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Abstract

Survival analysis is a core task in applied statistics,
which models time-to-failure or time-to-event
data. In the clinical domain, for example, mean-
ingful events are defined as the onset of different
diseases for a given patient. Survival analysis is
limited, however, for analyzing modern electronic
health records. Patients often have a wide range
of diseases, and there are complex interactions
among the relative risks of different events. To
this end, we develop the survival filter model, a
time-series model for joint survival analysis that
models multiple patients and multiple diseases.
We develop a scalable variational inference algo-
rithm and apply our method to a large data set
of longitudinal patient records. The survival fil-
ter gives good predictive performance when com-
pared to two baselines and identifies clinically
meaningful patterns of disease interaction.

1 INTRODUCTION

Electronic health records enable unprecedented opportunity
to understand and form predictions about disease [Jensen
et al., 2012, Hripcsak and Albers, 2013]. With historical
data about the trajectories of millions of patients, we can
learn patterns of disease risk and exploit these patterns to
provide better care to future patients.

The classical statistics tool for analyzing the progression
of a disease is survival analysis, a method that estimates
each patients hazard or risk for a disease in question [Cox,
1972]. Survival analysis is widely used in medical science
to characterize and understand the progression of individual
diseases [Shepherd et al., 1995, Stupp et al., 2005].

Classical survival analysis, however, cannot accommodate
the complex health data that we now have collected; it is
only formulated to analyze one disease at a time. In modern
electronic health record data, patients often have several

diseases (called “comorbidities”) with complex interactions
among them. Specifically, the occurrence of one disease
often affects the progression of others. We need new tools
to account for this complexity.

Consider the data in Figure 1, where time is in the x-axis.
The top panel shows the setting that classical survival anal-
ysis requires. All patients begin at the same time, and we
measure one disease outcome. (In this case, it is whether
the patient is diagnosed with diabetes.) The bottom panel
illustrates the real-world setting of electronic health records.
Patients begin at different times and we simultaneously
measure many different diseases. These data can poten-
tially reveal interactions between patterns of progression,
but classical survival analysis cannot provide such infer-
ences. For example, Patient 1 in the bottom panel illustrates
that diabetes and hypertension are significant risk factors for
developing a myocardial infarction. A traditional survival
analysis may be constructed to capture this specific inter-
action, but cannot simultaneously capture the relationship
between risk factors for diabetes (e.g., obesity) and the onset
of diabetes.

We build on survival analysis to develop the survival filter,
a new probabilistic model for estimating multivariate risk
patterns from large-scale electronic health records. The
survival filter is a latent-variable time series model of diag-
nostic codes. Each patient is represented as a sequence of
latent variables. At each time point, a patient’s hazards for
each disease relates to his or her latent representation.

The survival filter can be thought of as a joint survival anal-
ysis model where each patient’s sequence of latent represen-
tations loosely represents his or her state of health. Given a
large data set of patients over time—data of the form of the
bottom panel of Figure 1—survival filter inference charac-
terizes each patient and captures complex global patterns of
interactions for a large set of diseases.

Using the survival filter, we study 13,000 patients from
NewYork-Presbyterian Hospital; these data span over 20
years and contain 8,800 types of diagnoses. It scales well to
this size of data and uncovers meaningful relationships be-



tween diseases that would otherwise be difficult to identify.

2 SURVIVAL ANALYSIS

In this section we review survival analysis and hazards.

Survival Analysis. Survival analysis studies the time
duration until the occurrence of an event. Example events
include failure of a machine, heart attack, and retirement.

Observations in survival analysis have two types. The first
type of observation indicates the event has occurred (called
“failure”) at a specific time (failure time). The second type
indicates the event has not occurred before the observed
time. These observations are called censored observations
because the true failure time is censored in the observed
data. Formally, the observations in survival analysis can be
represented as pairs (t, c) where t is a time, and c is a binary
value that indicates whether the observation is censored.

The simplest model for survival analysis assumes that the
failure times are drawn from some unknown distribution F
over positive values. The setup assumes that all observations
are synchronized at their starts. Given this modeling choice,
a nonparametric estimate of the CDF of F , also denoted by
F , is the Kaplan-Meier estimator [Kaplan and Meier, 1958].
The Kaplan-Meier estimator is the nonparametric maximum
likelihood estimator of 1 − F (t), also called the survival
function, in the presence of censored data.

The time measurements in survival analysis can be treated
as continuous or discrete (e.g., months or years). In this
article we will focus discrete survival times.

Hazards. An alternative view of survival analysis is
through hazard functions. Hazard functions represent the
instantaneous chance of failing at time t given survival up
to time t. In the discrete time setting, the hazard is the con-
ditional probability of failing at time t given that the failure
occurs at time t or later,

h(t) = P (T = t|T ≥ t). (1)

The Nelson-Aalen [Nelson, 1972] estimator forms the non-
parametric maximum likelihood estimator of the sum of
hazard function over time (cumulative hazard). The CDF F
of the underlying distribution implied by the hazards is

F (t) = 1− exp

(
t∑

s=0

h(s)

)
.

Unlike the cumulative distribution function and survival
function, we can specify the hazard function locally in each
discrete time block by a number between zero and one. We
will use this property when we develop the survival filter.

3 THE SURVIVAL FILTER FOR
ELECTRONIC HEALTH RECORDS

In this section we first describe electronic health records
and corresponding survival problems. We then describe our
model, the survival filter.

Electronic Health Records. The Electronic Health Record
(EHR) comprises all documentation entered for a patient
throughout their interactions with a healthcare institution. It
contains a wide range of observations through time, rang-
ing from free-text notes authored by clinicians, medication
orders, laboratory test results, procedures, demographic in-
formation, and diagnosis codes.

Diagnosis codes (also called billing codes) are structured
codes from a standard taxonomy, namely the ICD9 hierar-
chy (International Classification of Diseases, 9th revision).
ICD9 codes are used in all healthcare institutions. While
the ICD9 hierarchy contains approximately 16,000 codes,
in practice about 9,000 of them are commonly documented.
After each visit, a clinician assigns each patient a set of
ICD9 codes to reflect the diseases or concerns that were
taken care of during the visit.

For instance, after a visit to their primary provider, a pa-
tient is assigned ICD9 codes for “Essential Hypertension,”
and “Diabetes”. At their next visit to their ophthalmologist,
the patient can have the ICD9 code for “Nonproliferative
Diabetic Retinopathy.” In this example, while the patient
has diabetes at both visits, the ICD9 code for diabetes is
only observed at the first visit. Furthermore, note that the
ICD9 codes are correlated. Retinopathy, an eye condition,
is a common complication for patients with diabetes, and
hypertension and diabetes are known comorbidities.

EHR data are longitudinal records, represented as a collec-
tion of per-patient time series ICD9 codes. Note that an
extremely sparse set of ICD9 codes will be used for any
given patient.1 Our goal is to use these data to run a joint
survival analysis of every ICD9 code. Specifically, we seek
a method that:

• estimates the per-patient risk for all ICD9 codes at any
given visit time;

• handles multiple survival problems that are not aligned
in time across patients;

• scales to 9,000 ICD9 codes;

• captures interaction between survival problems (e.g.,
retinopathy, diabetes, and hypertension).

This differs significantly from the setup of traditional sur-
vival analysis, where patients are forced to start at the same

1In our representation, we use “visit time,” not clock time, as
the time unit. Visit time better represents time when studying the
temporal course of diseases [Hripcsak et al., 2015].
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Figure 1: A comparison of standard survival analysis (top frame) and the survival filter (bottom frame). A filled circle
represents an observed event, while an empty circle represents a censored one. In the case of standard survival analysis,
patients in a cohort are aligned by an event. In the survival filter, patients are not aligned and unlike standard survival
analysis, many conditions are considered simultaneously.

time and where we can only analyze a single disease. We
now describe the survival filter, a model that addresses these
goals to perform large-scale joint survival analysis of EHR.

Survival Filter. In the discrete time setting, let the observa-
tion pair (t, c) of time and censoring indicator be represented
as a binary vector indexed by the clock with length equal
to the observation time. This binary vector has a one in the
last entry in the case of failure and is all zero in the case of
censoring. We adopt this view of the observations for the
survival filter.

Let P be the number of patients. Let np be the number of
time intervals for patient p, and C be the number of codes.
Then the observation xp,t,c is one if the code c is marked
in the tth time interval for patient p and zero if code c has
not yet occurred for patient p. To generate this data we
propose a latent time series model where each patient has
a K dimensional latent path which along with a C × K
weight matrix W produces the hazard for each of the C
codes. Let D be a distribution over the positive reals. The
generative process for this model is

W ∼ D
zp,1 ∼ Normal(zµ, σ2

z0)

zp,t ∼ Normal(zp,t−1, σ2
z)

xp,t,c ∼ Bernoulli(1− exp(−W>c exp(zp,t))).

The hazard of a code c for patient p at a time t is 1 −
exp(−W>c exp(zp,t)). The positivity of W and exp(zp,t)
guarantee that 1− exp(−W>c exp(zp,t)) is a valid hazard
(probability) between zero and one. Larger Wc,k indicate
larger hazards for code c when factor k is active.

This model handles the criteria described above. First, it
provides a simultaneous analysis of all ICD9 codes. Second,
it handles misaligned patients by defining the hazards to be a
function of the a shared latent space rather than a function of
a fixed shared clock h(t) (as in the classical setting). Third,
through the matrix W it captures the relationship between
different survival problems. Specifically, when Wc,k and
Wd,k are large, the events c and d are more likely to co-
occur. Finally, as we will show in Section 4, we can perform
efficient computation for the survival filter.

We consider two different priors on W : the log-normal and
the gamma. The gamma distribution is sparsifying when
its shape is less than one (this can be seen from the PDF),
while the log-normal distribution has a heavier tail. Recent
results [Mimno et al., 2014] have shown that log-normal
distributions achieve better predictive results and diversity
among the weights in a Poisson network model. We derive
inference and compare both the log-normal and gamma
prior in the experimental section.

Related Work. Survival analysis methods have been gen-
eralized in many ways beyond the Kaplan-Meier estimator.



One example of such an extension is recurrent event mod-
els [Clayton, 1994] which allow for multiple events rather
than single events. Cox proportional hazards [Cox, 1972]
introduces fixed covariates to scale the patient hazards based
on their covariates. Time varying Cox proportional hazard
models [Fisher and Lin, 1999] are like Cox proportional haz-
ards, but have a set of covariates that change with time for
each patient. Cox-proportional hazard methods are similar
to ours in that they define different clocks through the co-
variates, but differ in that they require covariates and do not
capture the relationship between different survival problems.
The model with the most similar goal is MEPSUM [Dean
et al., 2014]. MEPSUM is a mixture model for multiple
kinds of events happening simultaneously. The relationship
between events is captured via the latent class label as each
latent class contains a nonparametric hazard function for
every type of event. Unlike our model, their model assumes
that patients are synchronized in time when there are no co-
variates. Additionally the formulation of their model means
that it scales with the number of codes rather than the num-
ber of failures, which makes it impractical in large sparse
datasets such as those found in electronic health records.

4 INFERENCE

The main computational problem in working with the sur-
vival filter is computing the posterior distribution of the
weights and latent patient trajectory. Computing the poste-
rior of the survival filter analytically is intractable since our
likelihood cannot be integrated out. Thus posterior compu-
tations require approximations. In this section, we develop
a scalable mean field variational inference [Jordan et al.,
1999] algorithm to approximate the posterior distribution of
the survival filter.

Variational inference transforms the posterior inference
problem into an optimization problem. The optimization
problem defined by variational inference seeks to find a dis-
tribution q in an approximating family that is close in KL
divergence to the posterior distribution. This is equivalent
to maximizing the following [Bishop, 2006]:

L(q) := Eq[log p(x, z,W )− log q(z,W )].

This function is called the evidence lower bound (ELBO) as
it forms a lower bound on log p(x).

Variational Approximation. Recall for the survival filter
the latent variables are (1) zpt for all latent states associated
with patient p at time index t and (2) W , the matrix shared

across observations. The joint distribution can be written as

p(x,z,W ) =

K∏
k=1

C∏
c=1

p(Wc,k)

P∏
p=1

p(zp,1,k)
∏
c:ap,1

p(xp,1,c | zp,1,W )

np∏
t=2

K∏
k=1

p(zp,t,k | zp,t−1,k)
∏
c:ap,t

p(xp,t,c | zp,t,W ).

The mean field family posits a variational distribution where
the latent variables are independent of each other. Each
factorized q belongs to the same family as in the generative
process. Formally, the approximating distribution is

q(z,W ) =

K∏
k=1

C∏
c=1

q(Wc,k |λc,k0, λc,k1)

P∏
p=1

np∏
t=1

K∏
k=1

p(zp,t,k |µp,t,k, σ2
p,t,k),

where λc,k0, λc,k1, µp,t,k, and σp,t,k are variational pa-
rameters. These variational parameters are then set via an
optimization procedure to maximize the ELBO.

Classical Optimization. Typical optimization methods
for mean field variational inference iteratively optimize the
variational parameters associated with each latent variable
by holding the others fixed. These update are easy to de-
rive when the model’s log complete conditional (the log of
the distribution of each latent variable conditioned on the
rest) has analytic expectation with respect to the variational
approximation. This analytic property most commonly oc-
curs in conditionally conjugate exponential families models
where the complete conditional is in the exponential family
[Ghahramani and Beal, 2001]. Unfortunately, none of the
latent variables in our model fall into this class. Instead,
we derive a variational algorithm based on sampling from
the variational approximation [Salimans and Knowles, 2013,
Kingma and Welling, 2014, Rezende et al., 2014, Ranganath
et al., 2014, Titsias and Lázaro-Gredilla, 2014].

Sampling based Variational Inference. We briefly re-
view stochastic optimization before discussing sampling
based variational inference. In the following, we use λ as
an example parameter. Let L(λ) be a function to be maxi-
mized and let ∇̂λL(λ) be a draw from a random variable
whose expectation is the true gradient ∇λL(λ). Let ρt be
the learning rate, then stochastic optimization updates to the
current parameter λt can be made with

λt+1 = λt + ρt∇̂λL(λ).



Algorithm 1 Stochastic Variational Inference for the Sur-
vival Filter

Input: data X
Initialize λ randomly, t = 1.
repeat

Sample a batch of datapoint x1...B
for b = 1...b in parallel do

Use stochastic optimization with Eq. 4 to find the
optimal µb,v and σb,v

end for
Compute the noisy global gradient for λ (Example:
Eq. 8)
Update λ with RMSProp

until change in validation metric is small

This update converges to a local maximum when the learn-
ing rate satisfies the Robbins Monro conditions

∞∑
t=1

ρt =∞

∞∑
t=1

ρ2t <∞.

Stochastic optimization has become a widely used tool in
variational inference.

Returning to variational inference, the variational objective
is an expectation with respect to the variational approxima-
tion. Sampling based variational inference works by writing
the gradient of the ELBO as an expectation followed by a
stochastic optimization driven by Monte Carlo estimates
of the gradient written as an expectation. The gradient as
an expectation step comes in two main flavors: (1) those
based on transformations and (2) those based on the score
function (gradient of the log probability) of the variational
approximation. We use both of these techniques to derive an
inference algorithm for the survival filter (See the appendix
for derivation details).

Algorithm. Algorithm 1 summarizes the parallelized
stochastic variational inference algorithm we use to approx-
imate posteriors of the variational approximation.

Scalability To scale to a large number of censored codes,
we need to be able to efficiently compute the likelihood
for a patient p(xp). Let ap,t be the set of codes that have
not occurred before time t for patient p. Define Rp,t as
the relative log likelihood of the failed codes minus the
previously failed codes:

Rp,t =
∑

c:xp,t,c=1

log p(xp,t,c = 1)− log p(xp,t,c = 0)

−
∑

c:[C]\ap,t

log p(xp,t,c = 0).

Note that Rp,t can be computed on the order of the number
of failures for patient p

By the generative process, we have that the likelihood is

logp(xp) =

np∑
t=1

C∑
c∈ap,t

log p(xp,t,c)

=

np∑
t=1

C∑
c=1

log p(xp,t,c = 0) +Rp,t

=

np∑
t=1

C∑
c=1

log(1− (1− exp(−W>c exp(zp,t)))) +Rp,t

=

np∑
t=1

C∑
c=1

−Wc exp(zp,t) +Rp,t

= −

(
C∑
c=1

Wc

)(
np∑
t=1

exp(zp,t)

)
+

np∑
t=1

Rp,t. (2)

This means that the likelihood for a patient can be computed
in time O((C + np)K + npspK) where sp is the number
of failures for patient p instead of of O(CnpK). Thus
the runtime scales with the number of uncensored codes
rather than by the total number of codes. This efficiency in
computing the likelihood will allow for the construction of
efficient inference algorithms that scale with the number of
failures in the data.

5 EMPIRICAL STUDY

In this section, we describe our experimental setup and
results.

Datasets. Our dataset comprises the longitudinal records
of 13,180 patients from a large, metropolitan healthcare in-
stitution, NewYorkPresbyterian Hospital. IRB approval was
obtained for these experiments. The patient records contain
documentation pertaining to all visit types, including outpa-
tient visits, emergency department visits, as well as hospital
admissions and intensive care stays (thus with varying ICD9
codes through time for a given patient). The only criteria to
include patients in the dataset was at least 5 visits overall
to the institutions and among them at least 3 to a primary
provider care clinic. We truncated the longitudinal records
of patients to 50 visits at most, and thus the mode of the
visits was 50. Note that even though the time unit for our
analysis is visit, the patient records actually have a wide
range of durations (mean 14.5 years; std dev 8 years; median
15.5 years).

For the 13,180 patients, there were overall 8,722 unique
ICD9 codes present in at least one visit. On average, each
visit had 3.61 ICD9 codes assigned (std dev 2.28; median
3.05), and patients had an average of 189 (std dev 178;
median 138) ICD9 codes in their longitudinal records, corre-



sponding to 57 unique codes on average (std dev 36; median
49).

Thus, our dataset represents a large set of patients with a
wide range of conditions, as reflected by the large number
of ICD9 codes in the dataset.

For our experiments, we held out 100 patient records for
validation and parameter tuning and 1,000 patient records
for testing purposes.

Evaluation Metrics. Standard evaluations in traditional
survival analysis rely on concordance; essentially how well
can the model rank patients according to the order in which
the outcome is observed. This assumes a common clock,
or t0 for all patients, an assumption not held for the sur-
vival filter model. Instead, we propose the following three
metrics: predictive log likelihood on held out data to assess
model fitness, and two metrics well defined in the case of
multiple, simultaneous survival analyses. All three metrics
are computed by looking forward in the patient time series.
We keep the approximate posterior of the shared weights
from the training cohort fixed throughout testing.

The first metric computes the log likelihood of all ICD9
codes that have not yet occurred at each visit conditional on
all the patient history prior to the visit. Thus, log likelihood
is:

log p(xc,p,t) =−W>c zp,t−1I(xc,p,t = 0)

+ log(1− exp(−W>c zp,t−1))I(xc,p,t = 1),

where I is the indicator function. For each patient in the test
set, the predictive log likelihood is computed at each visit
after the third visit. Procedurally, this means that we test
at visit 4 conditioning on the first three visit, followed by
testing at visit 5, conditioning on the first four, and so on.

The second metric computes the Mean Average Ranking of
the codes that failed (i.e., first time observed) at visit t in
the set of all ICD9 codes that have not yet failed (i.e., not
yet observed) at that visit. The ICD9 ranks are computed by
ordering the hazards the model assigns to each code at visit
t based on the patient’s latent state at visit t− 1.

The third metric is Recall at D (in our experiments, D is set
to 10). Recall at D computes how many failed codes (i.e.,
first time observed) are in the top D codes, as ordered by
the hazards assigned by the model to each code.

Baselines We consider two baselines for this problem.
The first baseline, which we call Mean Disease Risk, consid-
ers the frequency of ICD9 codes over the entire population.
Given the training set of longitudinal records, a mean hazard
is computed for each ICD9 code. Thus, this baseline outputs
a fixed hazard prediction through time for any new patient
visit.

The second baseline is patient specific, and is called Person
Disease Risk. It computes a single hazard for all ICD9 codes

Factor A

Lumbargo
Osteoarthrosis

Myalgia and myositis
Pain in joint
Pain in limb

Backache
Arthropathy

Pain in joint involving lower leg
Cervicalgia

Pain in joint involving shoulder region

Factor B

Depressive disorder
Anxiety state

Major depressive disorder, recurrent
Major depressive disorder, single episode

Dysthymic disorder
Adjustment disorder

Unknown cause of morbidity or mortality
Panic disorder without agoraphobia

Unspecified personality disorder
Palpitations

Factor C

HIV counseling
Pregnant state, incidental

Vaginitis
Special gynecological examination
Routine gynecological examination

Counseling and advice on contraception
Mother with single liveborn

Supervision of other normal pregnancy
Normal delivery

Leiomyoma of uterus

Factor D

Headache
Dizziness and giddiness

Migraine
Disorder of optic nerve and visual pathways

Visual field defect
Unspecified endocrine disorder

Cushing's syndrome
Optic atrophy

Neoplasm of endocrine glands
Visual discomfort

Figure 3: Example factors for the survival filter represented
by the ICD9 codes with highest hazard for each factor.

based on the empirical frequency of failures at all previous
visits. This baseline captures in essence the level of sickness
of a patient, as sicker patients experience more code failures
(i.e., observe more ICD9 codes).

Hyperparameters. We set the prior variance on the initial
state of the latent trajectories to 10 and the prior mean −3.
The large variance accounts for the fact that patient’s records
start at different points. We set the transition variance to .1.
For log-normal weights we set the log scale to log(10−10),
and the shape to 30. This distribution places a lot of mass
near zero. To encourage sparsity of the gamma weights, we
set the shape to .02 and the rate to 0.3.

RMSProp also contains a scaling parameter. For the local
maximization step we use a decreasing schedule given by
(1 + t)−.8 and for the global gradients we set the constant
to .1.

We explore several different sizes for the latent space rang-
ing from K = 5 to K = 100.

Results. Figure 2 plots the evaluation metrics as a function
of K for the log-normal model. We find that the model with
K = 25 does best with the best predictive log likelihood
and a nearly best performance on Mean Average Ranking.
All of the models outperform the plotted mean disease risk
baseline on all metrics. We find that the gamma models
performs worse than the log-normal model for all K with
a best test log likelihood of −284874. Finally, all of the
models outperform the person disease risk baseline on log
likelihood (-359079).

Figure 3 displays four of the factors found by the log-normal
survival filter with K = 25. These components represent
clinically meaningful groups of conditions.
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Figure 2: The survival filter (blue dots) outperforms the mean disease risk baseline (dashed red line) for all values of K on
all metrics.

6 DISCUSSION

In this paper, we have developed the survival filter, a la-
tent timeseries model for joint survival analysis. The main
advantages of the survival include jointly modeling time-to-
event data for a large set of events and without specifying
alignment across individuals, and an efficient mean field
variational inference algorithm that scales in the number of
events. We demonstrated the use of the survival filter by
measuring the predictive likelihood on a real-world clinical
data set and demonstrate superior performance relative to
baselines and interpretable latent factors.

The survival filter is a general joint survival analysis model
and can be used to study survival problems beyond those
in electronic health records. It can be used in any situation
where there are multiple simultaneous surival problems that
are not necessarily aligned by a true clock. For example, the
survival filter can be used to make movie recommendations.
In this setting the codes are movies, and the patients are the
users. Here, failure of a particular code at time t means that
a movie was watched at time t and the hazards capture the
chance that a movie is watched by a user at time t.
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7 APPENDIX

Sample-based gradients Transformation based ap-
proaches [Kingma and Welling, 2014, Rezende et al., 2014,
Titsias and Lázaro-Gredilla, 2014] write the ELBO as an ex-
pectation with respect to the a standard distribution without
variational parameters and moves the differential operator
inside of the expectation. Formally let r(y) be a standard
distribution and let T be a transformation such that T (y, λ)
is distributed as qλ, then the ELBO can be written as

L(λ) = Er[log p(x, T (y, λ))− log q(T (y, λ))].

When T and the model and approximation are differentiable
the gradient of the ELBO is given by the ELBO as

∇λL(λ) = Er[∇z[log p(x, T (y, λ))− log q(T (y, λ))]∇λT ].

See Kingma and Welling [2014] for a complete derivation
of this identity. In our use below, r will be the standard
normal transformation and T will be z = σy + µ.

Score function based approaches [Ranganath et al., 2014,
Mnih and Gregor, 2014] are based on the following identity

∇λL(λ) = Eq[∇λ log q(z|λ)(log p(x, z)− log q(z))].
(3)

See Ranganath et al. [2014] for a derivation of this.

The convergence time of stochastic optimization is related
to its noise, so in the sequel we derive analytically when
possible.

Gradient for q(zp,t). The variational approximation
q(zp,t,k|µp,t,k, σ2

p,t,k) is a normal distribution with mean
µp,t,k and variance σ2

p,t,k. The gradient for the variational
parameters can be mostly computed analytically.

∇µp,t,k
L = − exp(µp,t,k +

1

2
σ2
p,t,k)

C∑
c=1

E[Wc]

− 1

σ2
z

(2µp,t,k − µp,t−1,k − µp,t+1,k)

+∇µp,t,k
E[Rp,t],

∇σ2
p,t,k
L = −1

2
exp(µp,t,k +

1

2
σ2
p,t,k)

C∑
c=1

E[Wc]

− 1

σ2
z

−∇σ2
p,t,k

E[Rp,t] +
1

2σ2
p,t,k

. (4)

E[Wc] can be computed analytically for both the gamma
and log-normal distribution. Recall the definition of Rp,t

Rp,t =
∑

c:xp,t,c=1

log p(xp,t,c = 1)− log p(xp,t,c = 0)

−
∑

c:[C]\ap,t

log p(xp,t,c = 0).



Its expected value is

Eq[Rp,t] =
∑

c:xp,t,c=1

E[log p(xp,t,c = 1)]

+ E[Wc]
>E[exp(zp,t)]

+
∑

c:[C]\ap,t

E[Wc]
>E[exp(zp,t)].

Its derivative with respect to its mean is computed by the
transformation approach using the identity z = y

√
σ2
p,t,k +

µp,t,k where y is drawn from a standard normal N .

∇µp,t,k
Eq[Rp,t]

=
∑

c:xp,t,c=1

Eq(Wc)Ey∼N

[
Wc,k exp(z)

exp(−W>c exp(z))− 1

]
+ E[Wc,k] exp(µp,t,k +

1

2
σ2
p,t,k)

+
∑

c:[C]\ap,t

E[Wc,k] exp(µp,t,k +
1

2
σ2
p,t,k).

Similarly it’s derivative with respect to the variance is given
as

∇σ2
p,t,k

Eq[Rp,t]

=
1

2
(
∑

c:xp,t,c=1

Eq(Wc)Ey∼N

[
yWc,k exp(z)

exp(−W>c exp(z))− 1

]
+ E[Wc,k] exp(µp,t,k +

1

2
σ2
p,t,k)

+
∑

c:[C]\ap,t

E[Wc,k] exp(µp,t,k +
1

2
σ2
p,t,k)).

We can compute noisy, unbiased estimates of this gradient
by sampling from the variational approximation for Wc,k

and sampling y from the standard normal.

The gradient can be computed in time O((C + np)K +
npspK) rather than O(CnpK). The only portion of the
gradient that we cannot compute analytically is the portion
associated with failing codes. This portion requires sam-
pling from the variational approximation. This means we
can exploit the sparsity of the failures as we only have to
sample small fractions of the W matrix rather than the en-
tire W matrix. This results in an order of magnitude less
samples from the underlying random generator for each
noisy gradient and produces lower variance gradients than
sampling entirely.2

The gradient of the variational parameters of the first and
last point can be expressed similarly.

2Variance can be a problem in sampling based variational ap-
proximations [Kingma and Welling, 2014, Rezende et al., 2014,
Ranganath et al., 2014].

Gradients for Log-Normal W. Similar to the time series
zp,t, the only component of the gradient of the variational
parameters of W that is not analytically tractable is due
to the failures. To symmetrize this update with the latent
time series, we represent the log-normal distribution as an
exponentiated normal. That is Wc,k = exp(W̃c,k), where
W̃c,k is normally distributed with mean µw and variance
σ2
w. In this setup, the variational approximation for W̃c,k is

normally distributed with variational parameters λ0c,k (the
mean) and λ1c,k (the variance). The gradient for the mean of
the variational approximation is given by

∇λ0
c,k

= − 1

σ2
w

(µw −Wc,k) (5)

− exp(λ0c,k +
1

2
λ1c,k)

P∑
p=1

np∑
v=1

E[exp(zp,t,k)] (6)

+∇λ0
c,k

E[Rp,t]. (7)

and the gradient of the variance is

∇λ0
c,k

= − 1

2σ2
w

− exp(λ0c,k +
1

2
λ1c,k)

P∑
p=1

np∑
v=1

1

2
E[exp(zp,t,k)]

+∇λ1
c,k

E[Rp,t] + +
1

2λ1c,k
.

The gradients of R are symmetric to the time series updates
for both the mean and variance parameter.

Note that the gradient can be computed in time pro-
portional to the number of failures (O((C + np)K +(∑P

p=1 npsp

)
K)) rather than the number of codes mul-

tiplied by the number of visits (O(CK
∑P
p=1 np)) as sum

of E[exp(zp,t,k)] across all patients and visits can be shared
for each code.

Gradients for Gamma W Finally, we consider the gradi-
ent of the parameters of the variational approximation of W
when W is drawn from a gamma distribution in the gener-
ative process. In this setup, the variational approximation
for each entry in the weight matrix is gamma distributed
with shape λ0c,k and scale λ1c,k. Similarly the only part of
the gradient for this approximation that cannot be computed
analytically is due to the failures. The gradient with respect
to the shape is

∇λ0
c,k

= −βwλ1c,k + (αw − 1)Ψ(1)(λ0c,k) + 1

+ (1− λ0c,k)Ψ(1)(λ0c,k)

− λ1c,k
P∑
p=1

np∑
v=1

1

2
E[exp(zp,t,k)]

+∇λ0
c,k

E[Rp,t].



where Ψ is the digamma function and Ψ(1) is its derivative.
The gradient with respect to the scale parameter is

∇λ1
c,k

= βwλ
0
c,k +

(αw − 1)

λ1c,k
+

1

λ0c,k

− λ0c,k
P∑
p=1

np∑
v=1

1

2
E[exp(zp,t,k)]

+∇λ1
c,k

E[Rp,t].

Similar to the log-normal case this gradient scales with
number of failures, and the log p(x = 0) terms can be
computed analytically.

Rather than using transformations to compute gradient of the
expected value of log p(x = 1), we use score style gradients.
We already know how to evaluate log p(x = 1), so the all
we need to compute the gradient is the score function of the
gamma distribution for both the shape α and the scale κ.
The score function of the shape is

∇λ0
c,k

log q(wc,k) = − log(λ1c,k)−Ψ(λ0c,k) + log(wc,k)

The score function of the scale is

∇κ log q(wc,k) = −
λ0c,k
λ1c,k

+
wc,k

λ1c,k
2 .

Plugging this into Eq. 3 and approximating the expectation
by Monte Carlo yields a noisy gradient of the ELBO.

Data subsampling. Given the noisy gradients just derived,
we can use stochastic optimization to maximize the ELBO.
This procedure is inefficient in that every single observation
has to be iterated over in order to compute the gradient of the
variational parameters for shared W . Another way this pro-
cedure is computationally wasteful is that at early iterations
work done on all of the local parameters is based on the ran-
domly initialized variational parameters for shared structure.
These inefficiencies can be prohibitive when dealing with
large datasets or large data instances.

Stochastic variational inference (SVI) [Hoffman et al., 2013]
addresses this by using stochastic optimization. SVI works
by first identifying local parameters, latent variables associ-
ated with a datapoint, and global parameters, shared latent
variables. Next a datapoint is sampled, the optimal vari-
ational distribution for the local parameters is computed
based on the current value of the global parameters, and a
noisy gradient based on the sampled data point is computed.
SVI generalizes this to drawing batches of datapoints rather
than drawing a single datapoint at each update.

In the survival filter the global parameters are the weights
and the local parameters are the latent trajectory. For a fixed
variational approximation on W , we compute the optimal
local variational parameters by running a stochastic opti-
mization procedure with noisy gradient given by Eq. 4. An

example global gradient for log-normal weights is given by

− 1

σw
(µw −Wc,k)

− P

B
(exp(λ0c,k +

1

2
λ1c,k)

B∑
b=1

npb∑
v=1

E[exp(zpb,t,k)]

+∇λ0
c,k

E[Rpb,t]). (8)

where we have reweighted the data term to maintain unbi-
asedness of the gradient.

Our approach differs from standard SVI in that we use
stochastic optimization to compute the optimal local vari-
ational parameters. This approach allows differs from the
double stochastic approaches in sampling based variational
methods [Titsias and Lázaro-Gredilla, 2014, Ranganath
et al., 2014] in that we do run a complete maximization
procedure for each data point that is sampled rather than
simply follow a noisy gradient. This maximization step can
be time consuming, so we find the optimal local variational
approximation in parallel.

Learning Rates. The standard robbins monro learning
rate can be challenging to set in that it does not account for
varying length scales or different amounts of noise in each
gradient of the coordinate. We instead use RMSProp3 which
scales the gradient by the square root of a running average
of the squared gradient. This handles varying length scales
as multiplying the objective by a constant does not change
the step. RMSProp controls for noise as the moving average
of the squared gradient is larger when the variance of the
gradient is larger.

References
C. Bishop. Pattern Recognition and Machine Learning.

Springer New York., 2006.

D. Clayton. Some approaches to the analysis of recurrent
event data. Statistical Methods in Medical Research, 3
(3):244–262, 1994.

D. R. Cox. Regression models and like-tables. Journal of
the Royal Statistical Society: Series B (Statistical Method-
ology), 43(2):187–220, 1972.

D. O. Dean, D. J. Bauer, and M. J. Shanahan. A discrete-
time multiple event process survival mixture (MEPSUM)
model. Psychological methods, 19(2):251, 2014.

L. D. Fisher and D. Y. Lin. Time-dependent covariates in
the Cox proportional-hazards regression model. Annual
review of public health, 20(1):145–157, 1999.

Z. Ghahramani and M. Beal. Propagation algorithms for
variational Bayesian learning. In NIPS 13, pages 507–
513, 2001.
3
www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.

pdf



M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochas-
tic variational inference. Journal of Machine Learning
Research, 14(1303–1347), 2013.

G. Hripcsak and D. J. Albers. Next-generation phenotyping
of electronic health records. Journal of the American
Medical Informatics Association, 20(1):117–121, 2013.
ISSN 1067-5027. doi: 10.1136/amiajnl-2012-001145.

G. Hripcsak, D. J. Albers, and A. Perotte. Parameterizing
time in electronic health record studies. Journal of the
American Medical Informatics Association, 2015.

P. B. Jensen, L. J. Jensen, and B. Søren. Mining electronic
health records: towards better research applications and
clinical care. Nature Reviews. Genetics, 13(6):395–405,
2012. ISSN 1471-0056. doi: 10.1038/nrg3208.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. In-
troduction to variational methods for graphical models.
Machine Learning, 37:183–233, 1999.

E. L. Kaplan and P. Meier. Nonparametric estimation from
incomplete observations. Journal of the American statis-
tical association, 53(282):457–481, 1958.

D. Kingma and M. Welling. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations, 2014.

D. Mimno, G. Gopalan, and D Blei. Necessary evil or first
choice? Non-conjugate priors and Poisson community
models. In NIPS Workshop on Variational Inference,
2014.

A. Mnih and K. Gregor. Neural variational inference and
learning in belief networks. In ICML, 2014.

W. Nelson. Theory and applications of hazard plotting for
censored failure data. Technometrics, 14(4):945–966,
1972.

R. Ranganath, S. Gerrish, and D. Blei. Black box varia-
tional inference. In International Conference on Artifical
Intelligence and Statistics, 2014.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic back-
propagation and approximate inference in deep generative
models. ArXiv e-prints, January 2014.

T. Salimans and D. Knowles. Fixed-form variational poste-
rior approximation through stochastic linear regression.
Bayesian Analysis, 8(4):837–882, 2013.

J. Shepherd, S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer,
P. W. Macfarlane, J. H. McKillop, and C. J. Packard.
Prevention of coronary heart disease with pravastatin in
men with hypercholesterolemia. New England Journal
of Medicine, 333(20):1301–1308, 1995. doi: 10.1056/
NEJM199511163332001. PMID: 7566020.

R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller,
B. Fisher, M. J. B. Taphoorn, K. Belanger, A. A. Brandes,
C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer,
S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G.

Cairncross, E. Eisenhauer, and R. O. Mirimanoff. Ra-
diotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. New England Journal of Medicine,
352(10):987–996, 2005. doi: 10.1056/NEJMoa043330.
PMID: 15758009.

M. Titsias and M. Lázaro-Gredilla. Doubly stochastic varia-
tional Bayes for non-conjugate inference. In Proceedings
of the 31st International Conference on Machine Learn-
ing (ICML-14), pages 1971–1979, 2014.


