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Abstract

Mean-field variational inference is a method
for approximate Bayesian posterior inference.
It approximates a full posterior distribution
with a factorized set of distributions by max-
imizing a lower bound on the marginal likeli-
hood. This requires the ability to integrate a
sum of terms in the log joint likelihood using
this factorized distribution. Often not all in-
tegrals are in closed form, which is typically
handled by using a lower bound. We present
an alternative algorithm based on stochastic
optimization that allows for direct optimiza-
tion of the variational lower bound. This
method uses control variates to reduce the
variance of the stochastic search gradient, in
which existing lower bounds can play an im-
portant role. We demonstrate the approach
on two non-conjugate models: logistic regres-
sion and an approximation to the HDP.

1. Introduction

Mean-field variational Bayesian (MFVB) inference is
an optimization-based approach to approximating the
full posterior of the latent variables of a Bayesian
model (Jordan et al., 1999). It has been applied to
many problem domains, for example mixture model-
ing (Blei & Jordan, 2006), sequential modeling (Beal,
2003) and factor analysis (Paisley & Carin, 2009). In
addition, recent development of the theory has ex-
tended the method to online inference and stochastic
optimization settings, making variational Bayes a vi-
able approach for Bayesian learning with massive data
sets (Hoffman et al., 2010; Wang et al., 2011).
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Variational Bayes approximates the full posterior by
attempting to minimize the Kullback-Leibler diver-
gence between the true posterior and a predefined fac-
torized distribution on the same variables. Minimiz-
ing this divergence is equivalent to maximizing the fa-
miliar variational objective function. To review, let
Θ = {θi} represent the set of latent variables (ran-
dom effects and parameters) in the model and X rep-
resent the data. The joint likelihood of X and Θ is
P (X,Θ|Υ), with Υ the set of hyperparameters. Varia-
tional inference approximates the posterior P (Θ|X,Υ)
with a Q distribution that takes a set of variational
parameters Ψ = {ψi}. This distribution is factorized,
Q(Θ|Ψ) =

∏
i qi(θi|ψi), and the values of Ψ are opti-

mized to maximize the objective function,

L(X,Ψ) = EQ[lnP (X,Θ|Υ)] + H[Q(Θ|Ψ)]. (1)

The solution is only locally optimal when L is not
convex, which is usually the case. Most variational
inference algorithms optimize L by coordinate ascent,
which repeatedly cycles through and optimizes with
respect to each variational parameter ψi. Often the
locally optimal value of ψi has a closed-form solution,
for example in conjugate exponential models.

The log of the joint likelihood results in a sum of terms;
a major issue that often arises in MFVB is that not all
expectations in this sum are in closed form. A typical
solution in this case is to replace the problematic func-
tion with another function of the same variables (plus
auxiliary variables) that is a point-wise lower bound.
This new function is selected such that the expectation
is tractable. While inference can now proceed, a draw-
back of introducing bounds is that the true variational
objective function is no longer being optimized, which
may lead to a significantly worse posterior approxi-
mation. Therefore, much attention has been paid to
developing tight bounds of commonly occurring func-
tions (e.g., Jaakkola & Jordan (2000), Marlin et al.
(2011), Leisink & Kappen (2001)).
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We present a method for directly optimizing Eq. (1)
for models in which not all expectations are tractable;
we show how a stochastic approximation of ∇ψiL
can allow for optimization of L when the expecta-
tion Eqi [lnP (X,Θ|Υ)] is not in closed form. The ap-
proximation is unbiased, and so by using the proposed
stochastic method we are directly optimizing L.

Our stochastic approximation is based on Monte Carlo
integration, for which the number of samples heavily
depends on the variance of this approximation. We in-
troduce a control variate (Ross, 2006) to significantly
reduce the variance of this stochastic approximation.
A control variate is a tractable function g that is highly
correlated with the intractable function f . The func-
tion g replaces f in Eq. (1), and the gradient is then
stochastically corrected for bias.

Existing lower bounds have properties that make them
ideal as control variates, and thus can improve the
speed of the algorithm. However, a major advantage
of the control variate methodology is that it does not
require the tractable function g to bound f , but only to
correlate well with it (i.e., to approximate it well mod-
ulo a scaling). This opens the door to many more func-
tions that may give better approximations than a lower
bound. One of these possible functions is the second-
order Taylor expansion, which often gives a very good
approximation, while also allowing for closed-form ex-
pectations. We show the potential performance gain
using this function as a control variate, which we de-
note the control variate delta method for MFVB.

Related work. Recent work by Knowles & Minka
(2011) has also addressed the problem of intractable
expectations in MFVB inference in the context of de-
veloping a more general variational message passing al-
gorithm. Our solution arises from a different perspec-
tive and results in a new algorithm based on stochastic
optimization. Graves (2011) considers a similar prob-
lem for neural networks, but a lack of control variates
limits the algorithm to significantly simpler variational
approximations. Stochastic search algorithms have
also been developed for models of Evolution Strate-
gies (see, e.g., Yi et al. (2009)).

2. Mean-field variational inference

Mean-field variational Bayesian (MFVB) inference ap-
proximates the full posterior of the latent variables of
a Bayesian model with a factorized distribution. As
motivated in the introduction, let Θ = {θi} be these
variables, X the data and Υ all hyperparameters of
the prior distributions on Θ. We define the factor-
ized distribution on Θ to be Q(Θ|Ψ) =

∏
i qi(θi|ψi),

where ψi are the parameters of the qi distributions.
The variational objective function arises by bounding
the marginal likelihood using the Q distribution,

lnP (X|Υ) = ln

∫
Θ

P (X,Θ|Υ)dΘ (2)

≥
∫

Θ

Q(Θ|Ψ) ln
P (X,Θ|Υ)

Q(Θ|Ψ)
dΘ.

Maximizing this lower bound (denoted L) with re-
spect to Ψ is equivalent to minimizing the Kullback-
Leibler divergence between Q(Θ) and P (Θ|X,Υ),
which makes up the difference in Eq. (2).

To facilitate our discussion, we write the functions ap-
pearing in the log joint likelihood as lnP (X,Θ|Υ) =∑
j fj(XAj ,ΘBj ), where Aj indexes the data appear-

ing in function j and Bj indexes the latent variables
appearing in function j. We note that the index j does
not correspond to variables or distributions, but to the
terms of the log joint likelihood. Using this notation,
the variational lower bound in Eq. (1) becomes

L =
∑
j EQ[fj(XAj

,ΘBj
)] +

∑
iH[qi(θi|ψi)]. (3)

For each function fj , those θi /∈ ΘBj will have their
corresponding qi removed from the expectation. For
those θi ∈ ΘBj

, the expectation of fj results in a new
function of variational parameters ψi ∈ ΨBj

. Ideally,
all expectations will be in closed form, allowing for the
optimization of Ψ to proceed.

In the case where an expectation in Eq. (3) is not
tractable, a nicer functional lower bound can replace
the problematic function. That is, let Eqi [fj(θi)] be
intractable.1 A common approach to dealing with this
issue is to introduce a function g(θi, ξ) that replaces fj
and is a point-wise lower bound: fj(θi) ≥ g(θi, ξ) for
all θi. The function g usually takes auxiliary variables
ξ, which determines how tightly g approximates fj and
is tuned along with the other parameters during infer-
ence. The expectation Eqi [g(θi, ξ)] has a closed-form
solution, and gives a lower bound on the variational
objective that can be optimized.

To illustrate, consider the case where fj is convex in θi.
Then a bound g could be a first-order Taylor expansion
of fj about the point ξ, which has a closed-form ex-
pectation. Significantly tighter tractable bounds have
also been developed for various frequently occurring
functions (e.g., Marlin et al. (2011), Knowles & Minka
(2011)). In general, the looser the bound the further
one is from optimizing the variational objective, and
learning of ψi can suffer as a result.

1We have simplified the notation for clarity.



Variational Bayesian Inference with Stochastic Search

3. Stochastic search variational Bayes

We next present a method based on stochastic search
for directly optimizing the variational objective func-
tion L in cases where some expectations cannot be
computed in the log joint likelihood. This method
uses a stochastic approximation of the gradient with
respect to the variational parameters of the associated
q distribution. To further simplify notation, we drop
all indices; f is the intractable function of θ (plus other
variational parameters), and θ has a variational distri-
bution q taking parameters ψ.

We separate the lower bound L into two functions, Ef
and h, where h(X,Ψ) contains everything in L except
for Ef . Notably, h contains all other functions of ψ
resulting from expectations calculated with respect to
q. In coordinate ascent variational inference, the first
step in optimizing q with respect to its parameters ψ
is to take the gradient of the variational objective,

∇ψL = ∇ψEq[f(θ)] +∇ψh(X,Ψ). (4)

This gradient contains a tractable term resulting from
∇ψh, and an intractable term ∇ψEqf . Our goal is to
make a stochastic approximation of this gradient. To
this end, assuming the necessary regularity conditions,
we rewrite this function as

∇ψEq[f(θ)] = ∇ψ
∫
θ

f(θ)q(θ|ψ)dθ (5)

=

∫
θ

f(θ)∇ψq(θ|ψ)dθ

=

∫
θ

f(θ)q(θ|ψ)∇ψ ln q(θ|ψ)dθ.

We use the identity ∇ψq(θ|ψ) = q(θ|ψ)∇ψ ln q(θ|ψ).

It follows that ∇ψEq[f(θ)] = Eq[f(θ)∇ψ ln q(θ|ψ)]. We
can stochastically approximate this expectation using
Monte Carlo integration,

∇ψEq[f(θ)] ≈ 1

S

S∑
s=1

f(θ(s))∇ψ ln q(θ(s)|ψ), (6)

where θ(s) iid∼ q(θ|ψ) for s = 1, . . . , S. We can there-
fore replace ∇ψEq[f(θ)] with the unbiased stochastic
approximation of this gradient in Eq. (6). Denote this
approximation as ζ. At iteration t, we update the vari-
ational parameter ψ by taking a gradient step,

ψ(t+1) = ψ(t) + ρt∇ψh(X,Ψ(t)) + ρtζt. (7)

By decreasing the step size ρt such that
∑∞
t=1 ρt =∞

and
∑∞
t=1 ρ

2
t < ∞, convergence to a local optimal so-

lution of L is guaranteed. For example, ρt = (w+ t)−η

with η ∈ (0.5, 1] and w ≥ 0 satisfies this requirement.

4. Searching with control variates

A practical issue with the stochastic approximation
proposed in Sec. 3 is that the variance of the gradient
approximation may be very large. Given S samples
of a random vector X, the covariance of its unbiased
sample mean X̄ is known to be Cov(X̄) = Cov(X)/S.
When the diagonal values of Cov(X) are large, many
samples will be required to bring this variance below
a desired level for approximating the expectation. As
our experiments will show in Sec. 6, the value of S can
be very large in practice and lead to a slow algorithm.
We therefore seek a variance reduction method to re-
duce the number of samples needed to construct the
stochastic search direction.

We introduce a control variate (Ross, 2006) to reduce
the variance of the stochastic gradient constructed in
Eq. (6). A control variate is a random variable that
is highly correlated with an intractable variable, but
for which the expectation is tractable. In this case
the random variable is f(θ), for which we introduce
a control variate g(θ). Control variates are ideal for
MFVB because they can leverage the existing bounds,
though they also admit a larger class of functions. We
next review this variance reduction technique for Ef ,
and discuss the modifications needed to account for
the stochastic vector f(θ)∇ψ ln q(θ|ψ).

4.1. A control variate for f(θ)

Generally speaking, variance reduction works by mod-
ifying a function of a random variable such that its ex-
pectation remains the same, but its variance decreases.
Toward this end, we introduce a control variate g(θ),
which approximates f(θ) well in the highly probable
regions as defined by q(θ), but also has a closed-form
expectation under q. Using g and a scalar a ∈ R, we
first form the new function f̂ ,

f̂(θ) = f(θ)− a(g(θ)− Eq[g(θ)]). (8)

This function has the same expectation as f and there-
fore can replace it in L in Eq. (3).

The next step is to set the value of a to minimize the
variance of f̂ . A simple calculation shows that

Var(f̂) = Var(f)− 2aCov(f, g) + a2Var(g). (9)

Taking the derivative with respect to a and setting to
zero gives the optimal value,

a =
Cov(f, g)

Var(g)
. (10)

As is usual, this covariance and variance is unknown
in the functions we encounter. We can approximate
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Algorithm 1 Variational Bayes with stochastic search

Goal To calculate ∇ψL = ∇ψEq[f(θ)] +∇ψh(X,Ψ).
Approximate ∇ψL using stochastic search.

input Variance reduction parameter ε.
1: Introduce the function g(θ) as a control variate

that highly correlates with f(θ).
2: Sample an initial (small) collection θ(s) ∼ q(θ|ψ).
3: Sum the sample variances and covariances
β =

∑K
k=1 Var(g ∂ ln q

∂ψk
), γ =

∑K
k=1 Var(f ∂ ln q

∂ψk
),

α =
∑K
k=1 Cov(f ∂ ln q

∂ψk
, g ∂ ln q

∂ψk
).

4: Set â = α/β and S = (γ − α2/β)/εK.
5: Sample θ(s) ∼ q(θ|ψ) i.i.d. for s = 1, . . . , dSe.
6: Construct the stochastic search vector
ζ = 1

S

∑S
s=1{f(θ(s))− âg(θ(s))}∇ψ ln q(θ(s)|ψ).

7: Step in the direction of the stochastic gradient
ψ′ = ψ + ρζ + ρ∇ψ(h(X,Ψ) + âEq[g(θ)]).

a with â, found by plugging the sample variance and
covariance into Eq. (10) using samples from the algo-
rithm.

The potential reduction in variance is seen by plugging
Eq. (10) into Eq. (9) and taking the ratio of the two
variances,

Var(f̂)/Var(f) = 1− Corr(f, g)2. (11)

Therefore, the greater the correlation between f and g,
the greater the variance reduction. Tight lower bounds
of f by construction have this high correlation, but we
note that tight upper bounds work as well, as do well-
approximating functions that do not bound f .

Using the control variate g, we now write the stochastic
approximation to the gradient as

∇ψEq[f̂(θ)] ≈ â∇ψEq[g(θ)] (12)

+
1

S

S∑
s=1

{f(θ(s))− âg(θ(s))}∇ψ ln q(θ(s)|ψ),

where θ(s) iid∼ q(θ|ψ) for s = 1, . . . , S.

Writing the stochastic approximation this way allows
for a more intuitive understanding of the algorithm.
By separating the tractable and stochastic parts as
done in Eq. (12), we first replace the intractable func-
tion f with a tractable approximation g. (This resem-
bles the standard method when g lower bounds f .)
The gradient of Eg is then corrected by a stochastic
vector. The variance of the correction is smaller than
that of the original stochastic approximation in Sec. 3,
since the function f(θ) is close to âg(θ). The gradient
of Eg can be thought of as an initial guess, followed
by a stochastic correction which ensures that we are
optimizing the variational objective function.

4.2. The stochastic search case

We have introduced a control variate for f(θ), but in
fact we would like to minimize the variance of the vec-
tor f(θ)∇ψ ln q(θ|ψ) in Eq. (6). In this case, the con-
trol variate becomes g(θ)∇ψ ln q(θ|ψ) and we have the
following modification.

Let ψk be the kth dimension of ψ. Then for each
dimension the discussion in Sec. 4.1 carries through,
but for f ∂ ln q

∂ψk
and g ∂ ln q

∂ψk
instead of f and g. The

variance of each dimension again follows Eq. (9), and
we seek an a to minimize the sum of these equations.
This results in the optimal value

a =
∑
k Cov(f ∂ ln q

∂ψk
, g ∂ ln q

∂ψk
)/

∑
k Var(g ∂ ln q

∂ψk
),

which we approximate using samples. We summarize
stochastic search variational Bayes in Algorithm 1.

5. Stochastic search VB for two models

We next illustrate stochastic search variational infer-
ence on logistic regression and a finite approximation
to the hierarchical Dirichlet process (Teh et al., 2007).
For logistic regression, we will consider two control
variates, one of which is a lower bound and the other
of which is not a bound. For the finite HDP, we will
consider a piecewise control variate, one part being an
upper bound on the original function.

5.1. Logistic regression

Binary logistic regression takes in d-dimensional data
vectors xn and predicts the class yn ∈ {−1, 1} to which
each belongs. The parameter is θ ∈ Rd and the predic-
tion law is Pr(yn|xn, θ) = σ(ynx

T
nθ) where σ(·) is the

sigmoid function, σ(b) = (1+e−b)−1. Bayesian logistic
regression places a prior distribution on the coefficient
vector, θ ∼ Normal(0, cI). For inference we define a
Gaussian variational q distribution

q(θ) = Normal(µ,Σ). (13)

The variational lower bound for this model is

L =
∑N
n=1 Eq[lnσ(ynx

T
nθ)]+Eq[ln p(θ)−ln q(θ)]. (14)

The expectations of fn(yn, xn; θ) := lnσ(ynx
T
nθ) are

intractable. One approach to avoiding this issue is to
forgo variational inference and use Laplace’s method
to approximate q. This method sets µ to the MAP so-
lution, and Σ−1 to the negative Hessian of the log joint
likelihood evaluated at µ. Another is to lower bound
fn with the bound in, e.g., Jaakkola & Jordan (2000),
which allows for closed-form variational inference. We
consider this bound as a control variate.
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Figure 1. Approximation error between lnσ(θ) and the two
control variates considered. The mean and variance of q
used in these examples are (left) µ = 3, σ2 = 3 and (right)
µ = −5, σ2 = 1. We show 100 samples from these q distri-
butions, at which points the functions would be evaluated
for the stochastic gradient (for a = 1). The Taylor expan-
sion is closer to the true function at the region of interest
as defined by q. The benefit of this is that fewer samples
will be necessary to approximate the gradient.

A lower bound control variate. The lower bound
for fn developed by Jaakkola & Jordan (2000) is a
useful control variate for variational logistic regression.
For each pair (xn, yn), this bound takes an auxiliary
parameter ξn > 0 and has the form

gn(yn, xn; θ, ξn) = lnσ(ξn) +
1

2
(ynx

T
nθ − ξn)

− λ(ξn)((xTnθ)
2 − ξ2

n). (15)

We have λ(ξn) = (2σ(ξn) − 1)/(4ξn). We select this
bound for illustrative purposes, but any lower bound
will work in principle. For a multivariate Gaussian q
distribution, having a quadratic term in g is essential
for stochastically learning a full covariance matrix. In
general, tighter bounds will require fewer samples, but
for some functions finding tight bounds may require
much effort. We next consider a general purpose con-
trol variate that can help in this case.

Control variate delta method. We also consider
the second-order Taylor expansion of f as a control
variate. The second-order Taylor expansion often ac-
curately approximates a function of interest, and when
used alone is known as the delta method. In addition
to accuracy, the quadratic approximation of the delta
method results in a function for which the expectation
with respect to q is very likely to be analytic.

The delta method arguably should not be used for
mean-field variational inference because the second-
order Taylor expansion is not a lower bound. On the
other hand, the first-order Taylor expansion often is a
lower bound. Therefore, though their bounds are typ-
ically loose, first-order approximations are commonly
employed for MFVB. An advantage of the proposed
stochastic search algorithm is that second-order meth-
ods can now be used as a control variate to (i) more

accurately approximate the function of interest, and
(ii) significantly reduce the variance of the stochastic
gradient. We call this approach of using Taylor expan-
sion control variates the control variate delta method.

We consider a second-order Taylor expansion at µ̂,
the current mean of q, for approximating lnσ(ynx

T
nθ).

Letting σn := σ(ynx
T
n µ̂), this control variate is

gn(yn, xn; θ, µ̂) = lnσn + yn(1− σn)(θ − µ̂)Txn (16)

− 1

2
σn(1− σn)(θ − µ̂)Txnx

T
n (θ − µ̂).

As with the Jaakkola & Jordan (2000) bound, this
control variate contains a quadratic term that helps in
learning the covariance matrix of q.

We compare these control variates in Figure 1. In these
plots we show the difference fn − gn for two specific q
distributions, and with x = 1. We also show 100 sam-
ples from q, which indicates the regions where these
functions would be evaluated (for a = 1). The plots
show that the second-order Taylor expansion approxi-
mates fn significantly better where it matters; we sup-
port this conclusion with the experiments in Sec. 6.

5.2. Hierarchical Dirichlet processes

We also investigate a stochastic search VB algorithm
for an approximation to the hierarchical Dirichlet pro-
cess (Teh et al., 2007). We focus on the two-level
generative structure using finite dimensional Dirichlet
priors as an approximation to the infinite dimensional
process—in the limit the HDP is recovered. In this
finite process, a top-level Dirichlet-distributed proba-
bility vector θ parameterizes the Dirichlet distribution
for d = 1, . . . , D second-level probability vectors,

(πd1, . . . , πdK)
iid∼ Dirichlet(βθ1, . . . , βθK),

(θ1, . . . , θK) ∼ Dirichlet( αK , . . . ,
α
K ). (17)

In topic models, these πd vectors are often used as
distributions on word distributions. In this section,
we focus solely on the generic hierarchical structure in
Eq. (17). We define the approximate posterior of θ as

q(θ) = Dirichlet(c1, . . . , cK). (18)

The part of the lower bound associated with θ is

Lθ =
∑
k βEq[θk]

∑
d Eq[lnπdk]−

∑
kDEq[ln Γ(βθk)]

+Eq[ln p(θ)− ln q(θ)]. (19)

The expectation Eq[ln Γ(βθk)] is intractable for each
k. We use a stochastic approximation, and introduce
two control variates for this function, depending on
the current expected value of βθk.
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Figure 2. (left) The intractable function in the HDP.
(right) the difference after introducing a control variate and
setting a = 1. Since − ln Γ(βθ)−lnβθ = − ln Γ(βθ+1), the
right figure is the left figure shifted by one unit to the left
and truncated at zero. The very large variance near zero
(where most values of βθ will lie) has been significantly re-
duced. For larger values of βθ, we use a first-order Taylor
approximation at βEqθ of the nearly linear function.

As βθk approaches zero, the function fk(βθk) =
− ln Γ(βθk) diverges to −∞. By construction of the
Dirichlet prior, many values of θk will be very small.
(In the infinite limit, there are an infinite number of
such values smaller than any δ > 0.) The variance in
this region is massive—when computer precision be-
comes an issue it can be infinite (see Figure 2).

We propose the control variate gk(βθk) = lnβθk, with
Eq[ln θk] = φ(ck)−φ(

∑
j cj) where φ(·) is the digamma

function. This control variate not only correlates well
with fk, but if a = 1, limβθk→0 fk − agk = 0, as shown
in Figure 2. This results from the equality

− ln Γ(βθk)− lnβθk = − ln Γ(βθk + 1). (20)

For all other values of a, this equality does not hold,
and the difference fk − agk diverges as βθk → 0. For
this model, we can thus give the optimal value of a in
advance, and we set a = 1.

From Figure 2, we also see that the approximation gets
worse when βθk gets large, which can occur for a few
highly probable dimensions when β is large. Since fk
is approximately linear in this regime, we use a first-
order Taylor expansion of fk about the mean θ̄k =
Eq[θk] as a control variate. This gives the following
two control variates,

gk = lnβθk, 0 < βθ̄k < κ1, (21)

gk = − ln Γ(βθ̄k)− β(θk − θ̄k)φ(βθ̄k), βθ̄k > κ2.

Since fk is concave, this second control variate is an
upper bound on Lθ without the stochastic correction.
We discuss the boundaries κ1 and κ2 in Sec. 6.

Thus far, we’ve focused mainly on reducing the vari-
ance induced by fk, but in Sec. 4.2 we noted that
∇ ln q introduces variance to the Monte Carlo integral
as well. This suggests that we should look at other

parts of the integral for potential variance reduction.
We briefly show how this can be done for the HDP.

The lower bound in Eq. (19) contains a sum of K in-
tractable integrals over the probability simplex ∆K .
We perform separate stochastic approximations of
each gradient. Using the fact that each gamma func-
tion is over a single dimension of the simplex, for a
function of θk the variables θi 6=k will integrate out. In
this case, marginalizing a Dirichlet distribution to a
single dimension yields a beta distribution. That is,∫
θ∈∆K

ln Γ(βθk)q(θ|c)dθ =

∫ 1

0

ln Γ(βθk)q′k(θk|c)dθk,

where q′k(θk|c) = Beta(θk|ck,
∑
i6=k ci).

We can choose which of these integrals to stochas-
tically approximate for gradient ascent. However,
the stochastic gradient using q′k results in signifi-

cantly less variance than for q since θ
(s)
k will be near

zero; the vector ∇c ln q′k has K − 1 entries containing

ln(1− θ(s)
k )−Eq[ln(1− θk)], while these values will be

ln θ
(s)
i − Eq[ln θi] for i = 1, . . . ,K when using ∇c ln q.

6. Experiments

We perform experiments using stochastic search VB
for binary classification with logistic regression and for
topic modeling with the approximate HDP. We next
give the details of the experiments we perform and the
data sets and algorithms used for comparison.

Data and set-up. For logistic regression, we use
five data sets from the UCI repository: Iris, Pima,
SPECTF, Voting and WDBC. These data sets range
from 150 to 768 labeled examples living in 5 to 45 di-
mensions, including a dimension of all ones to account
for offset. We perform experiments with stochastic
search variational inference using the two control vari-
ates discussed in Sec. 5.1. We compare with two ad-
ditional methods for posterior approximation: varia-
tional inference with the Jaakkola & Jordan (2000)
bound and Laplace’s method. We evaluate perfor-
mance on the true variational objective function in Eq.
(14) using each posterior approximation.

For the HDP topic model, we use 8,000 documents
with 3,012 vocabulary size from The New York Times.
We compare with (i) a point estimate of the top-level
probability vector using a delta q distribution, and (ii)
fixing the top-level distribution to the uniform vector,
which is equivalent to LDA (Blei et al., 2003). We
perform experiments for different corpus sizes, differ-
ent values of β, and we set K = 200.
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Figure 3. Experimental results for variational logistic regression. We compare the variance reduction obtained by the two
control variates under consideration. (top row) The number of samples per iteration setting ε = 0.1 in Algorithm 1. The
yellow and black lines represent the estimated number that would be required without variance reduction according to
each control variate. As expected, these curves overlap. (middle row) The variance reduction factor of Eq. (11). The
selected control variates significantly reduce the variance. The second-order Taylor control variate is significantly better
than the lower bound. (bottom row) The optimal scaling factor estimated from samples.

Table 1. Optimizing the variational objective function.
The stochastic search methods (indicated by CV) signif-
icantly outperform the other methods toward this end. All
values were calculated for the true lower bound in Eq. (14)
using their respective posterior approximations.

model|data iris pima spectf vote wdbc
Taylor CV -7.9 -3974 -165 -67.8 -74.6
J&J CV -7.9 -3974 -165 -67.6 -74.8
Laplace -11.9 -3985 -170 -70.5 -80.0
J&J bnd -11.5 -3976 -173 -74.6 -86.2

Table 2. Running time of each algorithm on each data set.
We use the approximated number of samples required with-
out a control variate to estimate the last value. The times
are given in milliseconds (ms), seconds (s), minutes (m),
hours (hr) and years (yr).

model|data iris pima spectf vote wdbc
Taylor CV 0.33s 1.7m 20s 17s 11s
J&J CV 0.42s 18m 1.2m 1.2m 2.3m
Laplace 21ms 29ms 94ms 20ms 0.10s
J&J bnd 64ms 88ms 0.13s 97ms 0.15s
SS no CV 2.4s >2yr 6.6hr 9hr 1.4hr

Logistic regression results. In Table 1 we show
the variational lower bound for each model on each
data set. Since all algorithms return an approxima-
tion of the posterior distribution on the vector θ, this
comparison is meaningful and gives a measure of how
close each posterior is to the true posterior. We see
a considerable improvement for the stochastic algo-
rithms (denoted by their control variate). Since both
stochastic algorithms optimize the same objective, the
performance should be the same.

We show performance details of the stochastic search
VB algorithm in Figure 3 and Table 2. In Figure 3,
we show the number of samples, the variance reduction
factor and the scaling â as a function of iteration. We
see that the control variates provide a major reduction
in variance. Also, the Taylor expansion control vari-
ate (i.e., control variate delta method) requires signif-
icantly fewer samples than the bound control variate,
which benefits the running time (see Table 2). While
the non-sampling methods are faster, control variates
make stochastic search VB a viable inference method
when compared to the base algorithm of Sec. 3.
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Table 3. The fraction of times that algorithm 〈row〉 was
ranked 〈column〉 for the 32 different parameter/data size
pairs using the variational lower bound.

model | rank 1st 2nd 3rd
HDP-stochastic 0.66 0.31 0.03
HDP-point 0.34 0.66 0
LDA 0 0.03 0.97
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Figure 4. Average number of samples per iteration for the
two equivalent gradient approximations,∇c ln q vs∇c ln q′k,
where q is the Dirichlet and q′k the beta distribution. Sam-
pling is further reduced (see text for discussion).

Hierarchical Dirichlet process results. We fit
topic models to The New York Times using different
numbers of documents (D = 1000 to 8000) and concen-
tration parameter values β ∈ {1, 5, 10, 15}. As switch
points for the two control variates, we set κ1 = 1 and
κ2 = 2. We summarize our results in Table 3. In
general, fitting a variational posterior on the top-level
Dirichlet vector yielded a better posterior approxima-
tion than a point estimate and a θ fixed as uniform.
However, this improvement was not as dramatic as for
logistic regression.

In Figure 4, we show the number of samples required
from the Dirichlet q distribution to approximate the
stochastic integral. We compare the two methods dis-
cussed in Sec. 5.2 for reducing the variance of the
stochastic vector ∇c ln q by instead using ∇c ln q′k. We
see a significant reduction in the number of samples.
Experiments without control variates were not possi-
ble due to computer precision issues and the massive
variance of ln Γ(βθ) near zero.

7. Conclusion

We have presented stochastic search variational Bayes,
a method for optimizing intractable variational ob-
jective functions such as those arising from non-
conjugacy. The algorithm relies on a stochastic ap-
proximation of the gradient; we showed how control
variates can significantly reduce the variance of this
Monte Carlo integral. Since existing lower bounds can
be recast as control variates, our approach is relevant
to many existing MFVB algorithms. However, a lack

of restrictions on control variates allows for other types
of function approximations when a good bound is not
readily available. We introduced the control variate
delta method toward this end.
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