expected outcome Q(ti, zi).
Our starting point is (an immediate corollary of) [RR83, Thm. 3]:

Theorem 4.1. Suppose λ(z) is some function of the latent attributes such that at least one of the
following is λ(Z)-measurable: (i) (Q(0, Z), Q(1, Z)), or (ii) g(Z). If adjusting for Z suffices to
render the average treatment effect identifiable then adjusting for only λ(Z) also suffices. That is,
ψ = E[E[Y | λ(Z), T = 1]− E[Y | λ(Z), T = 0]]

The significance of this result is that adjusting for the confounding effect of the latent attributes does
not actually require us to recover the latent attributes. Instead, it suffices to recover only the aspects
λ(zi) that are relevant for the prediction of the propensity score or conditional expected outcome.

The idea is that we may view network embedding methods as black-box tools for extracting informa-
tion from the network that is relevant to solving prediction problems. We make use of embedding
based semi-supervised prediction models. What this means is that we assign an embedding λi ∈ Rp
to each unit, and define predictors Q̃(ti, λi; γ

Q) mapping the embedding and treatment to a predic-
tion for yi, and predictor g̃(λi; γg) mapping the embeddings to predictions for ti. In this context,
‘semi-supervised’ means that when training the model we do not use the labels of units in I0, but we
do use all other data—including the proxy structure on units in I0.

An example clarifies the general approach.

Example 4.2. We denote the network Gn. We assume a continuous valued outcome. Consider the
case where Q̃(0, ·; γQ), Q̃(1, ·; γQ) and logit g̃(·; γg) are all linear predictors. We train a model with
a relational empirical risk minimization procedure [Vei+19a]. We set:

λ̂n, γ̂
Q
n , γ̂

g
n = argmin

λ,γQ,γg

EGk=Sample(Gn,k)[L(Gk;λ, γQ, γg)]

where Sample(Gn, k) is a randomized sampling algorithm that returns a random subgraph of size k
from Gn (e.g., a random walk with k edges), and

L(Gk;λ, γQ, γg) =
∑
i∈I\I0

(yi − Q̃(ti, λi; γ
Q))2 +

∑
i∈I\I0

CrossEntropy(ti, g̃(λi; γ
g))

+
∑

i,j∈I×I
CrossEntropy(1[(i, j) ∈ Gk], sigmoid(λTi λj)).

Here, I is the full set of units, and 1[(i, j) ∈ Gk] indicates whether units i and j are linked. Note that
the final term of the model is the one that explains the relational structure. Intuitively, it says that
the logit probability of an edge is the inner product of the embeddings of the end points of the edge.
This loss term makes use of the entire dataset, including links that involve the heldout units. This is
important to ensure that the embeddings for the heldout data ‘match’ the rest of the embeddings.

Estimation. With a trained model in hand, computing the estimate of the treatment effect is
straightforward. Simply plug-in the estimated values of the nuisance parameters to a standard
estimator. For example, using the A-IPTW estimator eq. (3.2),

ψ̂A
n (I0) :=

1

|I0|
∑
i∈I0

Q̃(1, λ̂n,i; γ̂
Q
n )− Q̃(0, λ̂n,i; γ̂

Q
n )

+
1

|I0|
∑
i∈I0

(
I[ti = 1]

g̃(λ̂n,i; γ̂
g
n)
− I[ti = 0]

1− g̃(λ̂n,i; γ̂
g
n)

)
(yi − Q̃(ti, λ̂n,i; γ̂

Q
n )).

(4.1)

We also allow for a more sophisticated variant. We split the data into K folds I0, . . . , IK−1 and
define our estimator as:

ψ̂A
n =

1

K

∑
j

ψ̂A
n (Ij). (4.2)

This variant is more data efficient than just using a single fold. Finally, the same procedure applies to
estimators other than the A-IPTW. We consider the effect of the choice of estimator in section 6.
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5 Validity

When does the procedure outlined in the previous section yield valid inferences? We now present a
theorem establishing sufficient conditions. The result is an adaption of the “double machine learning”
of Chernozhukov et al. [Che+17a; Che+17b] to the network setting. We first give the technical
statement, and then discuss its significance and interpretation.

Fix notation as in the previous section. We also define γ̂Q,I
c
k

n and γ̂g,I
c
k

n to be the estimates for γQ, γg
calculated using all but the kth data fold.

Assumption 1. The probability distributions P satisfies

Y = Q(T,Z) + ζ, E[ζ |Z, T ] = 0,

T = g(Z) + ν, E[ν |Z] = 0.

Further, we requrie that T does not causally affect either Z or the network.

The second part of the statement is necessary to rule out a linear-gaussian edge case.

Assumption 2. There is some function λ mapping features Z into Rp such that λ satisfies the
condition of theorem 4.1, and each of ||Q̃n(0, λ̂n,i; γ̂Q,Ick)−Q(0, λ(Zi))||P,2, ||Q̃n(1, λ̂n,i; γ̂Q,Ick)−
Q(1, λ(Zi))||P,2, and ||g̃n(λ̂n,i; γ̂g,Ick)− g(λ(Zi))||P,2 goes to 0 as n → ∞. Additionally, λ must
satisfy all of the following assumptions.

Assumption 3. The following moment conditions hold for some fixed ε, C, c, some q > 4, and all
t ∈ {0, 1}

||Q(t, λ(Z))||P,q ≤ C,
||Y ||P,q ≤ C,

P (ε ≤ g(λ(Z)) ≤ 1− ε) = 1,

P (EP
[
ζ2 |λ(Z)

]
≤ C) = 1,

||ζ||P,2 ≥ c,
||ν||P,2 ≥ c.

Assumption 4. The estimators of nuisance parameters satisfy the following accuracy requirements.
There is some δn,∆nK

→ 0 such that for all n ≥ 2K and d ∈ {0, 1} it holds with probability no
less than 1−∆nK

:

||Q̃n(d, λ̂n,i; γ̂Q,Ick)−Q(d, λ(Zi))||P,2 · ||g̃n(λ̂n,i; γ̂g,Ick)− g(λ(Zi))||P,2 ≤ δnK
· n−1/2K (5.1)

And,
P (ε ≤ g̃n(λ̂n,i; γ̂g,Ick) ≤ 1− ε) = 1, (5.2)

Assumption 5. We assume the dependence between the trained embeddings is not too strong: For
any i, j and all bounded continuous functions f with mean 0,

E
[
f(λ̂n,i) · f(λ̂n,j)

]
= o(

1

n
). (5.3)

Theorem 5.1. Denote the true ATE as ψ. Let ψ̂n be the K-fold A-IPTW variant defined in eq. (4.2).
Under Assumptions 1 to 5, ψ̂n concentrates around ψ with the rate 1/

√
n and is approximately

unbiased and normally distributed:

σ−1
√
n(ψ̂n − ψ)

d→ N (0, 1)

σ2 = EP
[
ϕ2
0(Y, T, λ(Z); θ0, η(λ(Z)))

]
,

where

ϕ0(Y, T, λ(Z); θ0, η(λ(Z))) =
T

g(λ(Z))
{Y −Q(1, λ(Z))} − 1− T

1− g(λ(Z))
{Y −Q(0, λ(Z))}

+ {Q(1, λ(Z))−Q(0, λ(Z))} − ψ.
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Proof. The proof follows Chernozhukov et al. [Che+17b]. The main changes are technical modifi-
cations exploiting Assumption 5 to allow for the use of the full data in the embedding training. We
defer the proof to the appendix.

Interpretation and Significance. Under suitable conditions, theorem 5.1 promises us that the
treatment effect is identifiable and can be estimated at a fast rate. It is not surprising that there
are some conditions under which this holds. The insight from theorem 5.1 lies with the particular
assumptions that are required.

Assumptions 1 and 3 are standard conditions. Assumption 1 posits a causal model that (i) restricts
the treatments and outcomes to a pure unit effect (i.e., it forbids contagion effects), and that (ii)
renders the causal effects identifiable when Z observed. Assumption 3 is technical conditions on the
data generating distribution. This assumption includes the standard positivity condition. Possible
violations of these conditions are important and must be considered carefully in practice. However,
such considerations are standard, independent of the non-iid, no-generative-model setting that is our
focus, so we do not comment further.

Our first deviation from the standard causal inference setup is Assumption 2. This is the identification
condition when Z is not observed. It requires that the learned embeddings are able to extract whatever
information is relevant to the prediction of the treatment and outcome. This assumption is the crux of
the method.

A more standard assumption would directly posit the relationship between Z and the proxy network;
e.g., by assuming a stochastic block model or latent space model. The practitioner is then required
to assess whether the posited model is realistic. In practice, all generative models of networks
fail to capture the structure of real-world networks. Instead, we ask the practitioner to judge the
plausibility of the predictive embedding model. Such judgments are non-falsifiable, and must be
based on experience with the methods and trials on semi-synthetic data. This is a difficult task, but
the assumption is at least not violated a priori.

In practice, we do not expect the identification assumption to hold exactly. Instead, the hope is that
applying the method will adjust for whatever confounding information is present in the network. This
is useful even if there is confounding exogenous to the network. We study the behavior of the method
in the presence of exogenous confounding in section 6.

The condition in Assumption 4 addresses the statistical quality of the nuisance parameter estimation
procedure. For an estimator to be useful, it must produce accurate estimates with a reasonable
amount of data. It is intuitive that if accurately estimating the nuisance parameters requires an
enormous amount of data, then so too will estimation of ψ. eq. (5.1) shows that this is not so. It
suffices, in principle, to estimate the nuisance parameters crudely, e.g., a rate of o(n1/4) each. This is
important because the need to estimate the embeddings may rule out parametric-rate convergence of
the nuisance parameters; theorem 5.1 shows this is not damning.

Assumption 5 is the price we pay for training the embeddings with the full data. If the pairwise
dependence between the learned embeddings is very strong then the data splitting procedure does
not guarantee that the estimate is valid. However, the condition is weak and holds empirically.
The condition can also be removed by a two-stage procedure where the embeddings are trained in
an unsupervised manner and then used as a direct surrogate for the confounders. However, such
approaches have relatively poor predictive performance [Yan+16; Vei+19a]. We compare to the
two-stage approach in section 6.

6 Experiments

The main remaining questions are: Is the method able to adjust for confounding in practice? If so, is
the joint training of embeddings and classifier important? And, what is the best choice of plug-in
estimator for the second stage of the procedure? Additionally, what happens in the (realistic) case
that the network does not carry all confounding information?

We investigate these questions with experiments on a semi-synthetic network dataset.1 We find
that in realistic situations, the network adjustment improves the estimation of the average treatment

1Code and pre-processed data at github.com/vveitch/causal-network-embeddings

6

https://github.com/vveitch/causal-network-embeddings


effect. The estimate is closer to the truth than estimates from either a parametric baseline, or a
two-stage embedding procedure. Further, we find that network adjustment improves estimation
quality even in the presence of confounding that is exogenous to the network. That is, the method
still helps even when full identification is not possible. Finally, as predicted by theory, we find
that the robust estimators are best when the theoretical assumptions hold. However, the simple
conditional-outcome-only estimator has better performance in the presence of significant exogenous
confounding.

Choice of estimator. We consider 4 options for the plug-in treatment effect estimator.

1. The conditional expected outcome based estimator,

ψ̂Qn =
1

n

∑
i

[
Q̃n(1, λ̂n,i; γ̂n)− Q̃n(0, λ̂n,i; γ̂n)

]
,

which only makes use of the outcome model.
2. The inverse probability of treatment weighted estimator,

ψ̂gn =
1

n

∑
i

[
1[ti = 1]

g̃(λ̂n,i; γ̂n)
− 1[ti = 0]

1− g̃(λ̂n,i; γ̂n)

]
Yi,

which only makes use of the treatment model.
3. The augmented inverse probability treatment estimator ψ̂A

n , defined in eq. (4.1).
4. A targeted minimum loss based estimator (TMLE) [vR11].

The later two estimators both make full use of the nuisance parameter estimates. The TMLE also
admits the asymptotic guarantees of theorem 5.1 (though we only state the theorem for the simpler
A-IPTW estimator). The TMLE is a variant designed for better finite sample performance.

Pokec. To study the properties of the procedure, we generate semi-synthetic data using a real-world
social network. We use a subset of the Pokec social network. Pokec is the most popular online social
network in Slovakia. For our purposes, the main advantages of Pokec are: the anonymized data are
freely and openly available [TZ12; LK14] 2, and the data includes significant attribute information for
the users, which is necessary for our simulations. We pre-process the data to restrict to three districts
(Žilina, Cadca, Namestovo), all within the same region (Žilinský). The pre-processed network has 79
thousand users connected by 1.3 million links.

Simulation. We make use of three user level attributes in our simulations: the district they live
in, the user’s age, and their Pokec join date. These attributes were selected because they have low
missingness and have some dependency with the the network structure. We discretize age and join
date to a 3-level categorical variable (to match district).

For the simulation, we take each of these attributes to be the hidden confounder. We will attempt to
adjust for the confounding using the Pokec network. We take the probability of treatment to be wholly
determined by the confounder z, with the three levels corresponding to g(z) ∈ {0.15, 0.5, 0.85}. The
treatment and outcome for user i is simulated from their confounding attribute zi as:

ti = Bern(g(zi)), (6.1)
yi = ti + β(g(zi)− 0.5) + εi εi ∼ N(0, 1). (6.2)

In each case, the true treatment effect is 1.0. The parameter β controls the amount of confounding.

Estimation. For each simulated dataset, we estimate the nuisance parameters using the procedure
described in section 4 withK = 10 folds. We use a random-walk sampler with negative sampling with
the default relational ERM settings [Vei+19a]. We pre-train the embeddings using the unsupervised
objective only, run until convergence.

Baselines. We consider three baselines. The first is the naive estimate that does not attempt to
control for confounding; i.e., 1

m

∑
i:ti=1 yi −

1
n−m

∑
i:ti=0 yi, where m is the number of treated

individuals. The second baseline is the two-stage procedure, where we first train the embeddings
on the unsupervised objective, freeze them, and then use them as features for the same predictor
maps. The final baseline is a parametric approach to controlling for the confounding. We fit a

2snap.stanford.edu/data/soc-Pokec.html
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Table 1: Adjusting using the network improves ATE estimate in all cases. Further, the single-stage method is
more accurate than baselines. Table entries are estimated ATE with 10-fold std. Ground truth is 1.0. Low and
high confounding correspond to β = 1.0 and 10.0.

age district join date

Conf. Low High Low High Low High

Unadjusted 1.32± 0.02 4.34± 0.05 1.34± 0.03 4.51± 0.05 1.29± 0.03 4.03± 0.06
Parametric 1.30± 0.00 4.06± 0.01 1.21± 0.00 3.22± 0.01 1.26± 0.00 3.73± 0.01
Two-stage 1.33± 0.02 4.55± 0.05 1.34± 0.02 4.55± 0.05 1.30± 0.03 4.16± 0.06

ψ̂A
n 1.24± 0.04 3.40± 0.04 1.09± 0.02 2.03± 0.07 1.21± 0.05 3.26± 0.09

Table 2: The conditional-outcome-only estimator is usually most accurate. Table entries are estimated ATE
with 10-fold std. Ground truth is 1.0. Low and high confounding correspond to β = 1.0 and 10.0.

age district join date

Conf. Low High Low High Low High

ψ̂Qn 1.05± 0.24 2.77± 0.35 1.03± 0.25 1.75± 0.20 1.17± 0.35 2.41± 0.45

ψ̂gn 1.27± 0.03 3.12± 0.06 1.10± 0.03 1.66± 0.07 1.29± 0.05 3.10± 0.07

ψ̂A
n 1.24± 0.04 3.40± 0.04 1.09± 0.02 2.03± 0.07 1.21± 0.05 3.26± 0.09

ψ̂TMLE
n 1.21± 0.03 3.26± 0.07 1.09± 0.04 2.02± 0.05 1.20± 0.05 3.13± 0.09

mixed-membership stochastic block model [GB13] to the data, with 128 communities (chosen to
match the embedding dimension). We predict the outcome using a linear regression of the outcome
on the community identities and the treatment. The estimated treatment effect is the coefficient of the
treatment.

6.1 Results

Comparison to baselines. We report comparisons to the baselines in table 1. As expected, adjusting
for the network improves estimation in every case. Further, the one-stage embedding procedure is
more accurate than baselines.

Choice of estimator. We report comparisons of downstream estimators in table 2.
The conditional-outcome-only estimator usually yields the best estimates, substantially
improving on either robust method. This is likely because the network does not
carry all information about the confounding factors, violating one of our assumptions.

0.0 0.2 0.4 0.6 0.8 1.0
Exogeneity

0.5
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3.0

3.5
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Figure 1: Adjusting for the network helps even when
the no exogenous confounding assumption is violated.
The robust TMLE estimator is the best estimator when
no assumptions are violated. The simple conditional-
outcome-only estimator (“Simple”) is better in the pres-
ence of moderate exogeneity. Plot shows estimates of
ATE from district simulation. Ground truth is 1.

We expect that district has the strongest de-
pendence with the network, and we see best per-
formance for this attribute. Poor performance of
robust estimators when assumptions are violated
has been observed in other contexts [KS07].

Confounding exogenous to the network. In
practice, the network may not carry information
about all sources of confounding. For instance,
in our simulation, the confounders may not be
wholly predictable from the network structure.
We study the effect of exogenous confounding
by a second simulation where the confounder
consists of a part that can be fully inferred from
the network and part that is wholly exogenous.

For the inferrable part, we use the estimated
propensity scores {ĝi} from the district ex-
periment above. By construction, the network
carries all information about each ĝi. We define
the (ground truth) propensity score for our new
simulation as logit gsim = (1− p) logit ĝi + pξi,
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with ξi
iid∼ N(0, 1). The second term, ξi, is the exogenous part of the confounding. The parameter p

controls the level of exogeneity. We simulate treatments and outcomes as in eq. (6.1).

In fig. 1 we plot the estimates at various levels of exogeneity. We observe that network adjustment
helps even when the no exogenous confounding assumption is violated. Further, we see that the
robust estimator has better performance when p = 0, i.e., when the assumptions of theorem 5.1
are satisfied. However, the conditional-outcome-only estimator is better with substantial exogenous
confounding.

7 Discussion

We have seen how black-box embedding methods can be harnessed for causal inference in the
context of networks. The important conceptual points of the development are: First, the method
eliminates the need to precisely specify the properties that influence both network formation and
that are confounding. In particular, we need not specify a parametric model for how the network is
formed. And, second, identification and estimation can be achieved even if the embedding method
extracts the necessary information at only a slow rate. That is, absence of a parametric model is not a
grevious problem from a sample-complexity perspective. These are substantial strengths. However,
there also significant limitations and opportunity for future work.

Assumption 2 may be difficult to reason about in practice. It requires the practitioner to assess
both whether (1) the network carries sufficient information for identification, and (2) the embedding
method is able to effectively extract this information. The first part is an assessment based on
application-specific domain knowledge. The second part is based on past performance of embedding
methodse.g., a method that reliably predicts political affiliation in datasets where affiliation is
labeled can be expected to effectively extract information relevant to political identity. This is an
improvement on the (impossible) requirement of finding a well-specified model describing how
the network was generated. While we do not expect that either condition is exactly satisfied, the
exogeneous-confounding experiments in section 6 suggest that applying the adjustment can still
improve estimation. An important direction for future work is to develop new methods for sensitivity
analysis—applicable in this black-box setting—and formal results about when Assumption 2 can be
expected to hold. As an example of the need for such results, partial adjustment for confounding is
known to hurt estimation in certain cases [e.g., bias amplification Mid+16; Din+17].

The pure-homophily assumption is restrictive. Many of the most interesting causal questions on
networks are explicitly about influence and contagion. We restricted to the homophily case here
for simplicity, but it does not appear to be fundamentally required. Extending the results to handle
contagion and influence is an important direction for future work.
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A Proof of Main Result

We now give the proof of theorem 5.1, which establishes identifiability, consistency, and asymptotic
normality.

Recall our setup:

• Y : outcome; T : treatment; Z: confounder.
• Z is unobserved. We use some non-iid additional structure as a proxy.

• (Yi, Ti, Zi)
iid∼ P .

• Q(t, z) = E [Y | t, z]; g(Z) = P (T = 1 |Z)

• The target parameter is the ATE,

ψ0 = E [Q(1, Z)−Q(0, Z)] .

The estimator and the algorithm. Recall that we learn the nuisance parameters Q, g, and the
embeddings λ using a semi-supervised embedding-based predictor. We allow a slightly more general
construction of the estimator than in the body of the paper. In the body, we state the result only for
the A-IPTW. Here, we allow any estimator that solves the efficient estimating equations. This allows,
for example, for targeted minimum loss based estimation.

Step 1. Form a K-fold partition; the splits are Ik, k = 1, . . . ,K. For each set Ik, let Ick denote the
units not in Ik.

Construct K estimators ψ̌(Ick), k = 1, . . . ,K:

1. Estimate the nuisance parameters Q, g, and the embedding λ:

η̂(Ick) :=
(
λ̂i, g̃n(·; γ̂g,I

c
k

n ), Q̃n(·, ·; γ̂Q,I
c
k

n )
)

2. ψ̌(Ick) is a solution to the following equation:

1

nK

∑
i∈Ik

ϕ
(
Yi, Ti, Zi;ψ0, λ̂i, g̃n(·; λ̂i, γ̂

g,Ick
n ), Q̃n(·, ·; γ̂Q,I

c
k

n )
)

= 0,

where the ϕ(·) function is the efficient score:

ϕ(Y, T, Z;ψ0, λ, g̃n, Q̃n)

=
T

g̃n(λ)
{Y − Q̃n(1, λ)} − 1− T

1− g̃n(λ)
{Y − Q̃n(0, λ)}+ {Q̃n(1, λ)− Q̃n(0, λ)} − ψ0.

We note that ϕ does not depend on the unobserved Z.

Step 2. The final estimator for the ATE ψ0 is

ψ̃ =
1

K

K∑
k=1

ψ̌(Ick).

The theorem and the proof.

Assumption 1. The probability distributions P satisfies

Y = Q(T,Z) + ζ, E[ζ |Z, T ] = 0,

T = g(Z) + ν, E[ν |Z] = 0.

Further, we requrie that T does not causally affect either Z or the network.

Assumption 2. There is some function λ mapping features Z into Rp such that λ satisfies the
condition of theorem 4.1, and each of ||Q̃n(0, λ̂n,i; γ̂Q,Ick)−Q(0, λ(Zi))||P,2, ||Q̃n(1, λ̂n,i; γ̂Q,Ick)−
Q(1, λ(Zi))||P,2, and ||g̃n(λ̂n,i; γ̂g,Ick)− g(λ(Zi))||P,2 goes to 0 as n → ∞. Additionally, λ must
satisfy all of the following assumptions.
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Assumption 3. The following moment conditions hold for some fixed ε, C, c, some q > 4, and all
t ∈ {0, 1}

||Q(t, λ(Z))||P,q ≤ C,
||Y ||P,q ≤ C,

P (ε ≤ g(λ(Z)) ≤ 1− ε) = 1,

P (EP
[
ζ2 |λ(Z)

]
≤ C) = 1,

||ζ||P,2 ≥ c,
||ν||P,2 ≥ c.

Assumption 4. The estimators of nuisance parameters satisfy the following accuracy requirements.
There is some δn,∆nK

→ 0 such that for all n ≥ 2K and d ∈ {0, 1} it holds with probability no
less than 1−∆nK

:

||Q̃n(d, λ̂n,i; γ̂Q,Ick)−Q(d, λ(Zi))||P,2 · ||g̃n(λ̂n,i; γ̂g,Ick)− g(λ(Zi))||P,2 ≤ δnK
· n−1/2K (5.1)

And,
P (ε ≤ g̃n(λ̂n,i; γ̂g,Ick) ≤ 1− ε) = 1, (5.2)

Assumption 5. We assume the dependence between the trained embeddings is not too strong: For
any i, j and all bounded continuous functions f with mean 0,

E
[
f(λ̂n,i) · f(λ̂n,j)

]
= o(

1

n
). (5.3)

Theorem A.1 (Validity). Denote the true ATE as

ψ0 = EP [Q(1, Z)−Q(0, Z)] .

Under Assumptions 1 to 5 the estimator ψ̃ concentrates around ψ0 with the rate 1/
√
n and is

approximately unbiased and normally distributed:

σ−1
√
n(ψ̃ − ψ0)

d→ N (0, 1)

σ2 = EP
[
ϕ2
0 (W ;ψ0, η(λ(Z)))

]
,

where

W = (Y, T, λ(Z)),

η(λ(Z)) = (g(λ(Z)), Q(T, λ(Z))),

and

ϕ0(Y, T, λ(Z);ψ0, η(λ(Z)))

=
T

g(λ(Z))
{Y −Q(1, λ(Z))} − 1− T

1− g(λ(Z))
{Y −Q(0, λ(Z))}+ {Q(1, λ(Z))−Q(0, λ(Z))} − ψ0.

Proof. First, note that ψ0 = EP [Q(1, Z)−Q(0, Z)] is the true ATE by Assumption 1 and the
standard back-door adjustment.

We prove the result for the special case where λ is the identity map. By Assumption 2 this is without
loss of generality—it’s the case where all of the information in Z is relevant for prediction. This is
not an important mathematical point, but substantially simplifies notation.

The proof follow the same idea as in Chernozhukov et al. [Che+17b] with a few modifications
accounting for the non-iid proxy structure.

We start with some notation.

1. || · ||P,q denotes the Lq(P ) norm. For example, for measurable f :W d→ R,

||f(W )||P,q := (

∫
|f(w)q dP (w)|)1/q.
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2. The empirical process Gn,I(f(W )) for ||f(Wi)||P,2 <∞ is

Gn,I(f(W )) :=
1√
n

∑
i∈I

(f(Wi)−
∫
f(w) dP (w)).

3. The empirical expectation and probability is

En,I [f(W )] :=
1

n
f(Wi); Pn,I(A) :=

1

n

∑
i∈I

1(Wi ∈ A).

Let Pn be the empirical measure.

Step 1: (Main Step). Letting ψ̌k = ψ̌(Ick), we first write

√
n(ψ̌k − ψ0) = Gn,Ickϕ(W ;ψ0, η̂(Ick)) +

√
n

∫
ϕ(w;ψ0, η̂(Ick)) dPn(w), (A.1)

where

η̂(Ick) :=
(
λ̂i, g̃n(·; γ̂g,I

c
k

n ), Q̃n(·, ·; γ̂Q,I
c
k

n )
)

as is defined earlier.

Steps 2 and 3 below demonstrate that for each k = 1, . . . ,K,∫
(ϕ(w;ψ0, η̂(Ick))− ϕ0(w;ψ0, η(z)))2 dPn(w) = oPn

(1), (A.2)

and that
√
n

∫
ϕ(w;ψ0, η̂(Ick)) dPn(w) = oPn

(1). (A.3)

Equation (A.2) implies

Gn,Ick (ϕ(w;ψ0, η̂(Ick))− ϕ0(w;ψ0, η(z))) = oPn(1)

due to Lemma B.1 of Chernozhukov et al. [Che+17b] and the Chebychev’s inequality.

We note that η̂(Ick) =
(
λ̂i, g̃n(·; γ̂g,I

c
k

n ), Q̃n(·, ·; γ̂Q,I
c
k

n )
)

, where the embedding λ̂i’s are not indepen-
dent. By contrast, η(z) only depends on Zi where all Zi’s are independent.

We next show σ−1
√
nK(ψ̌k − ψ0)Kk=1 = σ−1Gn,Ickϕ0(W ;ψ0, η(Z))Kk=1 + oPn

(1).

First, we notice

E
[
[
√
nK(ψ̌k − ψ0)−Gn,Ickϕ0(W ;ψ0, η(Z))]2 | Ick

]
=E

[
[Gn,Ickϕ(W ;ψ0, η̂(Ick))−Gn,Ickϕ0(W ;ψ0, η(Z)) + oPn

(1)]2 | Ick
]

=E
[
(Gn,Ickϕ(W ;ψ0, η̂(Ick)))2 | Ick

]
+ E

[
(Gn,Ickϕ0(W ;ψ0, η(Z)))2 | Ick

]
− 2E

[
(Gn,Ickϕ(W ;ψ0, η̂(Ick)) · (Gn,Ickϕ0(W ;ψ0, η(Z))) | Ick

]
+ oPn(1)

The first equality is due to eq. (A.1) and eq. (A.2). The second equality is due to

E
[
Gn,Ickϕ(W ;ψ0, η̂(Ick))

]
= E

[
Gn,Ickϕ0(W ;ψ0, η(Z))

]
= 0. (A.4)
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If we write ϕ̄(Wi) := ϕ(Wi)−
∫
ϕ(w) dPn(w), we have

E
[
[
√
nK(ψ̌k − ψ0)−Gn,Ickϕ0(W ;ψ0, η(Z))]2 | Ick

]
=

1

n
E

 nK∑
i,j=1

ϕ̄(Wi;ψ0, η̂(Ick)) · ϕ̄(Wj ;ψ0, η(Ick)) | Ick


+

1

n
E

 nK∑
i,j=1

ϕ̄0(Wi;ψ0, η(Zi)) · ϕ̄0(Wj ;ψ0, η̂(Zj))


− 2E

[
(Gn,Ickϕ(W ;ψ0, η̂(Ick)) | Ick

]
· E
[
(Gn,Ickϕ0(W ;ψ0, η(Z)))

]
+ oPn(1)

=
1

n

nK∑
i,j=1

o(
1

n
) +

1

n

nK∑
i,j=1

E [ϕ̄0(Wi;ψ0, η(Zi))] · E [ϕ̄0(Wj ;ψ0, η̂(Zj))] + oPn(1)

=oPn(1)

The second equality is due to Assumption 5, the independence of Wi’s, and Equation (A.4).

By Lemma B.1 of Chernozhukov et al. [Che+17b],

E
[
[
√
nK(ψ̌k − ψ0)−Gn,Ickϕ0(W ;ψ0, η(Z))]2 | Ick

]
= oPn

(1)

implies
√
nK(ψ̌k − ψ0)−Gn,Ickϕ0(W ;ψ0, η(Z)) = oPn

(1)

Therefore, we have

σ−1
√
nK(ψ̌k − ψ0)Kk=1 = σ−1Gn,Ickϕ0(W ;ψ0, η(Z))Kk=1 + oPn(1)

d→ (Nk)Kk=1

where (Nk)Kk=1 is a Gaussian vector with independent N (0, 1) coordinates. Using the independence
of Zi’s and the central limit theorem, we have

σ−1
√
n(ψ̃ − ψ0)

=σ−1
√
n(

1

K

K∑
k=1

(ψ̌k − ψ0))

=
1

K
σ−1

K∑
k=1

Gn,Ickϕ0(W ;ψ0, η(Z)) + oPn
(1)

d→ 1

K

K∑
k=1

Nk = N (0, 1).

Step 2: This step demonstrates Equation (A.2). Observe that for some constant Cε that depends only
on ε and P ,

||ϕ(W ;ψ0, η̂(Ick))− ϕ(W ;ψ0, η(Z))||Pn,2 ≤ Cε(I1 + I2 + I3),

where

I1 = max
d∈{0,1}

||Q̃n(d, Z; γ̂
Q,Ick
n )−Q(d, Z)||Pn,2,

I2 = ||T (Y − Q̃n(1, λ; γ̂
Q,Ick
n ))

g̃n(·; γ̂g,I
c
k

n )
− T (Y −Q(1, Z))

g(λ)
||Pn,2,

I3 = || (1− T )(Y − Q̃n(0, λ; γ̂
Q,Ick
n ))

1− g̃n(·; γ̂g,I
c
k

n )
− (1− T )(Y −Q(0, Z))

1− g(λ)
||Pn,2,
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We bound I1, I2, and I3 in turn. First, Pn(I1 > δnK
) ≤ ∆nK

→ 0 by Assumption 4, and so
I1 = oPn(1). Also, on the event that

Pn(ε ≤ g̃n(Z; Ick) ≤ 1− ε) = 1 (A.5)

||Q̃n(1, λ; γ̂
Q,Ick
n )−Q(1, Z)||Pn,2 + ||g̃n(·; γ̂g,I

c
k

n )− g(Z)||Pn,2 ≤ δnK
, (A.6)

which happens with PPn -probability at least 1−∆nK
by Assumption 4,

I2 ≤ ε−2||Tg(Z)(Y − Q̃n(1, λ; γ̂
Q,Ick
n ))− T g̃n(Z; Ick)(Y −Q(1, Z))||Pn,2

≤ ε−2||g(Z)(Q(1, Z) + ζ − Q̃n(1, λ; γ̂
Q,Ick
n ))− g̃n(Z; Ick)ζ||Pn,2

≤ ε−2||g(Z)(Q̃n(1, λ; γ̂
Q,Ick
n )−Q(1, Z))||Pn,2 + ||(g̃n(Z; Ick)− g(Z))ζ||Pn,2

≤ ε−2||Q̃n(1, λ; γ̂
Q,Ick
n )−Q(1, Z)||Pn,2 +

√
C||g̃n(Z; Ick)− g(Z)||Pn,2

≤ ε−2(δnK
+
√
CδnK

)→ 0,

where the first inequality follows from Equation (A.5) and Assumption 4, the second from the facts
that T ∈ {0, 1} and for T = 1, Y = Q(1, Z) + ζ, the third from the triangle inequality, the fourth
from the facts that Pn(g(Z) ≤ 1) = 1 and Pn(EPn

[
ζ2 |Z

]
≤ C) = 1 in Assumption 3, the fifth

from Equation (A.6), and the last assertion follows since δnK
→ 0. Hence, I2 = oPn(1). In addition,

the same argument shows that I3 = oPn
(1), and so Equation (A.2) follows.

Step 3: This step demonstrates Equation (A.3). Observe that since ψ0 = EPn
[Q(1, Z)−Q(0, Z)],

the left-hand side of Equation (A.3) is equal to

I4 =
√
n

∫
g̃n(Z; Ick)− g(z)

g̃n(Z; Ick)
· (Q̃n(1, λ; γ̂

Q,Ick
n )−Q(1, z))

+
g̃n(Z; Ick)− g(z)

1− g̃n(Z; Ick)
· (Q(0, z; Ick)−Q(0, z)) dPn(z).

But on the event that

Pn(ε ≤ g̃n(Z; Ick) ≤ 1− ε) = 1

and

max
d∈{0,1}

||Q̃n(d, λ; γ̂
Q,Ick
n )−Q(d, Z)||Pn,2 · ||g̃n(Z; Ick)− g(Z)||Pn,2 ≤ δnK

· n−1/2K ,

which happens with PPn -probability at least 1−∆nK
by Assumption 4,the Cauchy-Schwarz inequality

implies that

I4 ≤
2
√
n

ε
max
d∈{0,1}

||Q̃n(d, λ; γ̂
Q,Ick
n )−Q(d, Z)||Pn,2 · ||g̃n(Z; Ick)− g(Z)||Pn,2 ≤

2δnK

ε
→ 0,

which gives Equation (A.3).
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