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Abstract

Synthetic control (SC) methods have been
widely applied to estimate the causal effect of
large-scale interventions, e.g. the state-wide
effect of a change in policy. The idea of syn-
thetic controls is to approximate one unit’s
counterfactual outcomes using a weighted
combination of some other units’ observed
outcomes. The motivating question of this
paper is: how does the SC strategy lead
to valid causal inferences? We address this
question by re-formulating the causal infer-
ence problem targeted by SC with a more
fine-grained model, where we change the
unit of the analysis from “large units” (e.g.
states) to “small units” (e.g. individuals in
states). Under this re-formulation, we derive
sufficient conditions for the non-parametric
causal identification of the causal effect. We
highlight two implications of the reformula-
tion: (1) it clarifies where “linearity” comes
from, and how it falls naturally out of the
more fine-grained and flexible model, and (2)
it suggests new ways of using available data
with SC methods for valid causal inference, in
particular, new ways of selecting observations
from which to estimate the counterfactual.

1 Introduction

Since their introduction (Abadie and Gardeazabal,
2003; Abadie et al., 2010), synthetic control (SC)
methods have become commonplace for estimating
causal effects with panel data.

Consider the following example. In 1988 California
implemented a large-scale tobacco control program,

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

−
1
9
70

−
1
97
1

−
1
9
72

−
1
9
8
8

−
1
9
8
9

CA 123 121 123.5 90.1 82.4

AL 89.8 95.4 101.1 112.1 105.6

AK 100.3 104.1 103.9 · · · 121.5 118.3

VA 124.3 128.4 137 129.5 122.5

WI 106.4 105.4 108.8 102.6 100.3
...

...
...

...
...

...

WY 132.2 131.7 140.0 114.3 111.4

Table 1: We observe the annual per-capita cigarette
sales in packs of different states from 1970 to 1989.
The blue shaded cell reports California’s sales under
a tobacco program. The remaining cells report other
states’ sales without a tobacco program.

which increased the tobacco tax by 25 cents. Abadie
et al. (2010) uses SC to study the effect of this pro-
gram on the average cigarette consumption in Cali-
fornia. The dataset contains the annual per-capita
cigarette sales across a number of states, where none of
the states other than California implemented a similar
tobacco program. This dataset is illustrated in table 1.

We observe that smoking in California decreased af-
ter the tobacco program. However, we do not know
whether the decrease is caused by the program or by
other causes. Thus, to assess this difference, our goal is
to estimate California’s counterfactual outcome. What
would the 1989 smoking rate of California had been if
its tobacco program had not been implemented?

SC is a method to solve this problem. It uses the data
from before 1989—when neither California nor the
other states had implemented the tobacco program—
to learn a model of California’s smoking rate as a
weighted combination of the other states’ smoking
rates. SC then uses the fitted weights to estimate Cal-
ifornia’s counterfactual smoking rate in 1989.

In the general terminology of SC, California is the tar-
get, the other states are the donors, and the tobacco
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program is the intervention. A typical application of
SC involves aggregated time series data, such as in
table 1, with one target unit and a number of donor
units. These units are often “large” units, such as
states (Abadie et al., 2010; Bohn et al., 2014; Cunning-
ham and Shah, 2018), counties (Abadie and Gardeaz-
abal, 2003), and districts (Bifulco et al., 2017). The
causal question is one about the target’s counterfac-
tual, after the intervention.

To justify SC estimators, existing works often make
parametric assumptions about the true data generat-
ing process (DGP) of the potential outcomes of the ag-
gregated data. A common assumption is that the po-
tential outcomes under control (no tobacco program)
are generated according to a linear factor model with
additive noise (Bai, 2009). Follow-up works develop
different estimators based on this assumption (Xu,
2017; Imbens et al., 2021).

The purpose of this paper is to investigate the assump-
tions behind SC. When is it suitable to assume a linear
factor model, and why can we write the target outcome
as a weighted combination of the donors? We will show
how to recover the SC methodology, but without mak-
ing explicit parametric assumptions about the DGP of
the potential outcomes.

The key idea behind this analysis is to construct a
more fine-grained model of potential outcomes, one
where the unit of analysis shifts from a “large unit”
to a “small unit.” In the example, this change means
that the potential outcomes are defined by individuals
rather than states. We assume that different states
index different distributions of individuals, and the
state-level outcome of interest (average smoking rate)
is an average of the individual outcomes in each state.

Under this fine-grained model, the causal effect tar-
geted by classic SC is the sub-population average treat-
ment effect (SATE), averaged over the individuals. We
will derive sufficient conditions for the non-parametric
causal identification of the SATE, and we will see that
it uses the SC strategy. That is, we will derive suf-
ficient conditions for the existence of a set of donors
and weights such that their weighted combination can
be used to approximate the effect.

This identification result further suggests new settings
in which to use the SC estimators, new ways to define
the donors, and good heuristics for selecting auxiliary
covariates. In more detail, there are several implica-
tions of this way of deriving the SC methodology.

First, the SC literature usually assumes that the con-
trol potential outcomes are generated according to a
linear factor model. With the fine-grained model, we
will see that the linear factor model form needs not be

assumed a priori. Rather, the factor form is a natural
consequence of invariance assumptions across groups
(states) and time; and linearity is a consequence of
the fact that expectation is a linear operator. A prac-
tical implication of this perspective is that SC can be
used even if the individual-level DGP is non-linear.

Second, the SC literature does not generally offer guid-
ance about the selection of the donors or how the
choice of donors might affect the corresponding esti-
mate. When reasoning from the fine-grained model,
we will see how causal identifiability depends directly
on properties of the target and selected donors; it may
be possible to write California as a weighted combi-
nation of New York and Nevada, but not as a (non-
zero) weighted combination of New York, Nevada, and
Florida. Practically, the identification results suggest
how to best choose donors for good SC estimation, and
show that SC does not require that donors belong to
the same type of group-level data. For example, we
may correctly use data from Chicago (a city) to ap-
proximate the counterfactual of California (a state).

Finally, the analysis here provides a general heuris-
tic of deciding which auxiliary covariates are suitable
to include and which are not. We will see that al-
ternative measurements of the target outcomes (e.g.
per-capita tobacco spending measured in USD) are,
in general, suitable auxiliary covariates, whereas sum-
maries of group-level characteristics (e.g. average age
in states) may be unsuitable auxiliary covariates.

Organization. The paper proceeds as follows. In
section 1.1, we review related work. In section 2, we
formulate the tobacco tax example using both classi-
cal SC and individual-level potential outcomes and in-
troduce the corresponding estimands. In section 3.1,
we introduce the SC estimators and review the com-
mon assumptions in classical SC. In section 3.2, we
introduce the fine-grained model. In section 3.3, we
establish sufficient conditions for causal identification
of the estimand using the SC strategy. In section 3.4,
we discuss implications of the reformulation and the
identification result, how it points to new settings in
which to use SC estimators and new ways to define
donors. In section 4, we use the identification result
to reason about what are suitable auxiliary covariates.
In section 5, we study these implications using simu-
lation studies and the tobacco tax dataset. Finally, in
section 6, we discuss limitations and future work.

1.1 Related Work.

This paper builds on the literature pioneered by
Abadie and Gardeazabal (2003); Abadie et al. (2010).
A large part of the literature is about novel estima-
tors (Abadie and Imbens, 2011; Abadie et al., 2015;
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Wong, 2015; Doudchenko and Imbens, 2016; Xu, 2017;
Amjad et al., 2018; Ben-Michael et al., 2018; Abadie
and L’hour, 2019; Amjad et al., 2019; Arkhangelsky
et al., 2019; Li, 2020; Agarwal et al., 2020; Athey
et al., 2021; Imbens et al., 2021) and inference methods
(Abadie et al., 2010; Doudchenko and Imbens, 2016;
Ferman and Pinto, 2017; Shaikh and Toulis, 2019;
Chernozhukov et al., 2021). See Abadie (2019) for an
excellent review. This paper complements the exist-
ing work, as it interrogates the assumptions made by
many of these estimators and inference methods.

This paper contributes to the growing effort of provid-
ing causal interpretations for synthetic controls O’Neill
et al. (2016) formalize and synthesize the common as-
sumptions in various methods for panel data inference.
Bottmer et al. (2021) study SC estimators proper-
ties under a randomized experiment setup. Shi et al.
(2021) develop identification and inference theory for
the SC methods by drawing insights from the proximal
causal inference literature (Miao et al., 2018). How-
ever, all of this existing literature performs its analysis
with group-level aggregates as units. In contrast, this
paper takes advantage of the nature of the group-level
data and shows how SC assumptions can arise from
reasoning about individual-level potential outcomes.

Finally, this paper contributes to the growing re-
search on invariance and causality (Schölkopf et al.,
2012; Bareinboim and Pearl, 2014; Peters et al., 2016;
Bühlmann, 2018; Lei and Candès, 2020; Schölkopf
et al., 2021). In particular, a key assumption in this
paper is the independent causal mechanism principle
(Peters et al., 2017).

2 Data and Problem Formulation

In this section we define the observed data, the group-
level potential outcomes that underlie classical SC, and
the individual-level potential outcomes that we con-
sider in this paper. We define the causal estimand of
interest in both settings. For expository purposes we
omit the auxiliary covariates for now. We introduce
them in section 4.

2.1 The Observed Data

We have a dataset that contains the average smoking
rate of j = 1, ..., J states for t = 1, ..., T time peri-
ods. Let µobs

jt denote the average smoking rate of state
j and time t. The target state is j = 1, i.e. Califor-
nia. It is the only state that levied tobacco taxes. The
remaining states j ≥ 1 are potential donors, which
did not impose tobacco taxes. The intervention (the
tobacco taxes) happened at time T0. To simplify no-
tation, we assume one post-intervention time period,

T = T0 + 1, though the analysis easily generalizes to
more post-intervention time periods. The number of
time periods T and the potential donors J are fixed.

2.2 Classical SC Potential Outcomes

SC estimators are usually developed under the poten-
tial outcomes framework for causal inference (Splawa-
Neyman et al., 1923; Rubin, 1974). Each state is con-
sidered a unit. The potential outcomes for each unit at
each time period are (µjt(0), µjt(1)). These variables
are the average smoking rates of state j at time t, one
in the world where state j increased tobacco taxes, and
one in the world where state j did not increase tobacco
taxes. We assume the treatment is well-defined and no
interference between the states (Rubin, 1980).

The observed outcomes are:

µobs
jt =

{
µjt(1) if j = 1 and t = T

µjt(0) otherwise.
(1)

In other words, we observe each states’ smoking rate
under no tobacco taxes except for California at time
T , where we observe its smoking rate with the tax.

2.3 Fine-Grained Potential Outcomes

This paper considers a more fine-grained model, where
we treat individuals as units and states as distributions
of individuals. The pair (Yijt(1), Yijt(0)) denotes the
potential outcomes of individual i in group j at time
t, e.g. how many packs of cigarettes person i in state j
consumed at time t, under increased tobacco taxes or
not. Note we never make observations at an individual
level, only in aggregate, but still we will reason about
these variables.

We also consider the variable Xijt ∈ ZD. It is a vec-
tor of causes that contribute to individual i’s outcome,
such as age, education level, or income. The relation-
ship between the causes Xijt and potential outcomes
(Yijt(0), Yijt(1)) can be linear or non-linear, and can
also change across time periods. We emphasize that
we will not observe these individual-level causes, but
their existence will be crucial in our reasoning about
the assumptions of SC.

We assume that interventions are made at a group-
level and individuals in each group comply with their
group-level intervention, i.e. individuals in California
do not go to Nevada to purchase tobacco and vice
versa. The observed group-level averages approximate
expected individual-level potential outcomes,

µobs
jt ≈

{
E [Yjt(1)] if j = 1 and t = T

E [Yjt(0)] otherwise.
(2)

The expectation is taken over the individuals i.
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2.4 Causal Estimand

We are interested in the causal effect of the tobacco
taxes on the average smoking of individuals in Califor-
nia at time period T . Using the classical SC notation,
this estimand is formally defined as the unit-specific
treatment effect,

τT = µ1T (1)− µ1T (0). (3)

Under the individual-level notation, the estimand is
the sub-population average treatment effect, averaged
over individuals in the target distribution,

τT = E [Y1T (1)− Y1T (0)] . (4)

Remark 1. Being precise about the causal estimand is
important, because different estimands require differ-
ent identifying assumptions. eq. 3 is the unit-specific
treatment effect (UTE). 1 In general, UTE is incredi-
bly difficult, if not impossible, to identify (Hernán and
Robins, 2010). It involves strong parametric assump-
tions on the data generating mechanism and the distri-
bution of the noise variable. In contrast, the causal es-
timand in eq. 4 is the an average causal effect. Causal
identification of the average causal effect is easier, and
in general, does not require parametric assumptions
(Rosenbaum and Rubin, 1983; Imbens, 2004).

3 A Fine-Grained Model for SC

In this section, we first review the classical SC ap-
proach to causally identify and estimate the estimand.
We then develop a fine-grained model for SC, one that
makes several assumptions that will eventually lead
to the non-parametric identification of the causal esti-
mand. Finally, we discuss the practical implications of
reasoning about the fine-grained model, and the cor-
responding identification result.

3.1 Classical Synthetic Controls

The idea behind SC is to use the observed outcomes of
the donor states, which did not pass a tobacco tax, to
help estimate the counterfactual California outcome.
Specifically, SC posits that there exists a donor set D
in the potential donor pool J and a weight set {βj}j∈D,
such that,

µ1t(0) =
∑
j∈D

βjµjt(0) ∀t ≤ T. (5)

The validity of SC usually relies on parametric
assumptions about the control potential outcomes

1The more common name for eq. 3 is the individual
treatment effect, where the units are individuals. To avoid
potential confusion, we use UTE instead of ITE.

µjt(0). A common assumption is that the control po-
tential outcomes are generated according to a linear
factor model plus noise (Bai, 2009),

µjt(0) = λT
t γj + ϵjt. (6)

Here λt ∈ RR is a time-specific vector of factors shared
across different units and γj ∈ RR are unobserved unit-
specific factor loadings. The factor size R is usually
assumed to be significantly smaller than the number
of potential donors J and the total time periods T .
The noise variable ϵjt is zero centered.2

Classical SC uses group-level observations to estimate
the weights in eq. 5. Specifically, it fits the regularized
least squares,

β̂ = min
β̂j∈D

T0∑
t=1

(
µobs
1t −

∑
j∈D

µobs
jt · β̂j

)2
+Υ(β̂), (7)

where Υ(β̂) is a prior or regularizer. SC uses the

learned weights β̂ to estimate the counterfactual Cal-
ifornia at time T .

To ensure a unique set of weights, existing works place
restrictions on β̂. For example, the original SC es-
timator (Abadie et al., 2010) restricts the weights to
be positive and add up to one. Doudchenko and Im-
bens (2016) proposes an elastic-net regularizer. Rob-
bins et al. (2017) suggests an entropy penalty.

3.2 Invariance Assumptions for the
Fine-Grained Model

We now consider the fine-grained model, where we rea-
son about an individual i, and treat each state j as
a distribution of individuals. We will show how to
recover the SC strategy without making an explicit
parametric assumption on the data generating process
of the potential outcomes.

The target estimand is the sub-population average
treatment effect in eq. 4. Since the expected outcome
under intervention E [Y1T (1)] can be trivially identi-
fied, the goal is to causally identify the control ex-
pected outcome E [Y1T (0)] from the data distribution.

In this subsection, we discuss the invariance assump-
tions that will lead to causal identification. In the next
subsection, we will complete the derivation of how to
identify the expected counterfactual.

The first assumption is that of an independent causal
mechanism (ICM) (Schölkopf et al., 2012, 2021). ICM
is a principle that the conditional distribution of each

2The original SC (Abadie et al., 2010) for the tobacco
tax example assume a variant of the factor model in eq. 6,
which we discuss in section 4.
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variable given its causes (i.e. its “mechanism”) does
not inform or influence the other conditional distribu-
tions (Schölkopf et al., 2012).

In this context, the assumption means that the causal
mechanism of an individual’s tobacco consumption
Yijt(0) is independent of the distribution of their
causes Xijt. If we know all the potential causes of
an individual’s tobacco consumption, then the distri-
bution of the control potential outcome is independent
of which distribution (i.e. state) the individual is from.

A1. (Independent Causal Mechanism)
Conditional on the causes X, the potential outcome
Y (0) is independent of the population distribution j.
For population distribution j at time t ≤ T , the joint
distribution of Y (0) and X is

Pjt(X,Y (0)) = Pjt(X)Pt(Y (0) |X). (8)

The assumption says that the distribution of individ-
ual causes X can vary across states and time, but the
conditional outcome Y (0) |X only varies by time. For
each time point t, if we know all the potential causes
of an individual’s smoking behavior, which state they
are from does not provide any additional information
about the distribution of their control potential out-
come.

Using eq. 8, we rewrite the expected counterfactual as

E [Yjt(0)] =
∑
x

Et [Y (0) |X = x]︸ ︷︷ ︸
λt

Pjt(X = x), (9)

where Et denotes the expectation with respect to
Pt(Y (0)|X = x), a distribution that is invariant across
states.

eq. 9 is similar to the factor model in eq. 6, where
the vector of factors λt is the vector of conditional ex-
pected outcomes, but notice we did not make any as-
sumptions about the relationship between the causes
Xijt and potential outcomes Yijt(0). Rather, the lin-
earity in eq. 9 comes from the independent causal
mechanism and iterated expectation — the group-
level outcomes are the averages of individual-level out-
comes.

The second assumption is one of stable distributions.
Given the target and the selected donors, i.e. donors
that will be used to construct the SC, we can further
decompose the causes X into causes that differentiate
the target and the selected donors, and causes that are
invariant.

A2. (Stable Distributions) Decompose the causes
into two subsets X = {U, S}. Let S denote the subset
that differentiates the target from the selected donors,

i.e., its distribution in the target group is different from
its distribution in the selected donor groups. We as-
sume that, for all groups, the distribution of S does
not change for all time periods t ≤ T ,

Pjt(X) = Pj(S)Pt(U |S). (10)

In other words, The subset S contains causes that vary
across states, but are invariant across time. The condi-
tional distribution of U varies by time but is invariant
across states. We call S the minimal invariant set.

Remark 2. The minimal invariant set S is deter-
mined by the choice of the selected donors. For ex-
ample, if we choose New Zealand as a donor to Cali-
fornia, then the set S may be the same as X, because
these two groups are very different. If the donor is a
“twin California,” then the set S is an empty set.

With these assumptions in hand, we use eq. 9 and
eq. 10 to rewrite the expected counterfactual,

E [Yjt(0)] =
∑
s

Et [Y (0) |S = s]︸ ︷︷ ︸
λt

Pj(S = s)︸ ︷︷ ︸
γj

. (11)

Comparing eq. 11 with the factor model in eq. 6, we
can see that the conditional expectations are analo-
gous to the time varying factors λt. The probabilities
are analogous to the state specific factor loadings γj .
What this equation shows is that with the two invari-
ance assumptions, the expected outcome is naturally
expressed as a factor model. Using the fine-grained
model, we discover that the “linearity” in SC comes
from aggregation, and the factor model arises from
the invariance assumptions A1 & A2.

3.3 Causal Identifiability

While eq. 11 is similar to the factor model in eq. 6, it
does not guarantee causal identifiability. The reason is
that the cardinality of the minimal invariant set S can
be very large. In particular, if the cardinality of S is
larger than the number of donors then we cannot write
the target as a weighted combination of the donors.

Here, we establish sufficient conditions for the causal
identifiability of the causal estimand using the SC
strategy. Causal identifiability is about whether we
can express a causal estimand as a parameter of the
observed distributions (Pearl, 2000). In classical SC,
causal identifiability is assumed in eq. 5, that is, there
exist a set of donors and weights, such that the target’s
counterfactual can be approximated as a weighted
combination of the donors’ observed outcomes.3

3Note, that causal identifiability is different from model
identifiability, which is about whether we can recover a
unique set of parameters from data.
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To establish causal identifiability, we need to make two
more assumptions about the data distribution.

A3. (Sufficiently Similar Donors) Let D be the
set of donors used to construct the synthetic control
and S be the minimal invariant set for the target and
the selected donors. The donors are sufficiently simi-
lar if the cardinality of the donor set is greater than or
equal to the cardinality of the minimal invariant set,

|D| ≥ |S|. (12)

As discussed in remark 2, the cardinality of the min-
imal invariant set S is determined by the selected
donors. If the selected donors are very different from
the target, the cardinality of S is large. If they are
similar, the cardinality of S is small.

A4. (Target Donors Overlap) Let {s1, ..., sR} be
the support of S. There exists at least one donor
distribution j in the selected donor set D, where
Pj(S = s) > 0.

A4 implies that every type of individual living in Cali-
fornia with characteristics S = s might also live in one
of the selected donor states.

A3 and A4 are two assumptions on the distribution of
the minimal invariant set S. While we do not directly
observe S in practice, we can still use it to reason
about the differences among the population distribu-
tions, and discuss its influence on causal identifiability.

Finally, we derive sufficient conditions for non-
parametric identification of the causal estimand using
the SC strategy.

Theorem 1. (Causal Identifiability) Assume the
causal mechanism is independent (A1), the target and
the selected donors are stable during the periods of in-
vestigation (A2), the selected donors are sufficiently
similar to each other (A3), and there is overlap be-
tween the target and the selected donors (A4). Then
there exists a set of weights {βj}j∈D, such that across
all time periods, the target’s counterfactual can be writ-
ten as a weighted combination of the donors’ outcomes,

E [Y1t(0)] =
∑
j∈D

βjE [Yjt(0)] ∀t ≤ T. (13)

The proof is in appendix A.

The conditions in theorem 1 lead to the assumption
(eq. 5) commonly made in the literature: the exis-
tence of synthetic controls. Note that we have arrived
at eq. 5 without making any parametric assumptions
about the mechanism generating individual-level po-
tential outcomes.

3.4 Implications

We have presented a set of causal assumptions that
justify the SC methodology. What are the implications
of these results?

Mixing types of donors. The fine-grained poten-
tial outcomes model in section 2.3 provides insights
about what can be treated as a donor. Classical SC
typically treats a state as a unit, and chooses donors
as other states. For example, Abadie et al. (2010) ex-
cluded the District of Columbia as a possible donor.
The fine-grained model implies that each donor need
only be a group of individuals, and does not need to
be the same type of group as the target. A donor’s
influence on the SC estimator has to do with how dif-
ferent it is to the target and other donors, i.e., the
cardinality of the minimally invariant set. For exam-
ple, in section 5, we will see that we can use districts
or regions as potential donors to a target state.

SC with non-linear DGPs. Previous work on SC
begins with a linear factor model assumption, such as
the one in eq. 6 (Xu, 2017). However, it is unclear
whether the role of the parametric model is for causal
identification, for statistical necessity, or for notational
convenience. As discussed in remark 1, because the
estimand is the unit-specific treatment effect, a natural
interpretation of eq. 6 is that it is an assumption on
the data generating mechanism. Assuming the true
mechanism is linear can be an unrealistic assumption.

In contrast, using the fine-grained model, we explained
why, fundamentally, linearity can be a reasonable as-
sumption in SC. We cast the estimand as an average
effect over sub-populations, and SC as a population
re-weighting algorithm. It make clear that the lin-
ear factor model in eq. 6 encodes invariance assump-
tions for causal identifiability, and that the linearity
in eq. 6 arises from expectation being a linear oper-
ator. A practical implication of this perspective is
that the causal identification result holds even if the
fine-grained model involves a nonlinear mechanism.
Thus SC estimators are valid in settings where the
individual-level DGPs are nonlinear.

The Role of S and its relations to the donors.
Classical SC assumes the latent factors λt in eq. 6 are
fixed and low rank (Abadie, 2019). Consequentially,
we may be tempted to use information from all the
donors. We show that different donors can lead to dif-
ferent latent factors. Specifically, in eq. 11, we draw
the analogy between the size of the factors and the
cardinality of the minimal invariant set S. We show
that the minimal invariant set S is determined by the
donors used to construct the synthetic control. Differ-
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ent donor sets can lead to different minimal invariant
sets and naively including additional donors may lead
to the non-existence of synthetic controls. Whether
the assumption in eq. 5 holds is a property of the tar-
get and the selected donors.

4 Auxiliary Covariates

So far, we have discussed how to analyze panel data
as in table 1. In many practical settings, we may find
additional state-specific covariates, such as the per-
centage of teenagers in each state.

Previous work has integrated the auxiliary covariates
into the linear factor model (Abadie et al., 2015). For
example, Abadie et al. (2010) posits the following,

µjt(0) = δt + λT
t γj + θTt Aj + ϵjt, (14)

where θt ∈ RR and δt ∈ RR are time-specific vectors
of factors shared across different units and Aj ∈ Rk is
a vector of K observed state-specific covariates.

Abadie et al. (2010) assumes that there exists a set of
weights such that for all k ≤ K and t ≤ T ,

A1k =
∑
j∈D

βjAjk and µ1t(0) =
∑
j∈D

βjµjt(0). (15)

As a result, one way to use auxiliary covariates is to
analyze them in parallel with the outcomes to com-
pute the SC weights. (Abadie et al., 2010, 2015; Ben-
Michael et al., 2018; Botosaru and Ferman, 2019).

This use of auxiliary covariates requires us to assume
that the underlying data generating process is linear.
A natural question is whether we can still use auxiliary
covariates to construct the SC weights without assum-
ing the underlying DGP is linear. Here, we will use the
fine-grained model to reason about suitable auxiliary
covariates, those that inherently satisfy eq. 15.

Using eq. 11, we can reason about two types of suit-
able auxiliary covariates. The first type are the state-
specific probabilities for the variables in the minimal
invariant set S: Pj(S = s). We observe that in eq. 11,
the relationships between the probabilities and the
outcomes are linear. Therefore, the probabilities have
the same relationship with one another that the out-
comes have with each other. For example, suppose the
variable “age” differentiates target and donor distri-
butions, i.e., “age” is in S, then “percentage of young
adults” would be a suitable covariate.

Note that some group-level summaries of individual-
level characteristics may not be suitable auxiliary
covariates. For example, consider the average age
(within a state). Since we do not assume a linear re-
lationship between the individual-level characteristics

and the individual-level outcomes, we can not expect
linear relationships between the group-level summaries
and the group-level outcomes.

The second type of suitable auxiliary covariates are dif-
ferent measurements of the target outcomes. With a
bit of algebra, we can see that the SC weights in eq. 13
are combinations of the state-specific probabilities on
the minimal invariant set: Pj(S = s). Recall that the
minimal invariant set S is solely determined by the
target and the selected donor and that they are not
influenced by the outcome measurements. Therefore,
the SC weights should be invariant to different mea-
surements of the outcome variable Y . For example,
per-capita tobacco spending measured in USD would
be a suitable auxiliary covariate to the target outcome:
average cigarette consumption measured in packs.

5 Empirical Studies

We use simulations and tobacco tax data to study this
perspective on SC and the implications of the theory
around the fine-grained model.4 We find the following.

1. There is no reason the donors need to come from
the same type of group as the target. We can still
recover meaningful causal estimates when using
donors from a different type.

2. The SC estimators are valid even when the
individual-level causal mechanisms are nonlinear.

3. The cardinality of the minimal invariant set S is
dependent on the donor and target choices and is
crucial to whether the weights can be generalized
to the counterfactual.

4. We may improve SC estimates when we include
suitable auxiliary covariates in the analysis. How-
ever, unsuitable covariates will bias the estimates.

Simulations. Following section 3, we first generate
individual-level data, then construct group-level sum-
maries. The individual-level covariates X take K = 12
values. Individual-level outcomes are derived from a
set of non-linear and time-varying functions. We cre-
ate one target group and 5 donor groups. Each group
has a different composition of individuals. The com-
positions do not change over time.

We consider T time periods. For each group, at each
time period, we sample 2000 individuals according
to its population composition. The group-level sum-
maries, µobs

jt , are the average outcomes of individuals
in group j at time point t. The randomness is on an
individual level, instead of a group level.5

4code: github.com/claudiashi57/fine-grained-SC
5More simulation details are in appendix B

https://github.com/claudiashi57/fine-grained-SC
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Figure 1: Donors are not required to be of the same
type: we use a linear combination of divisions to cap-
ture the outcome trends of California (a state) with
high fidelity.

We create two knobs in the simulation, S and T . The
variable T denotes the number of time periods, cor-
responding to the number of data points when fitting
and evaluating the SC estimator. The set S is the min-
imal invariant set. We use |S| to denote the cardinality
of S, and specifically how much the target and selected
donor distributions differ from each other. |S| ranges
from 0 to K. If the donors are identical to the target
|S| = 0. If the donors are very different in all aspects
of the population composition |S| = K. We do not ob-
serve the minimal invariant set S and its cardinality.
The SC estimators do not use S or |S|.

Prop 99. Following Abadie et al. (2010), we ana-
lyze data about the Prop 99 tobacco program. We use
the state-level data for the period 1970–2000. We ex-
clude states that also implemented large tobacco pro-
grams during the time frame and the states that raised
tobacco tax by more than 50 cents, resulting in 39
potential donors. The outcome measurement is the
per-capita cigarette sales in packs. The main distinc-
tions to Abadie et al. (2010) are that (1) we include
Washington DC in the donor pool, and (2) exclude the
state-level covariates.

Methods and evaluation. For the Prop 99 exam-
ple, we use the original SC estimator, with positive
weights that sum up to one. Since we cannot observe
counterfactuals, we evaluate the estimation quality by
plotting out the estimated counterfactuals.

For the simulation studies, we use ordinary least
squares (OLS) as the SC estimator. We use 75% of
the data to fit the estimator and 25% of the data for
out-of-sample evaluation. The evaluation metric is the
mean squared error averaged over data (time) points.

Figure 2: SC estimators remain valid when causal
mechanisms generating individual-level outcomes are
nonlinear. The figure shows the observed and coun-
terfactual prediction losses when the group-level mea-
surements are the“mean” or the “median”.

For expository purposes, when discussing the estima-
tion quality, we use “observed” and “counterfactual”
instead of “in-sample” and “out-of-sample”.

(1) Mixing types of donors. As discussed in sec-
tion 3.4, there is no reason to restrict donors to be of
the same type as the target. To study this possibility
empirically, we consider a type of donor that is differ-
ent from states. Since 1950, the United States Census
Bureau has defined nine statistical divisions based on
geographical location, e.g. New England, Mountain.
Each division contains several states. We construct
divisional-level donors using the United States census
of 1990. The average smoking rate of each division
is a weighted combination of the smoking rate in its
corresponding states, weighted by their population.

We use the original SC estimator to construct a
synthetic California using these divisional-level data.
We compare the counterfactual prediction of the
divisional-level SC estimator with the original SC es-
timator. As shown in fig. 1, the synthetic California
constructed by divisional-level data can capture the
outcome trends of California with high-fidelity. We in-
terpret the weights of the SC estimator in appendix C.

(2) SC with no-linear DGPs. section 3.2 argues
that the linearity in SC comes from aggregation, rather
than a linear individual-level data generating process.
We study this claim empirically using the nonlinear
data simulation. We have data from six groups, one
is the target and the other groups are the donors. We
set the cardinality of S to 5 and consider a range of
time periods for the data, from T = 20 to T = 90.

For a given number of time periods, we construct two
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Figure 3: The more different the donors are, the
worse the SC counterfactual estimates become. The
red dotted line denotes the number of donors used for
constructing the synthetic controls.

panel datasets. One contains the average outcomes
of individuals in groups. The other includes the me-
dian outcomes of individuals in groups. Note that the
“mean” is linear, but the “median” is nonlinear.

We apply the SC estimator to both panel datasets and
evaluate the predictive performance on the observed
and counterfactual data. As shown in fig. 2, when
the individual-level DGP is nonlinear, the SC estima-
tor can still produce valid counterfactual estimates for
the average outcomes. Of course, linearity does not
come for free. SC estimates are valid in this example
because the “mean” is a linear function, and the car-
dinality of the set S is not greater than the number of
available donors. In contrast, when the measurement
is the “median”, the SC estimator fails at predicting
the counterfactual, because the median is a nonlinear
function. Thus, we cannot expect a linear relation-
ship between the median of the target group and the
median of the donor groups.

(3) The minimal invariant set S is critical to
causal identification. As discussed in section 3.3,
the minimal invariant set S and whether eq. 5 holds are
properties of the target and the donors. If we choose
donors that are drastically different from the target,
the SC weights learned with the observed data may not
generalize to the counterfactual data. We use nonlin-
ear simulations to study the relationship between the
donor choice and the quality of the counterfactual es-
timates. We fix the number of the donors to 5, the
number of time periods to 20, and increase the cardi-
nality of S from 2 to 11.

As shown in Figure 3, once the cardinality of S sur-
passes the number of available donors, the counter-

factual estimation error increases significantly. Impor-
tantly, it is increasing at a significantly faster rate than
the observed error. We cannot determine whether the
SC estimator can produce valid counterfactual esti-
mates from the observed dataset alone.

Table 2: Using suitable covariates improves the es-
timation quality, whereas unsuitable covariates hurt
the estimation quality. The table reports the mean
squared error and standard error over 100 simulations.

MSE ± SE Observed Counterfactual

Outcome Only .07± .03 .14± .05

Suitable Covariates .06± .02 .13± .05

Unsuitable Covariates .06± .02 .24± .13

(4) Auxiliary Covariates. Finally, we study what
happens to the counterfactual estimates when we in-
clude auxiliary covariates. Using the simulations, we
construct 10 suitable auxiliary covariates and 10 un-
suitable auxiliary covariates. The suitable covari-
ates are the averages of the sine transformation of
individual-level outcomes. The unsuitable covariates
are averages of the individual-level covariates. We fix
the number of the donors to 5, the cardinality of the
minimal invariant set to 5, and the number of time
periods to 15. We examine the observed and counter-
factual estimation quality when including suitable co-
variates and including unsuitable covariates. As shown
in table 2, incorporating suitable covariates may im-
prove the counterfactual estimation, whereas including
unsuitable covariates hurts the counterfactual estima-
tion. Notably, we may not infer whether an auxiliary
covariate is suitable by looking only at the SC estima-
tor’s fit to the observed data.

6 Discussion & Future Work

In this paper, we develop a fined-grained model for
synthetic controls. Using the tobacco example, we
show that the “linearity” in SC comes from aggrega-
tion. We further establish sufficient conditions for the
non-parametric identification of the causal estimand
and discuss several practical implications.

While this paper points to new ways of applying SC
methods, the validity rests on the strong assumptions
that an analyst must carefully consider. For future
work, we plan to establish uncertainty quantification
methods that are compatible with the fine-grained
model. We also plan to develop sensitivity analyses
that show how violations of the assumptions change
the estimated effects.
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Supplementary Material:
On the Assumptions of Synthetic Control Methods

A Proof For Thm 1

Theorem 1. Assume the target and the selected donors are stable during the periods of investigation (A2), the
donors are sufficiently similar to each other (A3), and there is overlap between the target and the donors (A4).
Then there exists a set of weights {βd}d∈D, such that across all time periods, the target’s counterfactual can be
written as a weighted combination of the donors’ outcomes,

E [Y1t(0)] =
∑
d∈D

βdE [Ydt(0)] ∀t ≤ T. (16)

Proof. We first show that for a fixed time point t, there exist a set of weights such that the target can be written
as a weighted combination of the donors. We then show that there exists a set of weights that is invariant across
time periods.

Fixing a time point t, we can write out eq. 11, E [Yjt(0)] =
∑

s EtY (0) |S = sPj(S = s), for the target j = 1
and the selected donors D. Conceptually, we can think of the set expanded expectations as a system of linear
equations, where the conditional expectations are the unknowns, and the probabilities are the scalars. A4 says
that the unknowns in the target equation are also in at least one of the donor equations. A3 says that there are
at least as many independent equations as the number of unknowns. Combining A3 & A4, we can “solve” the
unknowns. Consequentially, we can write the target as a weighted combination of the donors, where the weights
are functions of the probabilities.

A2 implies the probabilities are the same across time periods. Since the weights are functions of the probabilities,
and the probabilities are invariant across time periods, the weights are also invariant across time periods.

B Simulation Details.

We discuss the details of the simulation studies. Recall, the individual-level covariates take K = 12 values.
There are 6 groups. Each group has a different composition of individuals, denoted by PPP j . The sparsity of the
probabilities is determined by the cardinality of the minimal invariant set S.

Group-level parameters

αsk ∼ Bin(1, 1− |S|
K

)

αααs = (αs1, ..., αsk)

PPP j ∼ Dir(K,αααs)

Individual-level data

Xijt ∼ Cat(K,PPP j)

Yijt = f t(Xijt) +N(0, 1)

µjt =
1

Nj

∑
Yijt

Individual-level outcomes are derived from a set of non-linear and time-varying functions. The exact functions
are in the supplementary material. The individual-level covariates take K = 12 values. At each point t and for
each group j, we sample Nj = 1000 individuals. The group-level summaries, µobs

jt , are the average outcomes of
individuals in group j at time point t.
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C Prop 99 Experiment Details.

In fig. 1, we show that the synthetic California constructed by divisional level donors can capture the outcome
trends of California with high fidelity. Here we describe how the donors are constructed.

Since 1950, the United States Census Bureau divided the United States into nine divisions: New England, Mid-
Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central,
Mountain, and Pacific. Each division consists of several states. Following Abadie et al. (2010), we exclude states
that also implemented large tobacco programs during the time frame and the states that raised tobacco tax by
more than 50 cents: Massachusetts, Arizona, Oregon, Florida, Alaska, Hawaii, Maryland, Michigan, New Jersey,
New York, and Washington.

We construct divisional-level donors according to the United States census of 1990. Each divisional donor is
a weighted (by population) combination of its corresponding states that were not excluded for implementing
similar policies. We drop the Pacific division because all states in the division have been excluded. We use the
original SC estimator to construct a synthetic California using these divisional-level data.

Division Weight

New England .05

Mid-Atlantic 0

East North Central 0

West North Central 0

South Atlantic 0

East South Central 0

West South Central 0

Mountain .95

Pacific -

Table 3: Divisional-level weights used to construct the synthetic California.

As shown in table 3, the synthetic California uses only two donors: Mountain division and New England division.
This is not surprising because California is geographically close to the Mountain division. Table 3 is also consistent
with the result in Abadie et al. (2010), where the chosen state-level donors come from either the Mountain division
or the New England division.

Changing the unit of analysis does not necessarily harm interpretability. California is a state with a high
population density. According to the 1990 census, the population in California is around 30 million. The
total population in the Mountain division used to construct the control is around 10 million. In contrast, the
population in Montana, a donor used in Abadie et al. (2010) with 0.2 weights, is only around 0.8 million. Taking
population level into consideration, it is as interpretable, if not more, to treat divisions as potential donors to
California.
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