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Abstract
We develop a general variational inference method that preserves dependency
among the latent variables. Our method uses copulas to augment the families of
distributions used in mean-field and structured approximations. Copulas model the
dependency that is not captured by the original variational distribution, and thus
the augmented variational family guarantees better approximations to the posterior.
With stochastic optimization, inference on the augmented distribution is scalable.
Furthermore, our strategy is generic: it can be applied to any inference procedure
that currently uses the mean-field or structured approach. Copula variational in-
ference has many advantages: it reduces bias; it is less sensitive to local optima;
it is less sensitive to hyperparameters; and it helps characterize and interpret the
dependency among the latent variables.

1 Introduction

Variational inference is a computationally e�cient approach for approximating posterior distribu-
tions. The idea is to specify a tractable family of distributions of the latent variables and then to min-
imize the Kullback-Leibler divergence from it to the posterior. Combined with stochastic optimiza-
tion, variational inference can scale complex statistical models to massive data sets [9, 23, 24].

Both the computational complexity and accuracy of variational inference are controlled by the fac-
torization of the variational family. To keep optimization tractable, most algorithms use the fully-
factorized family, also known as the mean-field family, where each latent variable is assumed inde-
pendent. Less common, structured mean-field methods slightly relax this assumption by preserving
some of the original structure among the latent variables [19]. Factorized distributions enable e�-
cient variational inference but they sacrifice accuracy. In the exact posterior, many latent variables
are dependent and mean-field methods, by construction, fail to capture this dependency.

To this end, we develop copula variational inference (������ ��). C����� �� augments the traditional
variational distribution with a copula, which is a flexible construction for learning dependencies in
factorized distributions [3]. This strategy has many advantages over traditional ��: it reduces bias;
it is less sensitive to local optima; it is less sensitive to hyperparameters; and it helps characterize
and interpret the dependency among the latent variables. Variational inference has previously been
restricted to either generic inference on simple models—where dependency does not make a signif-
icant di�erence—or writing model-specific variational updates. C����� �� widens its applicability,
providing generic inference that finds meaningful dependencies between latent variables.

In more detail, our contributions are the following.

A generalization of the original procedure in variational inference. C����� �� generalizes vari-
ational inference for mean-field and structured factorizations: traditional �� corresponds to running
only one step of our method. It uses coordinate descent, which monotonically decreases the KL
divergence to the posterior by alternating between fitting the mean-field parameters and the copula
parameters. Figure 1 illustrates ������ �� on a toy example of fitting a bivariate Gaussian.

Improving generic inference. C����� �� can be applied to any inference procedure that currently
uses the mean-field or structured approach. Further, because it does not require specific knowledge
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Figure 1: Approximations to an elliptical Gaussian. The mean-field (red) is restricted to fitting
independent one-dimensional Gaussians, which is the first step in our algorithm. The second step
(blue) fits a copula which models the dependency. More iterations alternate: the third refits the mean-
field (green) and the fourth refits the copula (cyan), demonstrating convergence to the true posterior.

of the model, it falls into the framework of black box variational inference [15]. An investigator
need only write down a function to evaluate the model log-likelihood. The rest of the algorithm’s
calculations, such as sampling and evaluating gradients, can be placed in a library.

Richer variational approximations. In experiments, we demonstrate ������ �� on the standard
example of Gaussian mixture models. We found it consistently estimates the parameters, reduces
sensitivity to local optima, and reduces sensitivity to hyperparameters. We also examine how well
������ �� captures dependencies on the latent space model [7]. C����� �� outperforms competing
methods and significantly improves upon the mean-field approximation.

2 Background

2.1 Variational inference

Let x be a set of observations, z be latent variables, and � be the free parameters of a variational
distribution q(z;�). We aim to find the best approximation of the posterior p(z |x) using the vari-
ational distribution q(z;�), where the quality of the approximation is measured by KL divergence.
This is equivalent to maximizing the quantity

L (�) = Eq(z;�)[log p(x, z)]� Eq(z;�)[log q(z;�)].

L(�) is the evidence lower bound (����), or the variational free energy [25]. For simpler computa-
tion, a standard choice of the variational family is a mean-field approximation

q(z;�) =
dY

i=1

qi(zi;�i),

where z = (z1, . . . , zd). Note this is a strong independence assumption. More sophisticated ap-
proaches, known as structured variational inference [19], attempt to restore some of the dependencies
among the latent variables.

In this work, we restore dependencies using copulas. Structured �� is typically tailored to individual
models and is di�cult to work with mathematically. Copulas learn general posterior dependencies
during inference, and they do not require the investigator to know such structure in advance. Further,
copulas can augment a structured factorization in order to introduce dependencies that were not
considered before; thus it generalizes the procedure. We next review copulas.

2.2 Copulas

We will augment the mean-field distribution with a copula. We consider the variational family

q(z) =

"
dY

i=1

q(zi)

#
c(Q(z1), . . . , Q(zd)).
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Figure 2: Example of a vine V which factorizes a copula density of four random variables
c(u1,u2,u3,u4) into a product of 6 pair copulas. Edges in the tree Tj are the nodes of the lower level
tree Tj+1, and each edge determines a bivariate copula which is conditioned on all random variables
that its two connected nodes share.

Here Q(zi) is the marginal cumulative distribution function (CDF) of the random variable zi, and
c is a joint distribution of [0, 1] random variables.1 The distribution c is called a copula of z: it
is a joint multivariate density of Q(z1), . . . , Q(zd) with uniform marginal distributions [21]. For
any distribution, a factorization into a product of marginal densities and a copula always exists and
integrates to one [14].

Intuitively, the copula captures the information about the multivariate random variable after elimi-
nating the marginal information, i.e., by applying the probability integral transform on each variable.
The copula captures only and all of the dependencies among the zi’s. Recall that, for all random vari-
ables, Q(zi) is uniform distributed. Thus the marginals of the copula give no information.

For example, the bivariate Gaussian copula is defined as

c(u1,u2; ⇢) = �⇢(�
�1

(u1),�
�1

(u2)).

If u1,u2 are independent uniform distributed, the inverse CDF �

�1 of the standard normal trans-
forms (u1,u2) to independent normals. The CDF �⇢ of the bivariate Gaussian distribution, with
mean zero and Pearson correlation ⇢, squashes the transformed values back to the unit square. Thus
the Gaussian copula directly correlates u1 and u2 with the Pearson correlation parameter ⇢.

2.2.1 Vine copulas

It is di�cult to specify a copula. We must find a family of distributions that is easy to compute with
and able to express a broad range of dependencies. Much work focuses on two-dimensional copulas,
such as the Student-t, Clayton, Gumbel, Frank, and Joe copulas [14]. However, their multivariate ex-
tensions do not flexibly model dependencies in higher dimensions [4]. Rather, a successful approach
in recent literature has been by combining sets of conditional bivariate copulas; the resulting joint is
called a vine [10, 13].

A vine V factorizes a copula density c(u1, . . . ,ud) into a product of conditional bivariate copulas,
also called pair copulas. This makes it easy to specify a high-dimensional copula. One need only ex-
press the dependence for each pair of random variables conditioned on a subset of the others.

Figure 2 is an example of a vine which factorizes a 4-dimensional copula into the product of 6 pair
copulas. The first tree T1 has nodes 1, 2, 3, 4 representing the random variablesu1,u2,u3,u4 respec-
tively. An edge corresponds to a pair copula, e.g., 1, 4 symbolizes c(u1,u4). Edges in T1 collapse
into nodes in the next tree T2, and edges in T2 correspond to conditional bivariate copulas, e.g.,
1, 2|3 symbolizes c(u1,u2|u3). This proceeds to the last nested tree T3, where 2, 4|13 symbolizes

1We overload the notation for the marginal CDF Q to depend on the names of the argument, though we oc-
casionally use Qi(zi) when more clarity is needed. This is analogous to the standard convention of overloading
the probability density function q(·).
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c(u2,u4|u1,u3). The vine structure specifies a complete factorization of the multivariate copula,
and each pair copula can be of a di�erent family with its own set of parameters:

c(u1,u2,u3,u4) =

h
c(u1,u3)c(u2,u3)c(u3,u4)

ih
c(u1,u2|u3)c(u1,u4|u3)

ih
c(u2,u4|u1,u3)

i
.

Formally, a vine is a nested set of trees V = {T1, . . . , Td�1} with the following properties:

1. Tree Tj = {Nj , Ej} has d+ 1� j nodes and d� j edges.

2. Edges in the jth tree Ej are the nodes in the (j + 1)

th tree Nj+1.

3. Two nodes in tree Tj+1 are joined by an edge only if the corresponding edges in tree Tj

share a node.

Each edge e in the nested set of trees {T1, . . . , Td�1} specifies a di�erent pair copula, and the product
of all edges comprise of a factorization of the copula density. Since there are a total of d(d � 1)/2
edges, V factorizes c(u1, . . . ,ud) as the product of d(d� 1)/2 pair copulas.

Each edge e(i, k) 2 Tj has a conditioning set D(e), which is a set of variable indices 1, . . . , d. We
define cik|D(e) to be the bivariate copula density for ui and uk given its conditioning set:

cik|D(e) = c
⇣
Q(ui|uj : j 2 D(e)), Q(ui|uj : j 2 D(e))

���uj : j 2 D(e)
⌘
. (1)

Both the copula and the CDF’s in its arguments are conditional on D(e). A vine specifies a factor-
ization of the copula, which is a product over all edges in the d� 1 levels:

c(u1, . . . ,ud;⌘) =
d�1Y

j=1

Y

e(i,k)2Ej

cik|D(e). (2)

We highlight that c depends on ⌘, the set of all parameters to the pair copulas. The vine construction
provides us with the flexibility to model dependencies in high dimensions using a decomposition of
pair copulas which are easier to estimate. As we shall see, the construction also leads to e�cient
stochastic gradients by taking individual (and thus easy) gradients on each pair copula.

3 Copula variational inference

We now introduce copula variational inference (������ ��), our method for performing accurate and
scalable variational inference. For simplicity, consider the mean-field factorization augmented with
a copula (we later extend to structured factorizations). The copula-augmented variational family is

q(z;�,⌘) =

"
dY

i=1

q(zi;�)

#

| {z }
mean-field

c(Q(z1;�), . . . , Q(zd;�);⌘)| {z }
copula

, (3)

where � denotes the mean-field parameters and ⌘ the copula parameters. With this family, we max-
imize the augmented ����,

L (�,⌘) = Eq(z;�,⌘)[log p(x, z)]� Eq(z;�,⌘)[log q(z;�,⌘)].

C����� �� alternates between two steps: 1) fix the copula parameters ⌘ and solve for the mean-field
parameters �; and 2) fix the mean-field parameters � and solve for the copula parameters ⌘. This
generalizes the mean-field approximation, which is the special case of initializing the copula to be
uniform and stopping after the first step. We apply stochastic approximations [18] for each step with
gradients derived in the next section. We set the learning rate ⇢t 2 R to satisfy a Robbins-Monro
schedule, i.e.,

P1
t=1 ⇢t = 1,

P1
t=1 ⇢

2
t < 1. A summary is outlined in Algorithm 1.

This alternating set of optimizations falls in the class of minorize-maximization methods, which
includes many procedures such as the EM algorithm [1], the alternating least squares algorithm, and
the iterative procedure for the generalized method of moments. Each step of ������ �� monotonically
increases the objective function and therefore better approximates the posterior distribution.
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Algorithm 1: Copula variational inference (������ ��)

Input: Data x, Model p(x, z), Variational family q.
Initialize � randomly, ⌘ so that c is uniform.
while change in ���� is above some threshold do

// Fix ⌘, maximize over �.
Set iteration counter t = 1.
while not converged do

Draw sample u ⇠ Unif([0, 1]d).
Update � = �+ ⇢tr�L. (Eq.5, Eq.6)
Increment t.

end
// Fix �, maximize over ⌘.
Set iteration counter t = 1.
while not converged do

Draw sample u ⇠ Unif([0, 1]d).
Update ⌘ = ⌘ + ⇢tr⌘L. (Eq.7)
Increment t.

end
end
Output: Variational parameters (�,⌘).

C����� �� has the same generic input requirements as black-box variational inference [15]—the user
need only specify the joint model p(x, z) in order to perform inference. Further, copula variational in-
ference easily extends to the case when the original variational family uses a structured factorization.
By the vine construction, one simply fixes pair copulas corresponding to pre-existent dependence in
the factorization to be the independence copula. This enables the copula to only model dependence
where it does not already exist.

Throughout the optimization, we will assume that the tree structure and copula families are given
and fixed. We note, however, that these can be learned. In our study, we learn the tree structure using
sequential tree selection [2] and learn the families, among a choice of 16 bivariate families, through
Bayesian model selection [6] (see supplement). In preliminary studies, we’ve found that re-selection
of the tree structure and copula families do not significantly change in future iterations.

3.1 Stochastic gradients of the ����

To perform stochastic optimization, we require stochastic gradients of the ���� with respect to both
the mean-field and copula parameters. The ������ �� objective leads to e�cient stochastic gradients
and with low variance.

We first derive the gradient with respect to the mean-field parameters. In general, we can apply the
score function estimator [15], which leads to the gradient

r�L = Eq(z;�,⌘)[r� log q(z;�,⌘) · (log p(x, z)� log q(z;�,⌘))]. (4)

We follow noisy unbiased estimates of this gradient by sampling from q(·) and evaluating the inner
expression. We apply this gradient for discrete latent variables.

When the latent variables z are di�erentiable, we use the reparameterization trick [17] to take ad-
vantage of first-order information from the model, i.e.,rz log p(x, z). Specifically, we rewrite the
expectation in terms of a random variable u such that its distribution s(u) does not depend on the
variational parameters and such that the latent variables are a deterministic function of u and the
mean-field parameters, z = z(u;�). Following this reparameterization, the gradients propagate
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inside the expectation,
r�L = Es(u)[(rz log p(x, z)�rz log q(z;�,⌘))r�z(u;�)]. (5)

This estimator reduces the variance of the stochastic gradients [17]. Furthermore, with a copula vari-
ational family, this type of reparameterization using a uniform random variable u and a deterministic
function z = z(u;�,⌘) is always possible. (See the supplement.)

The reparameterized gradient (Eq.5) requires calculation of the terms rzi log q(z;�,⌘) and
r�iz(u;�,⌘) for each i. The latter is tractable and derived in the supplement; the former decom-
poses as
rzi log q(z;�,⌘) = rzi log q(zi;�i) +rQ(zi;�i) log c(Q(z1;�1), . . . , Q(zd;�d);⌘)rziQ(zi;�i)

= rzi log q(zi;�i) + q(zi;�i)

d�1X

j=1

X

e(k,`)2Ej :
i2{k,`}

rQ(zi;�i) log ck`|D(e). (6)

The summation in Eq.6 is over all pair copulas which contain Q(zi;�i) as an argument. In other
words, the gradient of a latent variable zi is evaluated over both the marginal q(zi) and all pair
copulas which model correlation between zi and any other latent variable zj . A similar derivation
holds for calculating terms in the score function estimator.

We now turn to the gradient with respect to the copula parameters. We consider copulas which are
di�erentiable with respect to their parameters. This enables an e�cient reparameterized gradient

r⌘L = Es(u)[(rz log p(x, z)�rz log q(z;�,⌘))r⌘z(u;�,⌘)]. (7)
The requirements are the same as for the mean-field parameters.

Finally, we note that the only requirement on the model is the gradient rz log p(x, z). This can
be calculated using automatic di�erentiation tools [22]. Thus C����� �� can be implemented in a
library and applied without requiring any manual derivations from the user.

3.2 Computational complexity

In the vine factorization of the copula, there are d(d � 1)/2 pair copulas, where d is the number of
latent variables. Thus stochastic gradients of the mean-field parameters � and copula parameters ⌘
require O(d2) complexity. More generally, one can apply a low rank approximation to the copula by
truncating the number of levels in the vine (see Figure 2). This reduces the number of pair copulas
to be Kd for some K > 0, and leads to a computational complexity of O(Kd).

Using sequential tree selection for learning the vine structure [2], the most correlated variables are at
the highest level of the vines. Thus a truncated low rank copula only forgets the weakest correlations.
This generalizes low rank Gaussian approximations, which also have O(Kd) complexity [20]: it is
the special case when the mean-field distribution is the product of independent Gaussians, and each
pair copula is a Gaussian copula.

3.3 Related work

Preserving structure in variational inference was first studied by Saul and Jordan [19] in the case of
probabilistic neural networks. It has been revisited recently for the case of conditionally conjugate
exponential familes [8]. Our work di�ers from this line in that we learn the dependency structure
during inference, and thus we do not require explicit knowledge of the model. Further, our augmen-
tation strategy works more broadly to any posterior distribution and any factorized variational family,
and thus it generalizes these approaches.

A similar augmentation strategy is higher-order mean-field methods, which are a Taylor series correc-
tion based on the di�erence between the posterior and its mean-field approximation [11]. Recently,
Giordano et al. [5] consider a covariance correction from the mean-field estimates. All these methods
assume the mean-field approximation is reliable for the Taylor series expansion to make sense, which
is not true in general and thus is not robust in a black box framework. Our approach alternates the
estimation of the mean-field and copula, which we find empirically leads to more robust estimates
than estimating them simultaneously, and which is less sensitive to the quality of the mean-field
approximation.
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Figure 3: Covariance estimates from copula variational inference (������ ��), mean-field (��), and
linear response variational Bayes (����) to the ground truth (Gibbs samples). ������ �� and ����
e�ectively capture dependence while �� underestimates variance and forgets covariances.

4 Experiments

We study ������ �� with two models: Gaussian mixtures and the latent space model [7]. The Gaus-
sian mixture is a classical example of a model for which it is di�cult to capture posterior dependen-
cies. The latent space model is a modern Bayesian model for which the mean-field approximation
gives poor estimates of the posterior, and where modeling posterior dependencies is crucial for un-
covering patterns in the data.

There are several implementation details of ������ ��. At each iteration, we form a stochastic gra-
dient by generating m samples from the variational distribution and taking the average gradient. We
set m = 1024 and follow asynchronous updates [16]. We set the step-size using ADAM [12].

4.1 Mixture of Gaussians

We follow the goal of Giordano et al. [5], which is to estimate the posterior covariance for a Gaussian
mixture. The hidden variables are aK-vector of mixture proportions⇡ and a set ofK P -dimensional
multivariate normals N (µk,⇤

�1
k ), each with unknown mean µk (a P -vector) and P ⇥ P precision

matrix ⇤k. In a mixture of Gaussians, the joint probability is

p(x, z,µ,⇤�1,⇡) = p(⇡)
KY

k=1

p(µk,⇤
�1
k )

NY

n=1

p(xn | zn,µzn
,⇤�1

zn
)p(zn |⇡),

with a Dirichlet prior p(⇡) and a normal-Wishart prior p(µk,⇤
�1
k ).

We first apply the mean-field approximation (��), which assigns independent factors to µ,⇡,⇤, and
z. We then perform ������ �� over the copula-augmented mean-field distribution, i.e., one which
includes pair copulas over the latent variables. We also compare our results to linear response varia-
tional Bayes (����) [5], which is a posthoc correction technique for covariance estimation in varia-
tional inference. Higher-order mean-field methods demonstrate similar behavior as ����. Compar-
isons to structured approximations are omitted as they require explicit factorizations and are not black
box. Standard black box variational inference [15] corresponds to the �� approximation.

We simulate 10, 000 samples with K = 2 components and P = 2 dimensional Gaussians. Figure
3 displays estimates for the standard deviations of ⇤ for 100 simulations, and plots them against the
ground truth using 500 e�ective Gibb samples. The second plot displays all o�-diagonal covariance
estimates. Estimates for µ and ⇡ indicate the same pattern and are given in the supplement.

When initializing at the true mean-field parameters, both ������ �� and ���� achieve consistent
estimates of the posterior variance. �� underestimates the variance, which is a well-known limita-
tion [25]. Note that because the �� estimates are initialized at the truth, ������ �� converges to the
true posterior upon one step of fitting the copula. It does not require alternating more steps.
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Variational inference methods Predictive Likelihood Runtime
Mean-field -383.2 15 min.
���� -330.5 38 min.
������ �� (2 steps) -303.2 32 min.
������ �� (5 steps) -80.2 1 hr. 17 min.
������ �� (converged) -50.5 2 hr.

Table 1: Predictive likelihood on the latent space model. Each ������ �� step either refits the mean-
field or the copula. ������ �� converges in roughly 10 steps and already significantly outperforms
both mean-field and ���� upon fitting the copula once (2 steps).

C����� �� is more robust than ����. As a toy demonstration, we analyze the MNIST data set of
handwritten digits, using 12,665 training examples and 2,115 test examples of 0’s and 1’s. We per-
form "unsupervised" classification, i.e., classify without using training labels: we apply a mixture of
Gaussians to cluster, and then classify a digit based on its membership assignment. ������ �� reports
a test set error rate of 0.06, whereas ���� ranges between 0.06 and 0.32 depending on the mean-field
estimates. ���� and similar higher order mean-field methods correct an existing �� solution—it is
thus sensitive to local optima and the general quality of that solution. On the other hand, ������ ��
re-adjusts both the �� and copula parameters as it fits, making it more robust to initialization.

4.2 Latent space model

We next study inference on the latent space model [7], a Bernoulli latent factor model for network
analysis. Each node in an N -node network is associated with a P -dimensional latent variable z ⇠
N(µ,⇤�1

). Edges between pairs of nodes are observed with high probability if the nodes are close
to each other in the latent space. Formally, an edge for each pair (i, j) is observed with probability
logit(p) = ✓ � |zi � zj |, where ✓ is a model parameter.

We generate an N = 100, 000 node network with latent node attributes from a P = 10 dimensional
Gaussian. We learn the posterior of the latent attributes in order to predict the likelihood of held-out
edges. �� applies independent factors on µ,⇤, ✓ and z, ���� applies a correction, and ������ ��
uses the fully dependent variational distribution. Table 1 displays the likelihood of held-out edges and
runtime. We also attempted Hamiltonian Monte Carlo but it did not converge after five hours.

C����� �� dominates other methods in accuracy upon convergence, and the copula estimation with-
out refitting (2 steps) already dominates ���� in both runtime and accuracy. We note however that
���� requires one to invert a O(NK3

) ⇥ O(NK3
) matrix. We can better scale the method and

achieve faster estimates than ������ �� if we applied stochastic approximations for the inversion.
However, ������ �� always outperforms ���� and is still fast on this 100,000 node network.

5 Conclusion

We developed copula variational inference (������ ��). ������ �� is a new variational inference
algorithm that augments the mean-field variational distribution with a copula; it captures posterior
dependencies among the latent variables. We derived a scalable and generic algorithm for performing
inference with this expressive variational distribution. We found that ������ �� significantly reduces
the bias of the mean-field approximation, better estimates the posterior variance, and is more accurate
than other forms of capturing posterior dependency in variational approximations.
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1 Sampling from the copula-augmented variational distribution

We sample from the copula-augmented distribution by repeatedly doing inverse transform sam-
pling [1], also known as inverse CDF, on the individual pair copulas and finally the marginals. More
specifically, the sampling procedure is as follows:

1. Generate u = (u1, . . . ,ud) where each ui ⇠ U(0, 1).
2. Calculate v = (v1, . . . ,vd) which follows a joint uniform distribution with dependencies

given by the copula:

v1 = u1

v2 = Q�1
2 | 1(u2 |v1)

v3 = Q�1
3 | 12(u3 |v1,v2)

...
vd = Q�1

d | 12···d�1(ud |v1,v2, . . . ,vd�1)

Explicit calculations of the inverse of the conditional CDFs Q�1
i|12···i�1 can be found in

Kurowicka and Cooke [3]. The procedure loops through the d(d � 1)/2 pair copulas and
thus has worst-case complexity of O(d2).

3. Calculate z = (Q�1
1 (v1), . . . , Q

�1
d (vd)), which is a sample from the copula-augmented

distribution q(z;�,⌘).

Evaluating gradients with respect to � and ⌘ easily follows from backpropagation, i.e., by applying
the chain rule on this sequence of deterministic transformations.

2 Choosing the tree structure and pair copula families

We assume that the vine structure and pair copula families are specified in order to perform copula
variational inference (������ ��), in the same way one must specify the mean-field family for black
box variational inference [5]. In general however, given a factorization of the variational distribution,
one can determine the tree structure and pair copula families based on synthetic data of the latent
variables z.

During tree selection, enumerating and calculating all possibilities is computationally intractable, as
the number of possible vines on d variables grows factorially: there exist d!/2 · 2(d�2

2 ) many choices
[4]. The most common approach in practice is to sequentially select the maximum spanning tree
starting from the initial tree T1, where the weights of an edge are assigned by absolute values of the
Kendall’s ⌧ correlation on each pair of random variables. Intuitively, the tree structures are selected
as to model the strongest pairwise dependencies. This procedure of sequential tree selection follows
Dissmann et al. [2].

In order to select a family of distributions for each conditional bivariate copula in the vine, one may
employ Bayesian model selection, i.e., choose among a set of families which maximizes the marginal

1



likelihood. We note that both the sequential tree selection and model selection are implemented in
the VineCopula package in R [6], which makes it easy for users to learn the structure and families
for the copula-augmented variational distribution.

We also list below the 16 bivariate copula families used in our experiments.

Family Parameter ✓(⌧)
Independent — —
Gaussian ✓ 2 [�1, 1]

sin
⇣⇡
2
⌧
⌘

Student-t ✓ 2 [�1, 1]
Clayton ✓ 2 (0,1) 2⌧/(1� ⌧)
Gumbel ✓ 2 [1,1) 1/(1� ⌧)
Frank ✓ 2 (0,1) No closed formJoe ✓ 2 (1,1)

Table 1: The 16 bivariate copula families, with
their parameter domains and expressed in terms
of Kendall’s ⌧ correlations, that we consider in
experiments. We include rotated versions (90�,
180�, and 270�) of the Clayton, Gumbel, and Joe
copulas.

Figure 1: Example of a Frank copula with corre-
lation parameter 0.8, which is used to model weak
symmetric tail dependencies.

3 Additional Gaussian mixture experiments

We include figures showing the standard deviation estimates for µ and ⇡ which were not included in
the main paper. The results indicate the same pattern as for ⇤.
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Figure 2: Covariance estimates from copula variational inference (������ ��), mean-field (mean-
field (��)), and linear response variational Bayes (linear response variational Bayes (����)) to the
ground truth (Gibbs samples). ������ �� and ���� e�ectively capture dependence while �� under-
estimates variance and forgets covariances.
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