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Abstract—Super-resolutionmethods form high-resolution images from low-resolution images. In this paper, we develop a newBayesian

nonparametric model for super-resolution. Ourmethod uses a beta-Bernoulli process to learn a set of recurring visual patterns, called

dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data.We test

the results on both benchmark and natural images, comparing with several other models from the research literature.We perform large-

scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we useGibbs sampling to

approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online

variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by theGibbs sampler.
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1 INTRODUCTION

THE sparse representation of signals with a basis is
important in many applications. It has been extensively

used in image denoising [1], [2], inpainting [3], [4], and clas-
sification [5], [6].

Many real data sets can be sparsely represented in some
basis; typically this basis itself has to be learned from the
data [7], [8], [9], [10], [11], [12]. For example, an image can
be represented by weighted combinations of recurrent pat-
terns of pixels. This construction may be beneficial, both
while building a model for more accurate representation of
the data (e.g., superior image denoising models) and while
deriving and implementing an inference procedure for
more efficient algorithms.

In this paper we consider image super-resolution (SR),
the problem of recovering a high-resolution (HR) image
from a low-resolution (LR) image. It has many applications,
e.g., to smart phones, surveillance cameras, medical imag-
ing, and satellite imaging.

There are a variety of approaches for image super-
resolution. In general, rendering an HR image from an LR
image has many possible solutions. We must use regulariza-
tion of some form, i.e., prior information about the HR, to

guarantee uniqueness and stability of the extension. For this
purpose, researchers have proposed several methods [13],
[14]. Interpolation-based methods, such as the Bicubic method
and Bilinear method, often over-smooth images, losing
detail. Example-based approaches use machine learning to
avoid this [15], [16], [17]; they train on ground-truth HR and
LR (either single image or multiple images), learning a sta-
tistical relationship between the two. These relationships
are later used to reconstruct unknown HR images from cor-
responding LR images. Freeman et al. [15] proposes a
method that stores a training set of preprocessed patches
and uses a nearest-neighbor search to super-resolve. Kim
and Kwon [16] proposes using kernel ridge regression with
a regularized gradient descent. Another class of SR algo-
rithms use texture similarity to match image regions with
known textures [18], [19]. SR algorithms can also be classi-
fied as SR using single-image versus multiple images. Many
machine learning based techniques fall into the multiple
image category. One classic single-image SR example is [20]
which uses recurring patterns at same and different scales
in a single image. Another such example is [21], which uses
a Gaussian process regression.

In this work, our focus is on SR via example-based sparse
coding. Super-resolution via Sparse representation (ScSR) is
such an algorithm pioneered in [22]. ScSR is based on sparse
coding via L1 regularized optimization. In [22], image data
are represented using a collection of dictionary elements
(recurring patterns of pixels) that are weighted across differ-
ent positions. Although very powerful, this model requires
one to specify the number of dictionary elements and the
variance of the noise model in advance—parameters that
may be difficult to assess for real-world images. It also only
provides a batch learning algorithm, i.e., computing model
parameters via a gradient descent algorithm on a small sub-
set of the data.

Bayesian nonparametricmethods circumvent all these lim-
itations. Thesemethods adapt the structure of the latent space
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to the data and provide a powerful representation because
they infer parameters that otherwise have to be assigned a
priori [23], [24], [25], [26], [27]. The full posterior distribution
can be approximated via MCMC or variational inference,
yielding sparse representations and learned dictionaries.

Bayesian nonparametric methods have been used in
many image analysis applications: to learn deep architec-
tures used for object recognition in [28], for image inpaint-
ing and denoising in [29], [30], for image segmentation in
[27], [31], and to learn nonparametric multiscale representa-
tions of images in [32].

In this paper, we develop a Bayesian nonparametric
method for super-resolution. We show that inference in our
model is feasible, performing super-resolution with both a
sampling based algorithm [33] and an online variational
inference algorithm [34]. In the latter, we approximate the
posterior distributions via a stochastic gradient descent
over a variational objective that enables us to use the full
data set and process the data segment by segment. We also
provide human evaluation experiments which shows that
signal-to-noise ratio (a typical quantitative measure of suc-
cess in image analysis applications) is not necessarily con-
sistent with human judgement. We devise a new model,
new algorithms, and study a human-based evaluation. We
make the following contributions:

� We develop a sparse Bayesian nonparametric model
for SR, learning the number of dictionary elements
and the noise variance from the data.

� We develop an online variational Bayes (VB) algo-
rithm finding high quality “coupled dictionaries” in
a fraction of the time needed by traditional inference.

� We devise large scale human evaluation experiments
to explicitly assess the visual quality of results.

Our approach to SR gives a rich nonparametric representa-
tion with scalable learning.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the proposed super-resolution model and
non-parametric prior, Section 3 contains the derivation of
the posterior inference algorithms, Section 4 presents the
experimental results and implementation details, Section 5
includes the discussion and future work.

2 PROPOSED APPROACH

Bayesian factor analysis can be used to learn factors /
dictionaries from natural images. Zhou et al. [29] used beta
process factor analysis in image denoising, inpainting and
compressive sensing. These models learn both the dictio-
nary elements and their number from the data.

We build here a nonparametric factor analysis model that
couples a high-resolution image to a corresponding low-reso-
lution image. In training, we learn the HR/LR relationship
fromobservedHR/LR pairs. Once trained, we perform super-
resolution by conditioning on an observed LR image and com-
puting the expectation of its correspondingHR image.

A more detailed description of the training process is as
follows: We create training data by taking observed HR
images and forming corresponding LR images. Fig. 1
depicts the preprocessing and data extraction steps. We first
down-sample the HR images. Then, we up-sample those by
interpolating with a deterministic weighting function (e.g.,

bicubic interpolation). We extract same-sized patches from
the same locations of both the HR and interpolated LR
images, and consider those patches as coupled to each
other. These are the data on which we train the model.

In the model, each small patch is generated from latent
global dictionary elements—small images functioning as
factor loadings—using local sparse weights and Gaussian
noise. We will first explain how these latent variables are
generated and then present how they are used to generate
the observations.

We learn two dictionaries: one for HR images and one for
LR images. In terms of notation, d

ðlÞ
k represents the LR dic-

tionary element, and d
ðhÞ
k is the HR dictionary element. vðlÞ

and vðhÞ represent the dimensionality of the low and high
resolution dictionary elements, respectively. IvðhÞ represents
vðhÞ � vðhÞ identity matrix. To model each dictionary ele-
ment, we use a zero-mean Gaussian distribution,

d
ðlÞ
k � N �0; vðlÞ�1

IvðlÞ
�

d
ðhÞ
k � N �0; vðhÞ�1

IvðhÞ
�
:

The matrix form of the dictionaries are DðlÞ and DðhÞ where
kth columns are d

ðlÞ
k and d

ðhÞ
k , respectively.

Following [22], we assume that the sparse weights are
shared by both resolution levels for combining dictionary
elements to produce images. This is the key property of the
model that allows us to frame super-resolution as inference.
Sparse weights have two components: real valued weights
sik and binary valued assignments zik. To model the weights
sik, we use a zero-mean Gaussian distribution with
precision gs. zi is a binary vector that encodes which dictio-
nary elements are activated for the observation i. pðzÞ repre-
sents the prior of z and we will elaborate on this in the next
section. These are given as

sik � Nð0; 1=gsÞ zik � pðzikÞ:

We place Gamma priors on the precisions of the sparse
weights and observation noise (gs and g�). The two resolu-
tion levels share these variables as well,

g� � Gammaðc; dÞ; gs � Gammaðe; fÞ;
where c; d; e; f are constant hyper-parameters.

Let x
ðhÞ
i and x

ðlÞ
i represents patches extracted from HR

and LR images, respectively, as shown in Fig. 1. Given the
(global) dictionary elements and (local) sparse weights, the
observations are modeled as

��
ðlÞ
i � N �0; g�1

� IvðlÞ
�

��
ðhÞ
i � N �0; g�1

� IvðhÞ
�

xxx
ðlÞ
i ¼ DðlÞðsi � ziÞ þ ��i

ðlÞ xxx
ðhÞ
i ¼ DðhÞðsi � ziÞ þ ��i

ðhÞ;

where fðlÞ; ðhÞg represents LR and HR, respectively. Here,
N is the total number of patches, ��

ðhÞ
ii is the observation

Fig. 1. Depicting the observations extracted (e.g., image patches) from
high and low resolution images.
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noise, and � represents the element-wise multiplication of
two vectors. Fig. 2 illustrates the graphical model.

To use this model in SR, we must be able to compute the
posterior distributions of the hidden variables. In the train-
ing phase, we must compute the posterior distributions

pðDðhÞ;DðlÞjfxðhÞ
i ;x

ðlÞ
i gÞ of the dictionaries, given a collection

of HR/LR image pairs. In testing, we use their posterior
expectation to reconstruct a held-out HR image from an LR
image,

E
�
x
ðhÞ
j

�� xðlÞ
j ;
�
x
ðhÞ
i ;x

ðlÞ
i

�� � D̂ðhÞðŝj � ẑjÞ; (1)

where D̂ðhÞ is the mean of the posterior distribution
pðDðhÞjfxðhÞ

i ;x
ðlÞ
i gÞ and ðŝj � ẑjÞ are the posterior expectation

of the sparse weights from the LR image patches (xx
ðlÞ
j ) via

posterior inference. (We discuss algorithms for posterior
inference in Section 3.)

2.1 Beta-Bernoulli Process Prior (BP)

We now discuss the prior for the factor assignments zi. We
use a beta-Bernoulli process [23], [24], [25], [26], [35], a prior
on infinite binary matrices which is connected to the Indian
buffet process (IBP). Each row encodes which dictionary
elements are activated for the corresponding observation;
columns with at least one active cell correspond to factors.
A distinguishing characteristics of this prior is that the num-
ber of these factors is not specified a priori. Conditioned on
the data, we examine the posterior distribution of the binary
matrix to obtain a data-dependent distribution of howmany
components are needed.

The IBP metaphor gives the intuition. Consider a buffet
of dishes at a restaurant. Suppose there are infinite number
of dishes and we are trying to specify the infinite binary
matrix indicating which customers (observations) choose
which dishes (factors/dictionary elements). In the Indian
buffet process, N customers enter the restaurant sequen-
tially. Each customer chooses dishes in a line from a buffet.
The first customer starts from the beginning of the buffet
and takes from each dish, stopping after Poisson(t) number
of dishes where t represents the arrival rate. The ith cus-
tomer starts from the beginning as well, but decides to take
from dishes in proportion to their popularity within the pre-
vious i� 1 customers. This proportionality can be quanti-
fied as mk

i where mk is the number of previous customers
who took this kth dish. After considering the dishes previ-
ously taken by other customers, the ith customer tries a

Poisson(ti) number of new dishes. Which customers chose
which dishes is recorded by the infinite binary matrix with
N rows (indicating the customers/observations) and infi-
nite columns (indicating the dishes/factors/dictionary ele-
ments). One important property of this process is that the
joint probability of final assignment is independent of the
order of customers getting into the restaurant which is
called exchangeability property of the prior [36].

The probabilistic process is as follows. Each observation i
is drawn from a Bernoulli process (a sequence of indepen-
dent identically distributed Bernoulli trials), xi � BePðBÞ
where B is drawn from a beta process B � BPðc0; B0Þ. B0

represents the base measure with B0 ¼ Nð0; 1=bIÞ. As
K ! 1, the ith observation is xi ¼

P1
k¼1 zikddk where zik

denotes whether the dictionary element dk is used while
representing the ith observation or not, and the sample
from the beta process is given by B ¼P1

k¼1 pkddk . Here, pk

represents the usage probability of element dk.
In inference, we use a finite beta-Bernoulli approxima-

tion [25]. The finite model truncates the number of dictio-
nary elements toK and is given by

pk � Betaðc0h0; c0ð1� h0ÞÞ; zik � BernoulliðpkÞ;
where c0 and h0 are scalars and k 2 1; . . . ; K. As K tends to
infinity, the finite beta-Bernoulli approximation approaches
the IBP/BP. If the truncation is large enough, data analyzed
with this prior will exhibit fewer thanK components [23].

2.2 Super-Resolution via Posterior Distributions

Our algorithm has two stages: fitting the model on pairs of
HR and LR images, and super-resolving new LR images to
create HR versions.

Training: coupled dictionary learning stage. In training, we
observe x

ðhÞ
i and x

ðlÞ
i . All other random variables are latent.

The key inference problem to be solved is the computation
of the posterior distributions of the hidden variables. In the
training phase, we must compute the posterior distributions
pðDðhÞ;DðlÞjfxðhÞ

i ;x
ðlÞ
i gÞ of the dictionaries given a collection

of HR/LR image pairs. We rewrite the coupled model in a
form similar to the single scale model:

xxx
ðcÞ
i ¼ xxx

ðlÞ
i

xxx
ðhÞ
i

 !
;d

ðcÞ
k ¼ d

ðlÞ
k

d
ðhÞ
k

 !
; ��

ðcÞ
i ¼ ��

ðlÞ
i

��
ðhÞ
i

 !
; (2)

where the superscript ðcÞ corresponds to combination of ðlÞ
and ðhÞ. Writing the fully-observed model in this way
reveals that we can train the dictionaries with similar meth-
ods as for the single-scale base model. (Training amounts to
approximating the posteriors of these values.) The differen-
ces are that we use combined patches xxx

ðcÞ
i and combined dic-

tionaries d
ðcÞ
k . This leads to shared sparse weights for the

two resolution levels. (The details of computing the distri-
bution pðDðhÞ;DðlÞjfxðhÞ

i ;x
ðlÞ
i gÞ are discussed in Section 3.)

Super-resolving a low resolution image. Fitted dictionaries in
hand, we now show how to form HR images from LR
images via posterior computation.

In this prediction setting, the HR image x
ðhÞ
i is unknown;

the goal is to reconstruct it from the LR image patches

x
ðlÞ
i , the posterior estimates of the dictionaries ðD̂ðhÞ; D̂ðlÞÞ,

and the precisions ĝ�; ĝs of the noise and the sparse weights,

Fig. 2. Graphical model.
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xxx
ðcÞ
i ¼ xxx

ðlÞ
i

�
	 


;d
ðcÞ
k ¼ d

ðlÞ
k

d
ðhÞ
k

 !
; ��

ðcÞ
i ¼ ��

ðlÞ
i

�
	 


:

First we find estimates of the sparse factor scores, ðŝi � ẑiÞ,
by using the LR image patches xx

ðlÞ
i and posterior estimates

of the dictionaries and precisions g� and gs. The fitted value
of gs determines the strength of a “regularization term” that
controls the sparsity of the factor scores.

More precisely, this prediction setting has three steps. The

input is a set of held-out LR imagepatchesx
ðlÞ
i , the posterior esti-

mates of the dictionaries ðD̂ðhÞ; D̂ðlÞÞ, and the precisions ĝ�; ĝs of

the noise and the sparseweights. The steps are as follows:

1) We find estimates of the sparse factor scores,
ðŝi � ẑiÞ, conditioned on the LR image patches x

ðlÞ
i

and estimates ðD̂ðhÞ; D̂ðlÞÞ; ĝ�; ĝs from the training
stage.

2) Eq. (1) determines the HR patches x̂
ðhÞ
i .

3) We replace each x
ðlÞ
i by its corresponding collocated

x̂
ðhÞ
i ; the whole HR image, X̂ðhÞ, is the pixel-wise aver-

age of those overlapping reconstructions.
Post-processing. Following [22], we apply a post-process-

ing step that, when down-sampled, the reconstructed HR
image, X̂ðhÞ, should match the given LR image XðlÞ. Specifi-
cally, we solve the following:

X̂ðhÞ� ¼ argmin
X

kfðXÞ �XðlÞk22 þ ckX� X̂ðhÞk22;
where fðÞ is a linear operator consisting of an anti-aliasing
filter followed by down-sampling. This optimization prob-
lem is solved with gradient descent.

3 POSTERIOR INFERENCE

In the proposed approach, all of the priors are in the conjugate
exponential family. In a first implementation, we use Gibbs
sampling. We iteratively sample from the conditional distri-
bution of each hidden variable given the others and the obser-
vations. This defines a Markov chain whose stationary
distribution is the posterior [33]. The corresponding sampling
equations are analytic and provided in the Appendix A-B
(Appendix is in the supplementary material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2014.2321404).

The Gibbs sampler has difficulty with scaling to large
data, because it must go through many iterations, each time
visiting the entire data set before the sampler mixes. For
this reason, both our Gibbs sampler and ScSR use 105

patches sampled from 3� 106. We now develop here an
alternative algorithm to Gibbs sampling for SR that scales to
large and streaming data. Specifically, we develop an online
variational inference algorithm.

Variational inference is a deterministic alternative to
MCMC that replaces sampling with optimization [34]. The
idea is to posit a parameterized family of distribution over
the hidden variables and then optimize the parameters to
minimize the KL divergence to the posterior of interest [37].
Our algorithm iteratively tracks an approximate posterior
distribution, which improves as more data are seen.

In typical applications, the variational objective is opti-
mized with coordinate ascent, iteratively optimizing each

parameter while holding the others fixed. However, in
Bayesian settings, this suffers from the same problem as
Gibbs sampling—the entire data set must be swept through
multiple times in order to find a good approximate poste-
rior. In the algorithm we present here, we replace coordi-
nate ascent optimization with stochastic optimization—at
each iteration, we subsample our data and then adjust the
parameters according to a noisy estimate of the gradient.
Because we only subsample the data at each iteration, rather
than analysing the whole data set, the resulting algorithm
scales well to large data. This technique was pioneered in
[38] and was recently exploited for online learning of topic
models [39] and hierarchical Dirichlet processes [40]. For
the general algorithm in conditionally conjugate models, a
class of latent variable models that contains ours, see [34].

We first develop the coordinate ascent algorithm for the
coupled model. Then we derive the online variational infer-
ence algorithm,which canmore easily handle large data sets.

3.1 Variational Inference for the Coupled Model

We use the coupling perspective in Section 2.2 to derive the
batch variational Bayes algorithm. The single-scale base
model is the BPFA model of [35], which gives a mean-field
variational inference algorithm. The batch VB algorithm
derived here is the coupled version of that.

We first define a parametrized family of distributions
over the hidden variables. Let Q ¼ fpp;Z;S;D; g�; gsg
denote the hidden variables for all i; k. We write coupled
data as in Equation (2); in the new set-up the variables to be
learned become Q ¼ fpp;Z;S;DðcÞ; g�; gsg. We use a fully
factorized variational distribution,

qðQÞ ¼ qtðppÞqfðDðcÞÞqnðZÞqvðSÞq�ðgg�Þq�ðggsÞ:
Each component of this distribution is governed by a free
variational parameter,

qtkðpkÞ ¼ Betaðtk1; tk2Þ qnikðzikÞ ¼ BernoulliðnikÞ
qfkjðdkjÞ ¼ N ðfkj;FkjÞ q�ðg�Þ ¼ Gammað�1; �2Þ
qvikðsikÞ ¼ N ðvik;VikÞ q�ðgsÞ ¼ Gammað�1; �2Þ:

We optimize these parameters with respect to a bound on
the marginal probability of the observations. This bound is
equivalent, up to a constant, to the negative KL divergence
between q and the true posterior. Thus maximizing the
bound is equivalent to minimizing KL divergence to the
true posterior. Let JJ ¼ fc0; h0; c; d; e; fg be the hyper-param-
eters. The variational lower bound is

logðpðXðcÞ jJJÞÞ 	 HðqÞ þ
XK
k¼1

(
Eq½log pðpk j c0; h0; KÞ


þ
XN
i¼1

Eq½log pðzik jppÞ
 þ
XJ
j¼1

Eq½log ðpðdkj jbkjÞ
�


þ
XN
i¼1

Eq½log
�
pðsik j gsÞpðgsje; fÞ

�

)

þ
XN
i¼1

�
Eq½log p

�
x
ðcÞ
i jZ;S;DðcÞg�

�
 þ Eq½log pðg� j c; dÞ

�
;

(3)
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where HðqÞ is the entropy of the variational distribution
and dimensionality of the dictionary elements J is twice
as big as the single-scale model. We denote this function
LðqÞ.

Holding the other parameters fixed, we can optimize
each variational parameter exactly; this gives an algorithm
that goes uphill in LðqÞ [41]. (Further, this will provide the
algorithmic components needed for the online algorithm of
Section 3.2.)

Update equations for each free parameter optimizing
this bound are given below. In all equations, ~x

ðcÞ
ið�kÞ

represents the reconstruction error using all but the
kth dictionary element, that is

~x
ðcÞ
ið�kÞ ¼ x

ðcÞ
i �DðcÞðsi � ziÞ þ d

ðcÞ
k ðsik � zikÞ:

The expectation based on the variational distribution is then
given by

Eq

�
~x
ðcÞ
ið�kÞ

� ¼ x
ðcÞ
i þ ff

ðcÞ
k ðviknikÞ �

XK
k¼1

ff
ðcÞ
k ðviknikÞ:

Update for the binary factor assignment zik. The variational
parameter for zik is nik. We first consider two values of the
variational distribution for two values (0, 1) of zik,

qðzik ¼ 1Þ / expðEq½lnðpkÞ
Þ

� exp

��1
�2

��
v2
ik þVik

��
ff
ðcÞT
k ff

ðcÞ
k þPjFkj

��2vikff
ðcÞT
k Eq

�
~x
ðcÞ
ið�kÞ

��
2

0
@

1
A

qðzik ¼ 0Þ / expðEq½lnð1� pkÞ
Þ; where

Eq½lnðpkÞ
 ¼ c c0h0 þ
X
i

nik

 !
� cðc0 þNÞ

Eq½lnð1� pkÞ
 ¼ c c0ð1� h0Þ �
X
i

nik þN

 !
� cðc0 þNÞ:

Then the update equation for nik is given as

nik ¼ qðzik ¼ 1j�Þ
qðzik ¼ 1j�Þ þ qðzik ¼ 01j�Þ :

Update for the shared sparse weight sik. The variational dis-
tribution for sik is Gaussian parametrized with mean vik

and variance Vik. Coordinate ascent update equation for
these free parameters are

Vik ¼ �1
�2

þ �1

�2
nik ff

ðcÞT
k ff

ðcÞ
k þ

X
j

Fkj

 ! !�1

;

vik ¼ �1

�2
Viknikff

ðcÞT
k Eq

�
~x
ðcÞ
ið�kÞ

�
:

Update for the kth coupled dictionary element d
ðcÞ
k . The varia-

tional distribution for the couple dictionary element d
ðcÞ
k is

Gaussian parametrized with mean ff
ðcÞ
k and variance FF

ðcÞ
k .

Coordinate ascent update equation for these free variational
parameters are

FF
ðcÞ
k ¼ 2vI2v þ �1

�2

XN
i¼1

�
v2
ik þVik

�
n2ik

 !�1

;

ff
ðcÞ
k ¼ �1

�2
FF

ðcÞ
k

XN
i¼1

viknikEq

�
~x
ðcÞ
ið�kÞ

�
:

Update for the dictionary usage probabilities pk. The varia-
tional distribution for pk is a beta distribution parametrized
with the shape parameters (tk1; tk2). Coordinate ascent
update equation for these free parameters are

tk1 ¼ c0h0 þ
XN
i¼1

nik;

tk2 ¼ N �
XN
i¼1

nik þ c0ð1� h0Þ:

Update for the precision g�. The variational distribution for
g� of the observation noise ��i is a gamma distribution
parametrized with (�1; �2). Coordinate ascent equation for
these free parameters are

�1 ¼ cþNP;

�2 ¼ dþ 1

2

XN
i¼1

(
x
ðcÞ
i �

XK
k¼1

ff
ðcÞ
k ðviknikÞ

�����
�����
2

2

þ
XK
k¼1

nik
�
v2
ik þVik

�	
ff
ðcÞT
k ff

ðcÞ
k þ

X
j

Fkj




�
XK
k¼1

nikff
ðcÞT
k ff

ðcÞ
k v2

ik

)
:

Update for the precision gs. The variational distribution for
gs of the sparse weights sik is a gamma distribution parame-
trized with (�1; �2). Coordinate ascent equation for these free
parameters are

�1 ¼ eþ 1

2
NK;

�2 ¼ f þ 1

2

XN
i¼1

XK
k¼1

�
v2
ik þV2

ik

�
:

3.2 Online Variational Inference

We now develop online variational inference. We divide the
variational parameters into global variables and local variables.
Global variables depend on all of the images. These are the
dictionary probabilities ppk, dictionary elements dk, precisions
ggs and g�. Local variables are the ones drawn for each image.
These are the weights si, binary variables zi. The algorithm
iterates between optimizing the local variables using local
(per-image) coordinate ascent, and optimizing the global

350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 2, FEBRUARY 2015



variables. This same structure is found inmany Bayesian non-
parametricmodels [23], [42].

The basic idea is to optimize Equation (3) via stochastic
optimization [43]. This means we repeatedly follow noisy
estimates of the gradient with decreasing step sizes rt. If the
step sizes satisfy

P
t rt ¼ 1 and

P
t r

2
t < 1 then we will

converge to the optimum of the objective. (In variational
inference, we will converge to a local optimum.)

The noisy estimates of the gradient are obtained from
subsampled data. We write the objective L as a sum over
data points. Defining the distribution gðnÞ which uniformly
samples from the data, we can then write L as an expecta-
tion under this distribution,

L ¼
XN
n¼1

‘ðtt; nnn;ff;vvn; ��n; ��n;XnÞ (4)

¼ NEg½‘ðtt; nnn;ff;vvn;VVn; ��n; ��n;XnÞ
: (5)

The gradient of the objective can be written as a similar
expectation. Thus, sampling data at random and computing
the gradient of ‘n gives a noisy estimate of the gradient.

There are two further simplifications. First, when we sub-
sample the data we optimize the local variational parameters
fully and compute the gradient of ‘n with respect to only the
global variational parameters. Second, we use the natural
gradient [44] rather than the gradient. In mean field varia-
tional inference, this simplifies the gradient step as follows.
Suppose we have sampled an image n and fitted its local var-
iational parameters given the current settings of the global
variational parameters. Let ~tt; ~ff; ~FF; ~��;~�� be the global varia-
tional updates from Section 3.1 as though we observed N
copies of that image. (Note that these depend on its local var-
iational parameters.) Following a noisy estimate of the natu-
ral gradient of L is equivalent to taking a weighted average
of the current and the newly fitted global parameters, e.g.,

ff ¼ ð1� rtÞffþ rt~ff: (6)

It follows that there is no additional computational cost to
optimizing the global variational parameters with stochastic
optimization versus coordinate ascent.

We decrease the step-size rt by rt ¼ ðr0 þ tÞ�k. The learn-
ing rate parameter r0 down-weights early iterations; the
parameter k controls the speed of forgetting previous values
of the global variables.

The full online VB algorithm is listed in Algorithm 2.
(Note that we sample the data in mini-batches, rather than
one at a time. When the mini-batch size is equal to one data
point, we recover the algorithm as described above.)

3.3 Initialization with MCMC

We initialize both the batch and online VB with a few itera-
tions (e.g., 5) of MCMC.1 This is useful for two reasons:
(1) It provides a good initialization and thus faster conver-
gence, (2) Noisy random-walks of MCMC help VB avoid
low-quality local optima: at the beginning of each e-step,
MCMC initializes si and zi by sampling from their approxi-
mate posterior distribution, given the most recent global
variables. These samples are noisy estimates of the sparse
weights near their posterior means. For instance, when the
factor assignment zik equals 0, the MCMC draws the sparse
weight sik from the prior Nð0; 1=gsÞ whereas in VB it would
be exactly 0. Providing the freedom to “jiggle” gives the
algorithm the opportunity to jump away from one local
optimum to reach a better optimum.

4 EXPERIMENTS

We use three data sets. To train, we use the set of 68 images col-
lected from the web by [22]. We test on the natural images of [28]
(20 100� 100 images) and a benchmark set of images (11 images
of various size)2 used by the community to evaluate SR algo-
rithms.3 These imagesprovide a rich set ofHR-LRpairs.

Throughout this work, unless otherwise mentioned we
use the same parameters (without any tuning): we set the
SR ratio to 2 or 4 and the patch size to 8� 8.4 The hyper-
parameters are c ¼ d ¼ e ¼ f ¼ 10�6 and c0 ¼ 2; h0 ¼ 0:5,
these are standard uninformative priors used in, e.g., [29].
The truncation level K in BP is set to 512. Most images use
fewer factors, e.g., Baboon uses 487, House 438 and Barbara
471 factors. Illuminace channel includes the information in
an image that is sensitive to human eye and it is a common
practice in SR literature to apply and measure the perfor-
mance of algorithms only in this channel [22]. Following
this, we apply all algorithms only to the illuminance chan-
nel and use Bicubic interpolation for the color layers (Cb,
Cr) for all compared methods.

We study our methods with two kinds of posterior
inference—Gibbs sampling (BP) and online variational
inference (O-BP), which scales to larger data sets.5 To

1. For batch VB, these MCMC samples are collected on the same
subset of the data on which batch VB will process. For online VB, they
are collected from the mini-batches. Scale is not an issue here because
we only collect five samples.

2. The quality of reconstructions by our patch based approach does
not depend on the size of the image as can be seen in results. Size of the
image only matters for the time complexity.

3. We are using SR ratio¼ 2 or 4. For SR ratio 2, the images which do
not have an even number of rows/columns are cut to have even num-
ber of rows/column to prevent any possible mismatch and error in
computing PSNR in all algorithms. For instance the last column of pix-
els from an image of size 330� 171 is excluded so the corresponding
image has the size 330� 170.

4. The visual results for SR ratio 4 are in the Appendix G, available
in the online supplemental material, and quality does not depend on
the image size.

5. The software and the visual results can be found at http://www.
gungorpolatkan.com/ImageSuperresolution.
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compare, we study both interpolation and example-based
algorithms. Bicubic interpolation is the gold standard in
the SR literature. We also study nearest neighbor interpo-
lation, bilinear interpolation and sparse mixing estimation
(SME) [45]. To compare with an example-based method,
we use super-resolution via sparse representation (ScSR,
[22]).6 Both BP’s and ScSR’s dictionary learning stages use
105 patches sampled from the training data, however O-
BP uses the whole set in an online fashion. The HR and
LR dictionaries trained by our approach are shown in
Fig. 3. The HR dictionary consists of sharper edges. Only
few unmatched pairs occur due to aliasing.7

As a quantitative measure of performance we compute
the signal to noise ratio (PSNR), a measure that is widely
used in image recovery applications. We present the PSNR
results for benchmark images in Table 1 and natural images
in Table 2. These PSNR based results can be summarized as:
(1) The online learning algorithm and ScSR perform simi-
larly, (2) They both perform slightly better than the Gibbs
sampler. (3) All of the example based algorithms perform
better than the interpolation based techniques. We also pro-
vide PSNR results before and after post-processing in
Appendix E, available in the online supplemental material.
These additional results indicate that post-processing con-
tributes 0.1dB on average to the final accuracy.

4.1 Crowdsourcing via Mechanical Turk

Though signal to noise ratio (PSNR), is a widely used metric
in image recovery applications, this is not enough tomeasure
human judgement. For this purpose, we also performed
human evaluation experiments on Amazon Mechanical
Turk (MTurk, http://www.mturk.com).

The Amazon Mechanical Turk is a web interface for
deploying small tasks to people, called Turkers. Typically an
MTurk experiment works as follows: the requesters, people
organizing the experiments and paying Turkers, prepare
tasks called Human Intelligence Tasks (HITs). In our case
each HIT is an image comparison problem. Once the HITs
are completed, requesters can approve or reject the HITs
based on their reliability measures. For instance trivial solu-
tion HITs, as we explain next, and the time spend on each
HIT are frequently used measures for reliability. Approved
results are acquired to be used in the analysis.

While preparingHITs, we used the natural image data.We
asked Turkers to visually assess and select the better of two
HR reconstructions of each image. We considered all ordered
combinations of the algorithms, each equally likely, e.g., BP
versus ScSR, BP versus Bicubic etc. We initially collected
42;807 decisions from 208 unique Turkers. For quality control
we gave test pairs in which a ground truth HR image was
used, i.e., a comparison of an algorithmic reconstruction ver-
sus a true HR image. All of the judgments of the Turkers who
failed to pass this test (Turkers who selected the algorithmic

Fig. 3. Dictionary trained in batch mode on lluminance channel with SR
ratio ¼ 2. (Top) HR Dictionary, (Bottom) LR Dictionary. Every square
represents a dictionary element and the HR-LR pairs are co-located. HR
dictionary consists of sharper edges.

TABLE 1
Test Results with SR Ratio ¼ 2

PSNR for the illuminance channel is presented (the higher the better)
BP: Proposed algorithm trained via Gibbs sampler, O-BP Proposed
algorithm trained via Online VB, seeing more data, ScSR: Super-
Resolution via Sparse Representation [22], SCSR1 represents K ¼ 256,
SCSR2 represents K ¼ 512, NNI: Nearest neighbor interpolation, SME:
Sparse Mixing Estimation [45].

TABLE 2
Test Results on Natural Images with SR Ratio ¼ 2

Refer to Table 1 for abbreviations.

6. The dependent hierarchical Beta process (dHBP), another Bayes-
ian nonparametric prior, is proposed in [30]. It removes the exchange-
ability assumption of beta-Bernoulli construction. This prior assumes
that each observation i has a covariate ‘i 2 RL. In this model, the closer
the two sparse factor assignments zi and zj in the covariate space, the
more likely they share similar dictionary elements. In [30] the authors
apply dHBP to image inpainting and spiky noise removal, and show
improvement over BP. We obtained preliminary results with dHBP for
super-resolution. However, in this setting BP performed better.

7. When the original HR image is down sampled and interpolated
to form LR images in the training set, aliasing occurs at the edges with
certain thickness. This causes discrepancy between the HR and LR
images at those edges. Model, which trained on this data set, learns
unmatched pairs of patches corresponding to these certain unmatched
edges as well. Note that this has nothing to do with the probabilistic
model or inference algorithm. It is a property of the formed data set.
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reconstruction instead of true HR) were removed. For
instance if a user has been asked 200 cases and one of them
was the control case and the Turker wrongly decided to an
inferior reconstruction instead of a ground truth HR image,
then we decided that this Turker is not reliable and we elimi-
nated all of his/her remaining 200 comparisons. This reduced
the data to 20;469 decisions from 161 unique reliable Turkers.
Further details of MTurk experiments can be found in
Appendix I, available in the online supplementalmaterial.

The results of the human evaluation are in Fig. 4. In the
bottom table, we provide win rates for each one-to-one com-
parisons. Each number represents the winning rate of the
method in the column. For instance, 0:93 for O-BP versus
Nearest (O-BP is on the column and Nearest on the row)
means that out of 100 binary comparisons of O-BP and Near-
est, 93 Turkers voted in favor of O-BP. In general, we observe
that example-based methods perform significantly better
than interpolation-based methods. Within the example-
based approaches, the models are similar. However, note
that ScSR uses the first and second-order derivative filters
for the LR patches. Our method does not use these features,
yet we perform similarly. Further, ScSR requires setting the
noise precision and the number of dictionary elements. (In
ScSR comparisons, we used the parameters provided by
[22].) Ourmethod does not require to set those parameters.

In the PSNR results, ScSR and O-BP seem to perform sim-
ilarly and both slightly better than BP. However, in the
human evaluation we observed that BP reconstructions are
found to be better. (Based on 95 percent confidence inter-
vals, both the BP versus O-BP and BP versus ScSR results
are statistically significant. The O-BP versus ScSR difference
is statistically insignificant.) This shows that PSNR is not
necessarily consistent with the human assessment of images
[46]. Sample visual results are shown in Figs. 5, 6 and 9.
(The remaining results are in the Appendix E and F, avail-
able in the online supplemental material.) Note that BP and
O-BP are based on the model of Section 2.

4.2 Nonparametric Property of the Model

In this section, we demonstrate the importance of a Bayesian
nonparametric method for image super-resolution. As we
mentioned in Section 2.1, we use a beta-Bernoulli process
for the factor assignments zi that encodes which dictionary
elements are activated for the corresponding observation. In

Fig. 4. Human evaluation via mechanical turk. (Top) Average win rate in
one-to-one comparisons. (Bottom) Win rates for each one-to-one com-
parison. Each number represents the winning rate of the method in the
column, e.g., 0:57 for BP versus ScSR (BP is on the column and ScSR
on the row) means that on average, 0.57 of the times Turkers voted in
favor of BP.

Fig. 5. Reconstruction of natural image 3. BP: Algorithm presented in this work trained via Gibbs sampler, O-BP Algorithm presented in this work
trained via Online VB, ScSR: Super-Resolution via Sparse Representation. Example based approaches are superior to interpolation techniques,
ScSR and our approach perform similarly.
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the binary matrix (whose rows are the factor assignment
zi’s), the columns with at least one active cell correspond to
factors that are used.

A distinguishing characteristic of this prior is that the
number of the factors to be learned is not specified a priori.
Conditioned on the data, we examine the posterior distribu-
tion of the binary matrix to obtain a data-dependent
distribution of how many components are needed. For the
parametric ScSR, the number of dictionary elements
must be set a priori. This is illustrated by the following

experiment. For both model, we train on 104 patches, for
different values of K (starting from scratch each time); for
ScSR, K is the target number (which needs to be set before
starting the algorithm), while for our approach, K functions
as an upper bound on the number of dictionary elements
(which should not be too low). Fig. 7 shows that, unlike
ScSR, our approach is less sensitive to the value of K if it is
sufficiently large. The Barbara image uses 700, 801 and 816
factors in our approach for K equals to 1;024; 2;048 and
4;096 respectively.

Fig. 6. Reconstruction of Parthenon image. BP: Algorithm presented in this work trained via Gibbs sampler, O-BP Algorithm presented in this work
trained via Online VB, ScSR: Super-Resolution via Sparse Representation. SME: Sparse Mixing Estimation [45].
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4.3 Online Learning, Computational Time and
Scaling

In this section, we present how well our algorithms scale. In
online learning, instead of subsampling the patches during
the dictionary learning stage, we use the full data set and
process it segment by segment (so called “mini-batches”).
We use the training data of Section 4. The learning parame-
ters are set to k ¼ 0:501 and r0 ¼ 3.

Fig. 8 shows the evolution of the mean PSNR on the held-
out natural image data set by the online and the batch algo-
rithms as a function of the number of image patches seen
(visualizations of the learned dictionaries are provided in

Appendix D, available in the online supplemental material).
The number of patches seen represents the computational
time since both algorithms’ time complexity is linear with
number of observations. For online VB, the number of
patches seen represents the total number of data seen after
each iteration. For batch VB, this represents cumulative sum
of the number of same data seen after each variational-EM
iteration. Even before the second iteration of the batch VB
(100K) is completed, online VB with 5K mini-batch con-
verges—reaches to a local optima better than batch VB. This
means that the online algorithm finds dictionaries at least as
good as those found by the batch VB in only a fraction of
the time. As also shown in Table 1, it finds high quality dic-
tionaries. This may be because stochastic gradient is robust
to local optima [47].

For dictionary training, the convergence time for online
VB with 5K mini-batch size is 16 hours. In Gibbs sampling,
we throw away the first 1,500 samples for the burn-in
period and later collect 1,500 samples to approximate the

Fig. 7. Learning the number of dictionary elements from the data. (Top)
PSNR of the reconstruction of the Barbara image by nonparametric
BP and parametric ScSR with different number of dictionary elements.
(Bottom) Histogram of the number of dictionary elements for BP when
K ¼ 1;024 over 100 samples.

Fig. 8. Held-out prediction performances of online learning with different mini-batch sizes. Online-VB run on the whole data set is compared with the
Batch-VB run on a subset of the data. The online algorithms converge much faster than the batch algorithm does.

Fig. 9. (Natural image 18) test results, SR ratio ¼ 4.
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posterior distributions. This takes approximately 50 hours
on the same machine with an unoptimized Matlab imple-
mentation on 105 number of patches. Running Gibbs sam-
pling same amount of time with online VB, i.e., collecting
less number of samples such as 500, reduces held-out PSNR
between 0:2 dB to 0:5 dB, depending on the image. This is
consistent with the findings in [29]. We run ScSR with 105

and 1:5� 105 training samples. The PSNR of images
changes at the level of 0.001 dB. For instance for the
Lena image, 105-trained model gave 34:541 dB and
1:5� 105-trained model gave 34:548 dB.8

4.4 Visual Comparisons with Other Algorithms

In Fig. 10, we provide visual comparisons with algorithms
of Freeman et al. [15], Kim and Kwon [16], Glasner et al.
[20], Fattal [48] using the SR ratio 4. (the images courtesy of
[15], [16], [20], [48].) More results can be found in Appendix
H, available in the online supplemental material. Since the
HR images do not exist, we cannot compute the pSNR for
these comparisons. As we observe, Glasner et al. [20] pro-
vides very sharp edges by artificially enhancing them. How-
ever, this makes images unrealistic (looking like graphically
rendered). Sparse coding techniques are not as good with
edges but performs well in textures and look more realistic.
Glasner et al. can be used to boost the edge sharpness of the
sparse coding methods. Example based sparse coding tech-
niques (ScSR and our method BP) allow any single-image

Fig. 10. (Baby) Test set results with SR ratio ¼ 4.

8. Running time for ScSR is approximately 10 hours for 105 patches
and 16 hours for 1:5� 105 patches. However, ScSR uses special linear
algebra packages, so we believe computing speed comparison between
the algorithms explained here and ScSR is not an ideal one.
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SR algorithm as a pre-processing step. Instead of bicubic
interpolation (see Fig. 1), one can use Glasner et al. with
sparse coding and the dictionary training will learn the rela-
tionship between the HR and Glasner et al. (In ScSR and BP,
it learns the relationship between the HR and Bicubic inter-
polation and it boosts the bicubic’s performance.).

5 DISCUSSION

We developed a new model for super-resolution based on
Bayesian nonparametric factor analysis, and new algo-
rithms based on Gibbs sampling and online variational
inference. With online training, our algorithm scales to very
large data sets. We evaluated our method against a leading
sparse coding technique [22] and other state-of-the-art
methods. We evaluated both with traditional PSNR and by
devising a large scale human evaluation. This is a new real-
world application of online variational methods.

The choice of the inference algorithm depends on the
usage. Our results suggest that with more computation time
Gibbs sampling performs slightly better (based on human
evaluation). If speed is important, our online algorithms can
be used without much loss.

Regarding the evaluation metric, the standard in image
analysis has been signal-to-noise ratio. However, its practi-
cal relevance has been questioned [46]. The human eye is
sensitive to details which are not always captured in this
metric, and that is why we ran a human evaluation. Our
experiments show that the signal-to-noise ratio is not neces-
sarily consistent with human judgement. Though online
variational inference does its job quite well in terms of held-
out PSNR, this metric does not perfectly correlate with how
human eyes judge quality. It is interesting that Gibbs sam-
plers give poorer PSNR but are better with respect to human
evaluation.

As future work, our approach can be used as a building
block in more complicated probabilistic models. For exam-
ple, our approach could be developed into a time series to
perform SR on video or a hierarchical model that explicitly
models images as collections of patches. With the latter
there is a potential improvement to the model if reconstruc-
tions can be forced to match the low resolution input within
the model instead of a post-processing step.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov.
2006.

[2] M. Elad and M. Aharon, “Image denoising via sparse and redun-
dant representations over learned dictionaries,” IEEE Trans. Image
Proc., vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[3] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Nonlocal sparse models for image restoration,” in Proc. Int. Conf.
Comput. Vis., 2009, pp. 2272–2279.

[4] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color
image restoration,” IEEE Trans. Image Process., vol. 17, no. 1,
pp. 53–69, Jan. 2008.

[5] M. Ranzato, C. S. Poultney, S. Chopra, and Y. Lecun, “Efficient
learning of sparse representations with an energy-based model,”
in Proc. Neural Inf. Process. Syst., 2006, pp. 1137–1144.

[6] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,
“Robust face recognition via sparse representation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227,
Feb. 2009.

[7] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Supervised dictionary learning,” Comput. Res. Repository,
vol. abs/0809.3, pp. 1033–1040, 2008.

[8] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse rep-
resentations for image and video restoration,” Multiscale Model.
Simul., vol. 7, pp. 214–241, 2008.

[9] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solu-
tions of systems of equations to sparse modeling of signals and
images,” Siam Rev., vol. 51, pp. 34–81, 2009.

[10] E. J. Cands and T. Tao, “Near-optimal signal recovery from ran-
dom projections: Universal encoding strategies?” IEEE Trans. Inf.
Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[11] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary
learning for sparse coding,” in Proc. Int. Conf. Mach. Learn., 2009,
pp. 87–696.

[12] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. Int.
Conf. Mach. Learn., 2007, pp. 759–766.

[13] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super resolution,” IEEE Trans. Image Process., vol. 13,
no. 10, pp. 1327–1344, Oct. 2004.

[14] M. Tipping and C. Bishop, “Bayesian image super-resolution,” in
Proc. Adv. Neural Inf. Process. Syst., 2003, pp. 1303–1310.

[15] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based
super-resolution,” IEEE Comput. Graph. Appl., vol. 22, no. 2,
pp. 56–65, Mar./Apr. 2002.

[16] K. I. Kim and Y. Kwon, “Single-image super-resolution using
sparse regression and natural image prior,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.

[17] J. Sun, N. Zheng, H. Tao, and H. Shum, “Image hallucination with
primal sketch priors,” in Proc. Comput. Vis. Pattern Recog., 2003,
pp. 729–736.

[18] Y. HaCohen, R. Fattal, and D. Lischinski, “Image upsampling via
texture hallucination,” in Proc. IEEE Int. Conf. Comput. Photogra-
phy, 2010, pp. 1–8.

[19] J. Sun, J. Zhu, and M. F. Tappen, “Context-constrained hallucina-
tion for image super-resolution,” in Proc. Comput. Vis. Pattern
Recog., 2010, pp. 231–238.

[20] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a sin-
gle image,” in Proc. Int. Conf. Comput. Vis., 2009, pp. 349–356.

[21] H. He and W.-C. Siu, “Single image super-resolution using
Gaussian process regression,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2011, pp. 449–456.

[22] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol. 19,
no. 11, pp. 2861–2873, Nov. 2010.

[23] F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh,
“Variational inference for the indian buffet process,” in Proc. Artif.
Intell. Statist., 2009, pp. 137–144.

[24] D. Knowles and Z. Ghahramani, “Infinite sparse factor analysis
and infinite independent components analysis,” in Proc. Ind. Com-
pon. Anal. Signal Separation, 2007, pp. 381–388.

[25] T. L. Griffiths and Z. Ghahramani, “Infinite latent feature models
and the Indian buffet process,” in Proc. Adv. Neural Inf. Process.
Syst., 2005, pp. 475–482.

[26] R. Thibaux and M. I. Jordan, “Hierarchical beta processes and the
Indian buffet process,” in Proc. Int. Conf. Artif. Intell. Statist., 2007,
pp. 564–571.

[27] S. Ghosh, A. B. Ungureanu, E. B. Sudderth, D. M. Blei, and M.
Stanley, “Spatial distance dependent Chinese restaurant processes
for image segmentation,” in Proc. Adv. Neural Inf. Process. Syst.,
2011, pp. 1–9.

[28] B. Chen, G. Polatkan, G. Sapiro, D. Dunson, and L. Carin,
“The hierarchical beta process for convolutional factor analysis
and deep learning,” in Proc. Int. Conf. Mach. Learn., Jun. 2011,
pp. 361–368.

[29] M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin,
“Non-parametric Bayesian dictionary learning for sparse image
representations 1,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 2295–2303.

[30] M. Zhou, H. Yang, G. Sapiro, D. Dunson, and L. Carin,
“Dependent hierarchical beta process for image interpolation and
denoising,” in Proc. Artif. Intell. Statist., 2011, pp. 883–891.

[31] S. Ghosh and E. B. Sudderth, “Nonparametric learning for layered
segmentation of natural images,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2012, pp. 2272–2279.

POLATKAN ET AL.: A BAYESIAN NONPARAMETRIC APPROACH TO IMAGE SUPER-RESOLUTION 357



[32] J. J. Kivinen, E. B. Sudderth, and M. I. Jordan, “Learning multi-
scale representations of natural scenes using Dirichlet processes,”
presented at the IEEE 11th Int. Conf. Computer Vision, Rio de
Janeiro, Brazil, 2007..

[33] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New
York, NY, USA: Springer, 2004.

[34] M. Hoffman, D. Blei, J. Paisley, and C. Wang, “Stochastic varia-
tional inference,” J. Mach. Learn. Res., vol. 14, pp. 1303–1347, 2013.

[35] J. Paisley and L. Carin, “Nonparametric factor analysis with beta
process priors,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009,
pp. 777–784.

[36] T. L. Griffiths and Z. Ghahramani, “The Indian buffet process: An
introduction and review,” J. Mach. Learn. Res., vol. 12, pp. 1185–
1224, 2011.

[37] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduc-
tion to variational methods for graphical models,” Mach. Learn.,
vol. 37, pp. 183–233, 1999.

[38] M. Sato, “On-line model selection based on the variational Bayes,”
Neural Comput., vol. 13, pp. 1649–1681, 2001.

[39] M. D. Hoffman, D. M. Blei, and F. Bach, “Online learning for latent
Dirichlet allocation,” in Proc. Adv. Neural Inf. Process. Syst., 2010,
pp. 856–864.

[40] C. Wang, J. Paisley, and D. Blei, “Online variational inference for
the hierarchical Dirichlet process,” in Proc. Artif. Intell. Statist.,
2011, pp. 752–760.

[41] C. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[42] Y. Teh, M. Jordan, M. Beal, and D. Blei, “Hierarchical Dirichlet
processes,” J. Amer. Statist. Assoc., vol. 101, pp. 1566–1581, 2006.

[43] H. Robbins and S. Monro, “A stochastic approximation method,”
Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[44] S. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, pp. 251–276, 1998.

[45] S. Mallat and G. Yu, “Super-resolution with sparse mixing
estimators,” IEEE Trans. Image Process., vol. 19, no. 11, pp. 2889–
2900, Nov. 2010.

[46] Z. Wang and A. Bovik, “Mean squared error: Love it or leave it? A
new look at signal fidelity measures,” IEEE Signal Process. Mag.,
vol. 26, no. 1, pp. 98–117, Jan. 2009.

[47] L. Bottou, Online Learning and Stochastic Approximations. Cam-
bridge, U.K.: Cambridge Univ. Press, 1998.

[48] R. Fattal, “Image upsampling via imposed edge statistics,” ACM
Trans. Graph., vol. 26, p. 95, 2007.

G€ung€or Polatkan received the BS degree from
the Electrical and Electronics Engineering
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