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ABSTRACT

Word embeddings are a powerful approach for unsupervised analy-
sis of language. Recently, Rudolph et al. [35] developed exponential
family embeddings, which cast word embeddings in a probabilistic
framework. Here, we develop dynamic embeddings, building on
exponential family embeddings to capture how the meanings of
words change over time. We use dynamic embeddings to analyze
three large collections of historical texts: the U.S. Senate speeches
from 1858 to 2009, the history of computer science ACM abstracts
from 1951 to 2014, and machine learning papers on the ArXiv from
2007 to 2015. We find dynamic embeddings provide better fits than
classical embeddings and capture interesting patterns about how
language changes.
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1 INTRODUCTION

Word embeddings are a collection of unsupervised learning meth-
ods for capturing latent semantic structure in language. Embedding
methods analyze text data to learn distributed representations of the
vocabulary. The learned representations are then useful for reason-
ing about word usage andmeaning [16, 36]. With large data sets and
approaches from neural networks, word embeddings have become
an important tool for analyzing language [3, 6, 21, 24–26, 33, 42].

Recently, Rudolph et al. [35] developed exponential family embed-
dings. Exponential family embeddings distill the key assumptions
of an embedding problem, generalize them to many types of data,
and cast the distributed representations as latent variables in a
probabilistic model. They encompass many existing methods for
embeddings and open the door to bringing expressive probabilistic
modeling [7, 32] to the task of learning distributed representations.

Here we use exponential family embeddings to develop dynamic
word embeddings, a method for learning distributed representations
that change over time. Dynamic embeddings analyze long-running
texts, e.g., documents that span many years, where the way words
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are used changes over the course of the collection. The goal of
dynamic embeddings is to characterize those changes.

Figure 1 illustrates the approach. It shows the changing represen-
tation of intelligence in two corpora, the collection of computer
science abstracts from the ACM 1951–2014 and the U.S. Senate
speeches 1858–2009. On the y-axis is “meaning,” a proxy for the
dynamic representation of the word; in both corpora, its represen-
tation changes dramatically over the years. To understand where
it is located, the plots also show similar words (according to their
changing representations) at various points. Loosely, in the ACM
corpus intelligence changes from government intelligence to cog-
nitive intelligence to artificial intelligence; in the Congressional
record intelligence changes from psychological intelligence to
government intelligence. Section 3 gives other examples from these
corpora, such as for the terms iraq, data, and computer.

In more detail, a word embedding uses representation vectors to
parameterize the conditional probabilities of words in the context
of other words. Dynamic embeddings divide the documents into
time slices, e.g., one per year, and cast the embedding vector as a
latent variable that drifts via a Gaussian random walk. When fit to
data, the dynamic embeddings capture how the representation of
each word drifts from slice to slice.

Section 2 describes dynamic embeddings and how to fit them.
Section 3 studies this approach on three datasets: 9 years of ArXiv
machine learning papers (2007–2015), 64 years of computer science
abstracts (1951–2014), and 151 years of U.S. Senate speeches (1858–
2009). Dynamic embeddings give better predictive performance
than existing approaches and provide an interesting exploratory
window into how language changes.

Related work. Language is known to evolve [1, 19] and there
have been several lines of research around capturing semantic shifts.
Mihalcea and Nastase [23] and Tang et al. [38] detect semantic
changes of words using features such as part-of-speech tags and
entropy. Sagi et al. [37] and Basile et al. [5] employ latent semantic
analysis and temporal semantic indexing for quantifying changes
in meaning.

Most closely related to our work are methods for dynamic em-
beddings [15, 18, 20]. These methods train a separate embedding for
each time slice of the data. While interesting, this requires enough
data in each time slice such that a high quality embedding can be
trained for each. Further, because each time slice is trained inde-
pendently, the dimensions of the embeddings are not comparable
across time; they must use initialization [18] or ad-hoc alignment
techniques [15, 20, 48] to stitch them together.

In contrast, the representations of our model for dynamic embed-
dings are sequential latent variables. This naturally accommodates
time slices with sparse data and assures that the dimensions of the
embeddings are connected across time. In Section 3, we show that
our method provides quantitative improvements over methods that
fit each slice independently.
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(a) intelligence in ACM abstracts (1951–2014)

(b) intelligence in U.S. Senate speeches (1858–2009)

Figure 1: The dynamic embedding of intelligence reveals how the term’s usage changes over the years in a historic corpus

of ACM abstracts (a) and U.S. Senate speeches (b). The y-axis is “meaning,” a one dimensional projection of the embedding

vectors. For selected years, we list words with similar dynamic embeddings.

We note that two models similar to ours have been developed
independently [4, 46]. Bamler and Mandt [4] model both the em-
beddings and the context vectors using an Uhlenbeck-Ornstein
process [41]. Yao et al. [46] factorize the pointwise mutual informa-
tion (pmi) matrix at different time slices. Their regularization also
resembles an Uhlenbeck-Ornstein process. Both employ the ma-
trix factorization perspective of embeddings [21], while our work
builds on exponential family embeddings [35], which generalize

embeddings using exponential families. A related perspective is
given by Cotterell et al. [10] who show that exponential family PCA
can generalize embeddings to higher order tensors.

Another area of related work is dynamic topic models, which are
also used to analyze text data over time [8, 12, 13, 27, 28, 43–45, 47].
This class of models describes documents in terms of topics, which
are distributions over the vocabulary, and then allows the topics to
change. As in dynamic embeddings, some dynamic topic models



use a Gaussian random walk to capture drift in the underlying
language model; for example, see Blei and Lafferty [8], Wang et
al. [43], Gerrish and Blei [13] and Frermann and Lapata [12].

Though topic models and word embeddings are related, they are
ultimately different approaches to language analysis. Topic models
capture co-occurrence of words at the document level and focus
on heterogeneity, i.e., that a document can exhibit multiple topics
[9]. Word embeddings capture co-occurrence in terms of proximity
in the text, usually focusing on small neighborhoods around each
word [26]. Combining dynamic topic models and dynamic word
embeddings is an area for future study.

2 DYNAMIC EMBEDDINGS

We develop dynamic embeddings (d-emb), a type of exponential
family embedding (efe) [35] that captures sequential changes in the
representation of the data. We focus on text data and the Bernoulli
embedding model. In this section, we review Bernoulli embeddings
for text and show how to include dynamics into the model. We then
derive the objective function for dynamic embeddings and develop
stochastic gradients to optimize it on large collections of text.

Bernoulli embeddings for text. An efe is a conditional model
[2]. It has three ingredients: The context, the conditional distribution
of each data point, and the parameter sharing structure.

In an efe for text, the data is a corpus of text, a sequence of words
(x1, . . . ,xN ) from a vocabulary of size V . Each word xi ∈ {0, 1}V
is an indicator vector (also called a “one-hot” vector). It has one
nonzero entry at v , where v is the vocabulary term at position i .

In an efemodel, each data point has a context. In text, the context
of each word is its neighborhood; Each word is modelled condition-
ally on the words that come before and after. Typical context sizes
range between 2 and 10 words and are set in advance.

Here, we will build on Bernoulli embeddings, which provide a
conditional model for the individual entries of the indicator vectors
xiv ∈ {0, 1}. Let ci be the set of positions in the neighborhood of
position i and let xci denote the collection of data points indexed
by those positions. The conditional distribution of xiv is

xiv |xci ∼ Bern(piv ), (1)

where piv ∈ (0, 1) is the Bernoulli probability.1
Bernoulli embeddings specify the natural parameter of this dis-

tribution, the log odds ηiv = log piv
1−piv , as a function of the rep-

resentation of term v and the terms in the context of position i .
Specifically, each index (i,v ) in the data is associated with two
parameter vectors, the embedding vector ρv ∈ RK and the con-
text vector αv ∈ RK . Together, the embedding vectors and context
vectors form the natural parameter of the Bernoulli. It is

ηiv = ρ⊤v
(∑

j ∈ci
∑
v ′ αv ′x jv ′

)
. (2)

This is the inner product between the embedding ρv and the context
vectors of the words that surround position i . (Because x j is an
indicator vector, the sum over the vocabulary selects the appropriate

1Multinomial embeddings [35] model each indicator vector xi with a categorical con-
ditional distribution, but this requires expensive normalization in form of a softmax
function. For computational efficiency, one can replace the softmax with the hierarchi-
cal softmax [25, 29, 31] or employ approaches related to noise contrastive estimation
[14, 30]. Bernoulli embeddings relax the one-hot constraint of xi , and work well in
practice; they relate to the negative sampling [25].

Figure 2: Graphical representation of a d-emb for text data

inT time slices, X (1) , · · · ,X (T )
. The embedding vectors ρv of

each term evolve over time. The context vectors are shared

across all time slices.

context vector α at position j .) The goal is to learn the embeddings
and context vectors.

The index on the parameters does not depend on position i , but
only on term v; the embeddings are shared across all positions in
the text. This is what Rudolph et al. [35] call the parameter sharing
structure. It ensures, for example, that the embedding vector for in-
telligence is the same wherever it appears. (Dynamic embeddings
partially relax this restriction.)

Finally, Rudolph et al. [35] regularize the Bernoulli embedding
by placing priors on the embedding and context vectors. They use
Gaussian priors with diagonal covariance, i.e., ℓ2 regularization.
Without the regularization, fitting a Bernoulli embedding closely
relates to other embedding techniques such as CBOW [24] and
negative sampling [25]. But the probabilistic perspective of efe
—and in particular the priors and the parameter sharing—allows us
to extend this setting to capture dynamics.

Dynamic Bernoulli embeddings (d-emb) extend Bernoulli
embeddings to text data over time. Each observation xiv is as-
sociated with a time slice ti , such as the year of the observation.
Context vectors are shared across all positions in the text but the
embedding vectors are only shared within a time slice. Thus dy-
namic embeddings posit a sequence of embeddings for each term
ρ
(t )
v ∈ RK while the static context vectors help ensure that consec-

utive embeddings are grounded in the same semantic space.
The natural parameter of the conditional likelihood is similar

to Equation (2) but with the embedding vector ρv replaced by the
per-time-slice embedding vector ρ (ti )v ,

ηiv = ρ
(ti )⊤
v

(∑
j ∈c j
∑
v ′ αv ′x jv ′

)
. (3)



Finally, dynamic embeddings use a Gaussian random walk as a
prior on the embedding vectors,

αv , ρ
(0)
v ∼ N (0, λ−10 I ) (4)

ρ
(t )
v ∼ N (ρ

(t−1)
v , λ−1I ). (5)

Given data, this leads to smoothly changing estimates of each term’s
embedding.2

Figure 2 gives the graphical model for dynamic embeddings.
Dynamic embeddings are a conditionally specified model, which in
general are not guaranteed to imply a consistent joint distribution.
But dynamic Bernoulli embeddings model binary data, and thus a
joint exists [2].

Fitting dynamic embeddings. Calculating the joint is compu-
tationally intractable. Rather, we fit dynamic embeddings with the
pseudo log likelihood, the sum of the log conditionals, a commonly
used objective for conditional models [2].

In detail, we regularize the pseudo log likelihood with the log
priors and then maximize to obtain a pseudo MAP estimate. For
dynamic Bernoulli embeddings, this objective is the sum of the log
priors and the conditional log likelihoods of the data xiv .

We divide the data likelihood into two parts, the contribution of
nonzero data entries Lpos and of zero data entries Lneg,

L (ρ,α ) = Lpos + Lneg + Lprior. (6)

The likelihoods are

Lpos =
N∑
i=1

V∑
v=1

xiv logσ (ηiv )

Lneg =
N∑
i=1

V∑
v=1

(1 − xiv ) log(1 − σ (ηiv )),

where σ (·) is the sigmoid, which maps natural parameters to prob-
abilities. The prior is

Lprior = logp (α ) + logp (ρ),

where

logp (α ) = −
λ0
2

∑
v
| |αv | |

2

logp (ρ) = −
λ0
2

∑
v
| |ρ

(0)
v | |

2

−
λ

2

∑
v,t
| |ρ

(t )
v − ρ

(t−1)
v | |2.

The parameters ρ and α appear in the natural parameters ηiv of
Equations (2) and (3) and in the log prior. The random walk prior
penalizes consecutive word vectors ρ (t−1)v and ρ

(t )
v for drifting too

far apart. It prioritizes parameter settings for which the norm of
their difference is small.

The most expensive term in the objective is Lneg, the contribu-
tion of the zeroes to the conditional log likelihood. The objective
is cheaper if we subsample the zeros. Rather than summing over
all words which are not at position i , we sum over a subset of n
2Because α and ρ appear only as inner products in Equation (2), we can capture
that their interactions change over time even by placing temporal dynamics on the
embeddings ρ only. Exploring dynamics in α is a subject for future study.

Algorithm 1: sgd for dynamic embeddings.

Input: T time slices of text data X (t ) of sizemt respectively.
Context size c , size of embedding K , number of negative
samples n, number of minibatch fractionsm, initial learning rate
η, precision λ, vocabulary size V , smoothed unigram
distribution p̂.
for v = 1 to V do

Initialize entries of αv and entries of ρ (t )v
(using draws from a normal distribution with zero mean and
standard deviation 0.01).

end for

for number of passes over the data do
for number of minibatch fractionsm do

for t = 1 to T do

Sample minibatch ofmt /m consecutive words
{x

(t )
1 , · · · ,x

(t )
mt /m

} from each time slice X (t ) , and
construct

C
(t )
i =

∑
j ∈ci

V∑
v ′=1

αv ′x jv ′ .

For each text position in the minibatch, draw a set S (t )
i

of n neg. samples from p̂.
end for

update the parameters θ = {α , ρ} by ascending the
stochastic gradient

∇θ




T∑
t=1

m

mt /m∑
i=1

( V∑
v=1

x
(t )
iv logσ (ρ (t )⊤v C

(t )
i )

+
∑

x j ∈S
(t )
i

V∑
v=1

(1 − x jv ) log(1 − σ (ρ
(t )⊤
v C

(t )
i ))
)

−
λ0
2

∑
v
| |αv | |

2 −
λ0
2

∑
v
| |ρ

(0)
v | |

2

−
λ

2

∑
v,t
| |ρ

(t )
v − ρ

(t−1)
v | |2



.

end for

end for

We use Adagrad [11] to set rate η.

negative samples Si drawn at random. Mikolov et al. [25] call this
negative sampling and recommend sampling from p̂, the unigram
distribution raised to the power of 0.75.

With negative sampling, we redefine Lneg as

Lneg =
N∑
i=1

∑
v ∈Si

log(1 − σ (ηiv )). (7)

This sum has fewer terms and reduces the contribution of the zeros
to the objective. In a sense, this incurs a bias—the expectation
with respect to the negative samples is not equal to the original
objective—but “downweighting the zeros” can improve prediction
accuracy [17, 22] and leads to significant computational gains.



Table 1: Time range and size of the three corpora analyzed

in Section 3.

ArXiv ML ACM Senate speeches

2007 − 2015 1951 − 2014 1858 − 2009
slices 9 64 76
slice size 1 year 1 year 2 years
vocab size 50k 25k 25k
words 6.5M 21.6M 13.7M

We fit the objective (Equation (6) with Equation (7)) using sto-
chastic gradients [34] and with adaptive learning rates [11]. The
negative samples are resampled at each gradient step. Pseudo code
is in Algorithm 1. To avoid deriving the gradients of Equation (6),
we implemented the algorithm in Edward [40]. Edward is based on
tensorflow [39] and employs automatic differentiation.3

3 EMPIRICAL STUDY

This empirical study has two parts. In a quantitative evaluation
we benchmark dynamic embeddings against static embeddings
[24, 25, 35]. We found that dynamic embeddings improve over
static embeddings in terms of the conditional likelihood of held-out
predictions. Further, dynamic embeddings perform better than em-
beddings trained on the individual time slices [15]. In a qualitative
evaluation we use fitted dynamic embeddings to extract which word
vectors change most and we visualize their dynamics. Dynamic
embeddings provide a new window into how language changes.

3.1 Data

We study three datasets. Their details are summarized in Table 1.

Machine Learning Papers (2007 - 2015). This dataset contains
the full text from all machine learning papers (tagged “stat.ML”)
published on the ArXiv between April 2007 and June 2015. It spans
9 years and we treat each year as a time slice. The number of ArXiv
papers about machine learning has increased over the years. There
were 101 papers in 2007, while there were 1, 573 papers in 2014.

Computer Science Abstracts (1951 - 2014). This dataset contains
abstracts of computer science papers published by the Association
of Computing Machinery (ACM) from 1951 to 2014. We treat each
year as a time slice and here too, the amount of data increases over
the years. For 1953, there are only around 10 abstracts and their
combined length is only 471 words; the total length of the abstracts
from 2009 is over 2M.

Senate Speeches (1858 - 2009). This dataset contains all U.S. Senate
speeches from 1858 to mid 2009. Here we treat every 2 years as a
time slice. Unlike the other datasets, this is a transcript of spoken
language. It contains many infrequent words that occur only in a
few of the time slices.

Preprocessing. We convert the text to lowercase and strip it of all
punctuation. Frequent n-grams such as united states are treated as
a single term. The vocabulary consists of the 25, 000 most frequent
terms and all words which are not in the vocabulary are removed.
3Code is available at http://github.com/mariru/dynamic_bernoulli_embeddings

As in [25], we additionally remove each word with probability p =
1 −
√
( 10
−5

fi
) where fi is the frequency of the word. This effectively

downsamples especially the frequent words and speeds up training.

3.2 Quantitative evaluation

We compare dynamic embeddings (d-emb) to time-binned embed-
dings (t-emb) [15] and static embeddings (s-emb) [35]. There are
many embedding techniques, without dynamics, that enjoy compa-
rable performance. For the s-emb, we study Bernoulli embeddings
[35], which are similar to continuous bag-of-words (cbow) with
negative sampling [24, 25]. For time-binned embeddings, Hamilton
et al. [15] train a separate embedding on each time slice.

Evaluation metric. From each time slice 80% of the words are
used for training. A random subsample of 10% of the words is
held out for validation and another 10% for testing. We evaluate
models by held-out Bernoulli probability. Given a model, each held-
out position (validation or testing) is associated with a Bernoulli
probability for each vocabulary term. At that position, a better
model assigns higher probability to the observed word and lower
probability to the others. This metric is straightforward because the
competing methods all produce Bernoulli conditional likelihoods
(Equation (1)). Since we hold out chunks of consecutive words
usually both a word and its context are held out. All methods require
the words in the context to compute the conditional likelihoods.

We report Leval = Lpos +
1
nLneg, where n is the number of

negative samples. Renormalizing with n assures that the metric is
balanced. It equally weights the positive and negative examples. To
make results comparable, all methods are trained with the same
number of negative samples.

Model training and hyperparameters. Each method takes a
maximum of 10 passes over the data. (The corresponding number
of stochastic gradient steps depends on the size of the minibatches.)
The parameters of s-emb are initialized randomly. We initialize both
d-emb and t-emb from a fit of s-emb which has been trained from
one pass, and then train for 9 additional passes.

We set the dimension of the embeddings to 100 and the number
of negative samples to 20. We study two context sizes, 2 and 8.

Other parameters are set by validation error. All methods use
validation error to set the initial learning rate η and minibatch sizes
m. The model selects η ∈ [0.01, 0.1, 1, 10] and
m ∈ [0.001N , 0.0001N , 0.00001N ], where N is the size of training
data. The only parameter specific to d-emb is the precision of the
random drift. To have one less hyper parameter to tune, we fix the
precision on the context vectors and the initial dynamic embeddings
to λ0 = λ/1000, a constant multiple of the precision on the dynamic
embeddings. We choose λ ∈ [1, 10] by validation error.

Results. We train each model on each training set and use each
validation set for selecting parameters like the minibatch size and
the learning rate. Table 2 reports the results on the test set. Dynamic
embeddings consistently have higher held-out likelihood.

3.3 Qualitative exploration

There are different reasons for a word’s usage to change over the
course of a collection. Words can become obsolete or obtain a new
meaning. As society makes progress and words are used to describe
that progress, that progress also gradually changes the meaning of

http://github.com/mariru/dynamic_bernoulli_embeddings


Figure 3: The dynamic embedding captures how the usage of the word iraq changes over the years (1858-2009). The x-axis is
time and the y-axis is a one-dimensional projection of the embeddings using principal component analysis (pca). We include

the embedding neighborhoods for Iraq in the years 1858, 1954, 1980 and 2008.

Table 2: Dynamic embeddings (d-emb) consistently achieve

highest held-out L
eval

. We compare to static embeddings

(s-emb) [25, 35], and time-binned embeddings (t-emb) [15].

The largest standard error on the held-out predictions is

0.002 which means all reported results are significant.

ArXiv ML

context size 2 context size 8
s-emb [35] −2.77 −2.54
t-emb [15] −2.97 −2.81
d-emb [this paper] −2.58 −2.44

Senate speeches

context size 2 context size 8
s-emb [35] −2.41 −2.29
t-emb [15] −2.44 −2.46
d-emb [this paper] −2.33 −2.28

ACM

context size 2 context size 8
s-emb [35] −2.48 −2.30
t-emb [15] −2.55 −2.42
d-emb [this paper] −2.45 −2.27

words. A word might also have multiple alternative meanings. Over
time, one meaning might become more relevant than the other. We
now show how to use dynamic embeddings to explore text data
and to discover such changes in the usage of words.

A word’s embedding neighborhood helps visualize its usage and
how it changes over time. It is simply a list of other words with

similar usage. For a given query word (e.g., computer) we take its
index v and select the top ten words according to

neighborhood(v, t ) = argsortw *
,

sign(ρ (t )v )⊤ρ
(t )
w

| |ρ
(t )
v | | · | |ρ

(t )
w | |

+
-
. (8)

As an example, we fit a dynamic embedding fit to the Senate
speeches. Table 3 gives the embedding neighborhoods of computer
for the years 1858 and 1986. Its usage changed dramatically over
the years. In 1858, a computer was a profession, a person who was
hired to compute things. Now the profession is obsolete; computer
refers to the electronic device.

Table 3 provides another example, bush. In 1858 this word al-
ways referred to the plant. A bush still is a plant, but in the 1990’s,
it usually refers to a politician. Unlike computer, where the em-
bedding neighborhoods reveal two mutually exclusive meanings,
the embedding neighborhoods of bush reflect which meaning is
more prevalent in a given period.

A final example in Table 3 is the word data, from a d-emb of the
ACM abstracts. The evolution of the embedding neighborhoods of
data reflects it changes meaning in the computer science literature.

Finding changing words with absolute drift.We have high-
lighted example words whose usage changes. However, not all
words have changing usage. We now define a metric to discover
which words change most.

One way to find words that change is to use absolute drift. For
word v , it is

drift(v ) = | |ρ (T )
v − ρ

(0)
v | |. (9)

This is the Euclidean distance between the word’s embedding at
the last and at the first time slice.

In the Senate speeches, Table 4 shows the 16 words that have
largest absolute drift. The word iraq has largest drift. Figure 3
highlights iraq’s embedding neighborhood in four time slices: 1858,



Table 3: Embedding neighborhoods (Equation (8)) reveal

how the usage of a word changes over time. The embedding

neighborhoods of computer and bushwere computed from

a dynamic embedding fitted to Congress speeches (1858-

2009). computer used to be a profession but today it is used

to refer to the electronic device. Theword bush is a plant but

eventually in congress Bush is used to refer to the political

figures. The embedding neighborhood of data comes from

a dynamic embedding fitted to ACM abstracts (1951-2014).

computer (Senate)

1858 1986

draftsman software
draftsmen computers
copyist copyright

photographer technological
computers innovation
copyists mechanical
janitor hardware

accountant technologies

bush (Senate)

1858 1990

barberry cheney
rust nonsense

bushes nixon
borer reagan

eradication george
grasshoppers headed

cancer criticized
tick clinton

data (ACM)

1961 1969 1991 2014

directories repositories voluminous data streams
files voluminous raw data voluminous

bibliographic lineage repositories raw data
formatted metadata data streams warehouses
retrieval snapshots data sources dws
publishing data streams volumes repositories
archival raw data dws data sources
archives cleansing dsms data mining

Table 4: A list of the top 16 words whose dynamic embed-

ding on Senate speeches changes most. The number repre-

sents the absolute drift (Equation (9)). The dynamics of the

capitalized words are in Table 5 and discussed in the text.

words with largest drift (Senate)

iraq 3.09 coin 2.39
tax cuts 2.84 social security 2.38
health care 2.62 fine 2.38
energy 2.55 signal 2.38
medicare 2.55 program 2.36
discipline 2.44 moves 2.35
text 2.41 credit 2.34
values 2.40 unemployment 2.34

1950, 1980, and 2008. At first the neighborhood contains other
countries and regions. Later, Arab countries move to the top of the
neighborhood, suggesting that the speeches start to use rhetoric
more specific to Arab countries. In 1980, Iraq invades Iran and the
Iran-Iraq war begins. In these years, words such as troops, and

Figure 4: According to d-emb fitted to the Senate Speeches,

most words change most in the 1947-1947 time slice.

invasion appear in the embedding neighborhood. Eventually, by
2008, the neighborhood contains terror, terrorism, and saddam.

Four other words with large drift are discipline, values, fine
and unemployment (Table 4). Table 5 shows their embedding neigh-
borhoods. Of these words, discipline, values and, fine have mul-
tiple meanings. Their neighborhoods reflect how the dominant
meaning changes over time. For example, values can be either a
numerical quantity or can be used to refer to moral values and
principles. In contrast, iraq and unemployment are both words
which have always had the same definition. Yet, the evolution of
their neighborhood captures changes in the way they are used.

Changepoint analysis.We use the fitted dynamic embeddings
to find instances in time where a word’s usage changes drastically.
We make no assumption that a word’s meaning makes only a single
phase transition [20]. Since in our formulation of d-emb the context
vectors are shared between all time slices, the embeddings are
grounded in one semantic space and no postprocessing is needed
to align the embeddings. We can directly compute large jumps in
word usage on the learned embedding vectors.

For each word, we compute a list of time slices where the word’s
usage changed most.

max change(v ) = argsortt *
,

| |ρ
(t )
v − ρ

(t−1)
v | |∑

w | |ρ
(t )
w − ρ

(t−1)
w | |

+
-
. (10)

The changes in time slice t are normalized by how much all other
words changed within the same time slice. The normalization,
makes the max change ranking sensitive to time slices in which
a word’s embedding drifted farthest, compared to how far other
words drifted within the time slice.

For example, for the word iraq the largest change is in the years
1990-1992. Indeed, that year the Gulf war started. Note that this
is consistent with Figure 3 where we see in the one dimensional
projection of the trajectory of the embedding a large jump around
the year 1990. The trajectory in the Figure captures only the varia-
tion in the first principal component, while Equation 10 measures
difference of embedding vectors in all the dimensions combined.



Table 5: Embedding neighborhoods extracted from a dynamic embedding fitted to Senate speeches (1858 - 2009). discipline,

values, fine, and unemployment are within the 16 words whose dynamic embedding has largest absolute drift. (Table 4).

discipline

1858 2004

hazing balanced
westpoint balancing
assaulting fiscal

values

1858 2000

fluctuations sacred
value inalienable

currencies unique

fine

1858 2004

luxurious punished
finest penitentiaries
coarse imprisonment

unemployment

1858 2000

unemployed jobless
depression rate

acute depression

Table 6: Using dynamic embeddings we can study a social phenomenon of interest. We pick a target word of interest, such as

jobs or prostitution and create their embedding neighborhoods (Equation (8)).

jobs

1858 1938 2008

employment unemployed job
unemployed employment create
overtime job creating

prostitution

1858 1930 1945 1962 1988 1990

punishing punishing indecent indecent intimidation servitude
immoral immoral vile harassment prostitution harassment

illegitimate bootlegging immoral intimidation counterfeit intimidation

Next, we examine in which years many words changed most
in terms of their usage. In Figure 4 is a histogram of the years in
which each word changed the most. For example, iraq falls into
the 1990-1992 bin, together with almost 300 other words which also
had their largest relative change in 1990 - 1992. We can see that
the bin with the most words (marked in red) is 1946-1947 which
marks the end of the Second World War. Almost 1000 words had
their largest relative change in that time slice.

In Table 7 is a list of the 10 words with the largest change in the
years 1946-1947. On top of the list is marshall, the middle name
of John Marshall Harlan, and John Marshall Harlan II, father and
son who both served as U.S. Supreme Court Justices. It is also the
last name of George Marshall who became the U.S. Secretary of
State in 1947. He conceived and carried out the Marshall plan, an
economic relief program to aid post-war Europe. In Table 7 are the

Table 7: Dynamic embeddings identify marshall, as the

word changing most in 1946-1947. On the left is a list of

the top words with largest change in the 1946-1947 time bin

(marked red in Figure 4). On the right, are the embedding

neighborhoods of marshall before and after the jump.

top change in 1946

1. marshall
2. atlantic
3. korea
4. douglas
5. holland
6. steam
7. security
8. truman
9. plan

marshall (Senate)

1944 1948

wheaton plan
taney satellites
harlan britain
vs great britain

gibbons acheson
mcreynolds democracies

waite france
webster western europe

embedding neighborhoods for marshall before and after the 1946-
1947 time bin. In 1944-1945, marshall is similar to other names
with importance to the U.S. judicial system but by 1948-1950 the

most similar word is plan as the Marshall plan is now frequently
discussed in the U.S. Senate Speeches.

Dynamic embeddings as a tool to study a text. Our hope
is that dynamic embeddings provide a suggestive tool for under-
standing change in language. For example, researchers interested
in unemployment can complement their investigation by looking
at the embedding neighborhood of related words such as employ-
ment, jobs or labor. In Table 6 we list the neighborhoods of jobs
for the years 1858, 1938, and 2008. In 2008 the embedding neigh-
borhood contains words like create and creating, suggesting a
different outlook on jobs than in earlier years.

Another interesting example is prostitution. It used to be
immoral and vile, went to indecent, and in modern days it is
considered harassment. We note the word prostitution is not a
frequent word. On average, it is used once per time slice and, in two
thirds of the time slices, it is not mentioned at all. Yet, the model is
able to learn about prostitution and the temporal evolution of the
embedding neighborhood reveals how over the years a judgemental
stance turns into concern over a social issue.

4 SUMMARY

We described dynamic embeddings, distributed representations
of words that drift over the course of the collection. Building on
Rudolph et al. [35], we formulate word embeddings with conditional
probabilistic models and then incorporate dynamics with a Gauss-
ian random walk prior. We fit dynamic embeddings to language
data using stochastic optimization.

We used dynamic embeddings to analyze 3 datasets: 8 years of
machine learning papers, 63 years of computer science abstracts,
and 151 years of U.S. Senate speeches. Dynamic embeddings pro-
vide a better fit than static embeddings and other methods that
account for time. In addition, dynamic embeddings can help iden-
tify interesting ways in which language changes. A word’s meaning
can change (e.g., computer); its dominant meaning can change
(e.g., values); or its related subject matter can change (e.g., iraq).
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