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Abstract

Variational autoencoders (VAEs) suffer from poste-
rior collapse, where the powerful neural networks
used for modeling and inference optimize the ob-
jective without meaningfully using the latent repre-
sentation. We introduce inference critics that detect
and incentivize against posterior collapse by requir-
ing correspondence between latent variables and
the observations. By connecting the critic’s objec-
tive to the literature in self-supervised contrastive
representation learning, we show both theoretically
and empirically that optimizing inference critics
increases the mutual information between obser-
vations and latents, mitigating posterior collapse.
This approach is straightforward to implement and
requires significantly less training time than prior
methods, yet obtains competitive results on three
established datasets. Overall, the approach lays the
foundation to bridge the previously disconnected
frameworks of contrastive learning and probabilis-
tic modeling with variational autoencoders, under-
scoring the benefits both communities may find at
their intersection.

1 INTRODUCTION

Variational autoencoders (VAEs) provide an integrated ap-
proach for simultaneously performing representation learn-
ing and generative modeling. Unlike other approaches, such
as generative adversarial networks (GANs), VAEs marry the
two steps of probabilistic machine learning – inference and
modeling – into one framework. They have seen wide suc-
cess in a number of applications, such as in vision, language,
and drug discovery [Kingma and Welling, 2014, 2019].

VAEs posit a very general model, where latent variables z
give rise to the data x. The model thus defines the joint dis-
tribution pθ(x, z), which factorizes as p(z)pθ(x|z). In this

factorization, p(z) corresponds to a prior (for example, a
spherical Gaussian), while pθ(x|z) defines an exponential
family likelihood (usually a Gaussian) with natural parame-
ter dependent on z. Much of the power of VAEs as generative
models comes from how we define this dependence. Typi-
cally, we use the powerful function approximation afforded
by neural networks to parametrize this relationship.

But in a VAE, the power of neural networks can also be its
downfall. With a flexible likelihood, the model can learn to
abandon the latents entirely. This allows the approximate
posterior, which is also powered by a neural net, to exactly
match the prior. This conspiracy of the inference network
and the model network allows the VAE to achieve high
values for its objective despite both networks forgetting their
respective inputs. While we may achieve some generative
modeling goals, this posterior collapse phenomenon fails at
the goal of representation learning [Bowman et al., 2016].

This paper proposes a new approach to mitigate posterior
collapse. The key idea is that we can use a critic to detect
posterior collapse and directly incentivize against it. Con-
sider a set of samples of latent variables and the correspond-
ing observations. If posterior collapse has occurred, cor-
responding latent/observation are independent. The model
is not using the latents, and the approximate posterior just
produces independent samples from the prior. On the other
hand, if we are able to pair up corresponding pairs, they
must share some information to allow us to do this, and
there is no collapse. With this intuition, we create a critic
to accomplish precisely this pairing and integrate it into the
VAE objective. The critic constrains the neural network to
preserve the mutual information between the latent variables
and the observations. The resulting generative model must
use the information in the data in its posterior of the latent
variables. We call this forget-me-not regularization.

Inference critics introduce minimal computational overhead
and are easy to train. Unlike other posterior collapse strate-
gies (c.f. [Zhao et al., 2018]), this critic does not require
adversarial training. We are not trying to fool the critic
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Figure 1: An illustration of the critic. On the left, we have the normal variational network mapping observations to variational
parameters (distributions in green). On the right, we show a critic’s task for a particular latent sample - it must determine
which of the blue arrows marks a true pair.

and have it fail its task of distinguishing corresponding
pairs (which would actually encourage posterior collapse).
Rather, its loss serves as a regularization, biasing the VAE
towards solutions where the latent meaningfully relates to its
counterpart in observation space. Moreover, this approach
avoids the practical difficulties posed by the ‘KL anneal-
ing’ trick [Bowman et al., 2016], and it does not require
multiple experiments to determine a hyperparameter sched-
ule. By connecting the critic to the recent advances in self-
supervised contrastive learning [Oord et al., 2016], we show
both theoretically and empirically that the inference critic
corresponds to increasing the mutual information between
the samples and the latents.

Experimental results on three standard datasets (across text
and image modalities) show that the inference critic pro-
vides a robust strategy for mitigating posterior collapse. The
approach is also practical, requiring only minimal computa-
tional overhead to the standard VAE. It provides significant
efficiency gains over established collapse mitigation strate-
gies while achieving competitive performance.

Our contributions are summarized as: (i) We introduce for-
get-me-not regularization with inference critics, a self-su-
pervised modification to standard VAEs that substantially
reduces effects of posterior collapse. (ii) We show that this
modified ELBO formulation directly incentivizes higher mu-
tual information between observations and latents. (iii) We
introduce three types of critic: a neural network critic, which
adds a third neural network to the VAE to act as the critic;
a self critic, which uses the existing networks to obtain a
closed-form optimal solution to the auxiliary task; and a
hybrid critic, which shares some parameters with the varia-
tional network but not all. We contrast these and the effect
they have on the final results. (iv) We demonstrate that the
method adds less overhead computation time to the standard
VAE than other methods for combating posterior collapse.

2 POSTERIOR COLLAPSE IN VAES

2.1 VAE FUNDAMENTALS

To fit the parameters of a deep generative model, we would
ideally maximize the marginal likelihood (the evidence) of
the data. However, this is generally an intractable quantity
as it involves integrating out the hidden variables. Instead,
the most common approach is to use variational inference,
which allows us to posit a variational family and maximize
a tractable lower bound, the ELBO, over its parameters.

Specifically, the VAE makes use of amortized variational
inference, which learns a function mapping observations to
variational parameters, providing us an approximate poste-
rior over latent variables given observations qφ(x, z). This
function, usually parametrized by a neural network with pa-
rameters φ, is shared across data points, hence the amortiza-
tion. This mechanism for amortized inference is also called
the ‘encoder’ in analogy to deterministic autoencoders, with
the model referred to as the ‘decoder’.

There are many equivalent ways to write the ELBO [Hoff-
man and Johnson, 2016]. Here, we will focus on a couple
that illustrate the problem we are addressing and motivate
the approach we propose. First consider:

ELBO =EpD(x)Eqφ(z|x) [log pθ(x | z)]]]
−KL (qφ(z | x)‖p(z))

(1)

where pD(x) is the empirical distribution of observations
from the dataset D. The first term can be thought of as
the model conditional likelihood (reconstruction), while
the second is the KL divergence between the approximate
posterior and the prior.



2.2 PITFALLS IN VAE TRAINING

The form of the ELBO in Equation 1 illustrates one reason
behind the phenomenon of posterior collapse. If the chosen
parametrization of the likelihood is flexible enough to learn
to always output (a good approximation of) the data distri-
bution, there is no incentive to take a penalty for the second
term: the model can keep the first term high even without
letting the approximate posterior deviate from the prior. This
is one reason behind the phenomenon of posterior collapse:
the model does not need the latent code to maximize the
likelihood and thus ignores it.

We can provide another expression for the ELBO that pro-
vides insight for this case. Consider the variational joint
distribution

qφ(x, z) = pD(x)qφ(z | x) (2)

and aggregate posterior

qφ(z) = EpD(x)qφ(z | x) (3)

where pD(x) is the data distribution. [Zhao et al., 2018,
Hoffman and Johnson, 2016, Dieng et al., 2019, Tomczak
and Welling, 2017]. Hoffman and Johnson perform ‘ELBO
surgery’ [Hoffman and Johnson, 2016] to rearrange the
ELBO from Equation 1 into the following:

ELBO =EpD(x)Eqφ(z|x) [log pθ(x | z)]
− Iq(x, z)−KL (qφ(z)‖p(z))

(4)

where Iq is the mutual information over the variational
family. (For a discussion of the variational joint MI Iq(x; z)
and the model joint MI Ip(x; z), see Appendix A.)

In other words, the KL divergence between the posterior and
the prior decomposes into a mutual information (MI) penalty
and a KL term that encourages matching the aggregate pos-
terior and the prior. Maximizing the ELBO thus explicitly
discourages high mutual information between observations
and latents, pushing them towards independence. As [Hoff-
man and Johnson, 2016] show, decreasing the value of the
MI does not impact the likelihood term, which tends to dom-
inate. As such, the objective enables the flexible neural nets
to achieve solutions exhibiting posterior collapse.

This loss of information means that the latents will not be in-
formative about the observations (and thus cannot be useful
representations). In the next section, we introduce a method
to explicitly prevent this information loss or ‘forgetting’. By
incorporating a regularization term that incentivizes higher
MI into the ELBO, we will counteract the effect of the MI
penalty from Equation 4.

3 FORGET-ME-NOT REGULARIZATION

We will employ a critic that imposes a penalty on the objec-
tive if observations and their corresponding latents cannot be

distinguished from non-corresponding pairs. The intuition
is that this matching is only possible if there is information
shared between observations and latents.

3.1 THE INFERENCE CRITIC

Consider a batch of samples from the empirical data dis-
tribution x0, . . . , xk, and a corresponding batch of latent
samples z0, . . . , zk (by encoding the xi). Every pair with
the correct correspondence comes from the variational joint
distribution q(x, z), while non-corresponding pairs are in-
dependent and come from the product of marginals (z via
ancestral sampling) [Alemi et al., 2018]. Formally:

(zi, xj) ∼

{
qφ(z, x) i = j

qφ(z)pD(x) i 6= j
(5)

If we can distinguish the joint distribution from the product
of marginals, there must be some dependence between x
and z. Given samples from both distributions, the critic will
try to pick out which pairs belong to which distribution. The
more successful it is, the more different the distributions
must be, and therefore the more x and z must be related.

The classifier, which we will denote f , needs to distinguish
between the joint and the product of marginals by directly
contrasting the correct pairings from the incorrect ones. We
know that for every observation xi, there is one latent in
the batch zi that corresponds to it (and vice versa). We also
know that the others should not. This corresponds to softmax
classification [Bishop, 2006], or a probabilistic classifier
with a categorical likelihood. f maximizes the objective:

c(x, z) = E
[
log

f (x+, z+)∑
x∈X f (x, z

+)

]
(6)

which is the critic’s expected value for the true correspond-
ing pairs (denoted by the +) relative to all the other (non-
corresponding) pairs, across pairs.1 (The notation within the
sum is in reference to a particular positive z+; we can think
of it as considering a particular z+ and trying to find the
associated x+ among the options for x, then taking the ex-
pectation over z. This is symmetric with respect to choosing
an x+ and finding the associated z+.)

Crucially, this objective constitutes a lower bound of the mu-
tual information, shown by Oord et al. [2019] in the context
of self-supervised representation learning. By maximizing
Equation 6, the classifier approximates the density ratio be-
tween the joint distribution and product of marginals [Oord
et al., 2019, Song and Ermon, 2020], which is precisely the
ratio appearing in the mutual information. Therefore, by
optimizing the parameters of the VAE with this objective
added to the ELBO as a regularizer, we push up on this

1Note writing f(x, z) as exp(f0(x, z)) recovers the softmax
classifier exactly.



Algorithm 1: Forget-me-not regularization with neural
network inference critic.
Input: Dataset D, batch size K, initial VAE parameters

θ, initial critic f parametrized by ψ,
regularization weight λ

1 while not converged do
2 Sample from pD(x)K times to obtain (x(i))Ki=1

3 Sample z(i) ∼ qφ(z|x(i) ∀i ∈ {1, . . . ,K}
4 Compute L0 =

∑K
i=1 ELBO(θ, φ, x(i), z(i)) per

Eqn 1 ; // standard minibatch ELBO
5 Compute fψ(xi, zj)∀i, j ; // inference

critic values
6 L1 ← c(x, z) per Eqn 6 ; // inference

critic objective
7 L ← L0 + λ ∗ L1

8 Perform gradient update for VAE parameters
9 Perform gradient update for critic parameters

lower bound. This push increases the MI between the la-
tents and the observations, effectively mitigating posterior
collapse as desired.

This critic establishes a tight connection to the contrastive
learning literature, in particular the InfoNCE loss from Con-
trastive Predictive Coding (CPC) [Oord et al., 2019], en-
abling the many advances in self-supervised learning to be
applied to VAEs. See Appendix D for details of how this
connection and bound apply. Note that, in the MI estimation
literature, classifiers that estimate the mutual information
like CPC are sometimes also referred to as critics [Poole
et al., 2019]. We intentionally overload this word here: the
inference critics of this paper critique the variational infer-
ence optimization.

3.2 REGULARIZATION

In order to prevent posterior collapse, we want to maximize
the mutual information between the latents and the sam-
ples. We integrate the penalty of the critic, which aims to
maximize c(x, z), to the ELBO:

ELBOCRITIC = EpD(x)Eqφ(z|x) [log pθ(x | z)]
−KL (qφ(z | x)‖p(z)) + c(x, z)

(7)

We optimize the parameters for the variational family,
model, and critic jointly; the critic prevents the usual con-
spiracy between the model and variational family over the
course of training, avoiding collapse. Algorithm 1 illustrates
the training procedure.

Notice that the mutual information appears in both the KL-
divergence term and the critic term. When the true mutual
information is equal to our estimate, this corresponds to
matching the marginals for z and the mutual information

Figure 2: Forget-me-not regularization in reference to the
graphical models acted on. Dashed lines show computation
flow. The inference critic works against information loss
in the variational family, trying to ensure it can tell zi and
xi correspond. It does this by solving a classification task:
among a batch of different repetitions of these variables,
classify which belong together. This task can only be solved
if there is shared information between variables belonging
to the same subgraph (repeated by the plate) to distinguish
them from those belonging to others.

term from Equation 4 is cancelled out by the regulariza-
tion. This approach does not need to resort to adversarial
training techniques that are difficult to use in practice. In-
stead, the critic provides a straightforward mechanism to
mitigate posterior collapse by causing an increase in the
mutual information term.

We apply this regularization across the variational family -
an inference critic, illustrated in Figure 2. See Appendix E
for discussion of its potential application across the model.
Furthermore, while here we consider the problem of poste-
rior collapse by examining the ELBO for the VAE, posterior
collapse is a more general phenomenon, observed in many
different models when using amortized variational inference
with deep neural networks. In theory, this approach would
work on any such problem with amortized inference.

3.3 TYPES OF INFERENCE CRITICS

This framework affords multiple types of critics (as forms
for f in Equation 6) that correspond to the mutual informa-
tion between the latents and the samples. We propose three
types of inference critics.

The most straightforward critic is a neural network critic.
This critic uses a third network, entirely separate from those
used in the VAE, to implement the critic. The choice of the
network design depends on the structure of the modality.
For example, we could use an embedding layer followed by
an LSTM for text data.



We also propose a self-critic that uses the variational fam-
ily as its own critic, providing the tighest estimate of the
mutual information. This originates from an idea in noise
contrastive estimation: if we have a tractable conditional (as
is the case with the variational family in the VAE), we can
directly use it to estimate the mutual information, and in
particular the tightest estimate of the MI will be found by
using f(x, z) = log q(z|x) [Poole et al., 2019]. This formu-
lation incentivizes the log-likelihood under the conditional
to be highest for samples that actually belong together, as
we would desire. This critic also has the advantage of not
requiring additional parameters.

The hybrid critic, as the name suggests, is in-between the
self-critic and the neural network critic. Rather than use
an entirely separate neural network, this critic shares early
layers with the variational network, after which point it
has its own parameters. This approach can be well-suited
to text data, where we may wish to share the embedding
weights between the variational network and critic but have
them separate past that. This presents a way to compromise
between using no additional parameters (as in the self-critic)
and using a whole additional network’s worth of parameters
(as in the neural network critic).

4 EXPERIMENTS

The basic objective of our experiments is to analyze in-
ference critics under posterior collapse. We report results
across three established image and text datasets.

4.1 COMMON EXPERIMENTAL SETUP

We follow a common setup throughout our experiments.
Since the method is compatible with the VAE family, it
can also be added on top of existing methods to mitigate
posterior collapse. We conducted experiments adding forget-
me-not regularization to a standard VAE to assess whether
the theoretical improvements yielded empirical benefits, fol-
lowing [He et al., 2019] and collapse metrics from [Dieng
et al., 2019]. We measure measuring the approximate nega-
tive log-likelihood (NLL, via 500 importance samples - this
gives a tighter bound for the evaluation than the ELBO), the
ELBO’s KL term, a Monte Carlo estimate of the MI under
the variational joint Iq(x; z), and the number of active units
(AU) [Burda et al., 2016] on held-out data.

We report results for the Yahoo, Yelp, and Omniglot datasets,
allowing systematic comparison to prior work [He et al.,
2019, Kim et al., 2018, Dieng et al., 2019]. As there are
both visual and text datasets, we use existing, appropriate
neural network architectures for each modality, which we
describe next to each experiment. For all datasets, we follow
the standard train/validation splits provided by the original
dataset authors. We evaluated all results on a single NVIDIA

GeForce RTX 2048 GPU.

Baselines: For all experiments, we compare against mul-
tiple established baselines. We use the standard VAE
[Kingma and Welling, 2014] without any additional strat-
egy for handling posterior collapse. We also compare to
SA-VAE [Kim et al., 2018]. Rather than solely relying on
amortized inference to obtain variational parameters, the
semi-amortized VAE (SA-VAE) uses amortized inference to
obtain an initialization and updates the parameters directly
from that point. Finally, we compare to the Lagging-VAE
[He et al., 2019], which aggressively updates the varia-
tional family many more times (e.g. 50x) as frequently as
the model. We choose this as representative as Lagging-
VAE holds the previous state-of-the-art on both modeling
and posterior collapse metrics without requiring use of the
KL annealing trick, making it a competitive baseline.

4.2 EVALUATION METRICS

We evaluate all models and baselines using the standard
metrics for evaluating the posterior collapse of VAEs. We
report the following:

Negative Log Likelihood (NLL): The negative log-
likelihood indicates the modeling performance on held-out
data. A smaller NLL indicates that the model generalizes to
data samples well.

KL-Divergence (KL): The KL-divergence term of the
ELBO in Equation 1 is a commmon indicator of collapse.
If we obtain a good ELBO but the KL term is low, the op-
timization progress comes from the model likelihood (the
first term of Equation 1). In this case, especially if the KL
is at or near zero, the posterior matches the prior too well
(suggesting collapse has occurred).

Mutual Information (MI): The estimate of the mutual in-
formation across the variational family, Iq(x; z), aims to
estimate if the latents have become independent of the data
(over the variational joint). We compute this estimate as
the difference of the previously-described KL term and the
marginal KL term from equation 4 per Hoffman and John-
son [2016]. Both KL terms are obtained by Monte Carlo.
The first is obtained naturally in computation of the ELBO,
while the second can be computed via ancestral sampling
(sampling from the dataset, then the approximate poste-
rior) again as in [Hoffman and Johnson, 2016]. However,
as pointed out by [He et al., 2019], this estimate is biased -
specifically, it is an upper bound.

Active Units (AU): A standard metric from prior work, the
number of active units provides a measure of how many
latent dimensions are active, which is specifically how many
of the stochastic units show any variation when the input
varies. If few are active, we are likely collapsed. Activity
is measured by Az = Covx

(
Ez∼q(z|x)[z]

)
, with a unit



Yahoo Yelp
Model NLL KL MI (Iq) AU NLL KL MI (Iq) AU
VAE 328.9 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 358.3 (0.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
SA-VAE [Kim et al., 2018] 329.2 (0.2) 0.1 (0.0) 0.1 (0.0) 0.8 (0.4) 357.8 (0.2) 0.3 (0.1) 0.3 (0.0) 1.0 (0.0)
Skip-VAE [Dieng et al., 2019] 328.7 (0.3) 0.22 (0.1) 0.0 (0.0) 7.0 (0.6) 358.1 (0.3) 0.15 (0.0) 0.0 (0.0) 4.6 (0.5)
Lagging-VAE [He et al., 2019] 328.2 (0.2) 5.6 (0.2) 3.0 (0.0) 8.0 (0.0) 356.9 (0.2) 3.4 (0.3) 2.4 (0.1) 7.4 (1.3)
VAE + Inference Critic (Self) 328.7 (0.2) 3.6 (0.1) 2.6 (0.0) 3.0 (0.0) 358.2 (0.2) 3.8 (0.1) 2.7 (0.0) 3.0 (0.0)
VAE + Inference Critic (Hybrid) 328.2 (0.1) 4.3 (0.1) 2.8 (0.0) 11.0 (0.4) 357.7 (0.2) 4.0 (0.1) 2.8 (0.0) 7.0 (0.0)
VAE + Inference Critic (NN) 338.9 (0.4) 17.5 (1.1) 3.3 (0.0) 8.0 (1.0) 370.5 (0.5) 18.6 (1.8) 3.2 (0.1) 12.0 (2.0)

Table 1: Quantitative results on the Yahoo and Yelp text corpora. Each critic improves on collapse metrics when added to the
standard VAE with no other changes. Results for comparison without KL annealing were referenced from He et al. [2019] or
re-implemented in the same framework and are averages of 5 runs, with standard deviation given in parentheses. (We follow
the training details in the aforementioned methods, running until convergence is achieved on the validation ELBO.)

Omniglot
Model NLL KL MI (Iq) AU
VAE 89.41 (0.04) 1.51 (0.05) 1.43 (0.07) 3.0 (0.0)
SA-VAE [Kim et al., 2018] 89.29 (0.04) 2.55 (0.05) 2.20 (0.03) 4.0 (0.0)
Skip-VAE [Dieng et al., 2019] 89.41 (0.05) 1.75 (0.20) 1.61 (0.10) 3.0 (0.4)
Lagging-VAE [He et al., 2019] 89.05 (0.05) 2.51 (0.14) 2.19 (0.08) 5.6 (0.5)
VAE + Inference Critic (Self) 89.18 (0.04) 6.30 (0.12) 3.75 (0.04) 11.0 (1.0)
VAE + Inference Critic (Hybrid) 89.16 (0.04) 6.41 (0.15) 3.78 (0.03) 13.0 (0.7)
VAE + Inference Critic (NN) 89.24 (0.05) 7.66 (0.14) 3.82 (0.04) 28.0 (0.0)

Table 2: Quantitative results on the Omniglot image dataset. We find each critic improves on collapse metrics when added to
the standard VAE with no other changes. Results for comparison without KL annealing were referenced from [He et al.,
2019] or re-implemented in the same framework and are averages of 5 runs, with standard deviation given in parentheses.
(We follow the training details in the aforementioned methods, running until convergence is achieved on the validation
ELBO.)

Running Time
Model Factor Absolute (Hrs)
VAE 1.00 3.5
Lagging-VAE 3.6 12.7
VAE + Inf. Critic (Hybrid) 1.06 3.7

Table 3: Speed comparison results. We report wall clock
time (‘Absolute’) and factor increase over the baseline (‘Fac-
tor’) on the Yahoo benchmark. Adding an inference critic
adds minimal overhead. Per the experimental procedure
used in [He et al., 2019], we run to convergence on the vali-
dation ELBO; the standard VAE converges after 54 epochs,
Lagging-VAE converges after 49 epochs, and the VAE with
a hybrid critic converges after 54 epochs. For the same num-
ber of epochs, the speed difference only increases.

considered active if its activity is above some threshold (we
follow [Dieng et al., 2019] and [He et al., 2019] with a
threshold of 0.01).

4.3 RESULTS ON TEXT

Experimental Setup: In this experiment, we evaluate on
the Yahoo and Yelp benchmarks [Yang et al., 2017]. All
methods use the standard train/val/test splits and follow the
experimental protocol in [He et al., 2019], fully described

in Appendix F. For the neural network architecture, this is a
1-layer LSTM with learnable embeddings for the variational
network and for the model network. Following this protocol,
all methods use a 32-dimensional latent space and a batch
size of 32.

Quantitative Results: The quantitative results in Table 1
show that all critics substantially improve on the collapse
metrics compared to the baseline on both datasets, showing
forget-me-not regularization is able to significantly mitigate
posterior collapse on text data.

Our results show that different critics have different behav-
iors. As the self-critic optimally solves the auxiliary task at
each step, if there is any information shared between obser-
vations and latents, it is able to pair them up successfully. On
the other hand, the neural network critic is entirely separate
from the variational network and is decidedly sub-optimal
at the auxiliary task - and thus needs more information to be
shared, as that increases its chances of finding a way to tie
together corresponding pairs. As the experimental results
show, this encourages less collapse. In particular, the neural
network critic reaches close to the theoretical maximum Iq
increase offered by applying an inference critic with the
batch size used (log(32) ≈ 3.4, see Appendix D). At the
same time, this may lead to solutions that do not perform as
well along the NLL, because there is a much stronger pull



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M

I
Standard VAE
NN Critic
Hybrid Critic
Self Critic

Figure 3: Comparison of mutual information across the
variational family (Iq) for various critics vs baseline over
the first 20 epochs of training on the Yahoo benchmark. This
is cropped for clarity; the plot over the entirety of training
can be seen in Appendix G.

to not collapse. The hybrid critic reaches a balance between
these: by not being optimal at solving the auxiliary task,
it pulls more strongly away from collapse, but by sharing
some parameters with the variational network, it is able to
reach better modeling solutions than the entirely separate
neural network critic, actually improving the NLL slightly
over the standard VAE. It is interesting that the neural net-
work critic, which uses an entirely separate set of parameters
and thus should be strictly more flexible, fails to reach such
an optima; we hypothesize this comes from difficulty in
optimization, which is made easier when the weights are
tied. None of the critics require additional hyperparameter
scheduling, such as to control KL annealing.

Figure 3 shows that all critics progressively push the mutual
information up over the course of training. In contrast, the
standard VAE remains collapsed throughout training.

4.4 RESULTS ON IMAGES

Experimental Setup: We next evaluate on the Om-
niglot benchmark [Lake et al., 2015] with the provided
train/val/test split. All methods follow the experimental pro-
tocol in He et al. [2019], fully described in the Appendix.
For the architecture, all methods use a ResNet [He et al.,
2015] for the variational network and a 13-layer Gated Pix-
elCNN [Oord et al., 2016] for the model. All methods use a
32-dimensional latent space with a batch size of 50.

Quantitative Results: The results on images in Table 2
show a similar trend to the results on text, suggesting that the
approach is robust across modalities. We find inference critic
is able to mitigate collapse for images as well, improving

substantially on collapse metrics compared to the baseline.

Furthermore, the relative quantitative behavior of different
critics remains the same on the images as well as text. In
particular, the neural network critic reaches close to the
theoretical maximum Iq increase offered by applying an
inference critic with the batch size used (log(50) ≈ 3.9.
See Appendix D) for more details. Finally, unlike for text,
all critics are able to improve NLL over the baseline. It is
interesting that the regularization actually seems to help the
original objective; this behavior is unlike that of approaches
like Beta-VAE [Higgins et al., 2016]. We hypothesize that
while the collapsed solution may be ‘easy’ to arrive to with
SGD, there exist better optima that actually use the latents,
which inference critics drive the parameters towards.

4.5 EFFICIENCY AND RUNNING TIME
PERFORMANCE

A key advantage of this approach is that it adds minimal
overhead to standard VAE training. As Table 3 shows, the
hybrid critic completes training in only 1.06x the time the
standard VAE takes - 3.7 hours vs 3.5 hours in wall-clock
time on one NVIDIA RTX 2048. This comes at no per-
formance trade-off: the hybrid critic improves along the
collapse metrics KL, MI, and AU over the standard baseline
with no reduction in NLL. The time performance is particu-
larly important as the overhead of previous approaches to
avoiding posterior collapse is typically too high for large-
scale problems. While Lagging-VAE does help against pos-
terior collapse, it took 12.7 hours to train (3.4x the time of
the hybrid critic). Other approaches are reported in the liter-
ature to require further computation - for example, SA-VAE
takes between 4 and 8 times as long as Lagging-VAE in [He
et al., 2019].

How can our method have such low overhead? Contrastive
learning often can be quite expensive. The 6% overhead is
made possible with the hybrid critic, as it shares most of
its parameters with the inference network. The bulk of the
computation is thus only done once, with the overhead intro-
duced when the two diverge. Additionally, with inspiration
from current work in self-supervised learning we employ
critics that are separable [Poole et al., 2019], meaning they
do not need to take every (x, z) pair (which would be n2

forward passes) but only the x. This leads to quadratic big-O
speedup compared to other approaches that need to process
every potential pairing.

5 RELATED WORK

The most relevant line of study related to this work are meth-
ods that try to avoid posterior collapse - especially those that
do so by increasing the mutual information. [Bowman et al.,
2016] identify the problem of posterior collapse for VAEs



endowed with powerful generators. They prescribe ‘KL an-
nealing’, or slowly increasing the KL-penalty in Equation
1 at the start of training. From Equation 4, we can inter-
pret this as slowly ramping up the MI penalty inherent to
the ELBO. Approaches like [Chen et al., 2017], [Gulrajani
et al., 2016], [Yang et al., 2017] modify the architecture of
the generative model to reduce its flexibility, with the hope
that this will prevent it from finding solutions that ‘forget’.
[Dieng et al., 2019] instead adds skip connections to the
VAE model network to increase Ip(x; z).

Other approaches aim to explicitly encourage higher mutual
information by modifying the objective, towards the goal
of ‘fixing a broken ELBO’ as identified by Alemi et al.
[2018]. Forget-me-not regularization falls into this category.
(Note that we do not claim novelty in the general idea of
modifying the objective to avoid MI loss; rather, forget-me-
not regularization presents a new way of accomplishing this
with distinct advantages in optimization ease, simplicity, and
speed.) Zhao et al. [2018] introduce an explicit marginal-KL
penalty which can be traded off with the usual KL term in
Equation 1. They do this either with an adversarial classifier
that tries to guess if a sample is from the aggregate posterior
or the prior, Stein variational gradient descent [Liu and
Wang, 2019], or kernel-based methods (e.g., MMD [Gretton
et al., 2012]), each of which is difficult to work with. They
show adversarial autoencoders [Makhzani et al., 2016] are a
special case of the former. raz [2019] enforce a minimum
KL instead of using a penalty.

Wasserstein autoencoders [Tolstikhin et al., 2019] provide
another approach to marginal matching, aiming to avoid the
traditional KL term (and its associated MI penalty) entirely
by matching marginals with the Wasserstein distance (but
this also requires adversarial training or MMD - it is also
a generalization of adversarial autoencoders). Phuong et al.
[2018] adds an explicit penalty for the MI with the Barber
and Agakov lower bound [Barber and Agakov, 2004], but
this is not fully differentiable and requires use of the high-
variance REINFORCE gradient estimator. Closely related
to this work is Rezaabad and Vishwanath [2020], which also
uses an auxiliary network on batches of samples (from the
variational joint) to obtain a penalty term; instead of solving
a straightforward classification problem as done here, they
use these to try to estimate the dual form of the mutual
information. VAE-MINE [Qian and Cheung, 2019] use the
MINE bound (a cousin of the CPC bound) to aim to increase
MI, but as pointed out by Poole et al. [2019], the way it
is computed does not constitute a correct MI bound. (See
Appendix H for more detailed discussion of VAE-MINE.)
Along different lines, Kim et al. [2018] address posterior
collapse by using the inference network’s outputs as an
initialization for SVI, creating a hybrid procedure between
amortized and non-amortized inference. He et al. [2019]
modify the optimization procedure to take more steps for
the inference network than the model network.

The idea of including an auxiliary classification task to gen-
erative models has a long history. The most famous of these
are GANs [Goodfellow et al., 2014], which train an auxil-
iary classifier adversarially on the empirical data distribution
and the model data distribution, aiming to make these in-
distinguishable. Uehara et al. [2016] interprets this in the
framework of density ratio estimation. Bayesian GANs Tran
et al. [2017] modify these with Bayesian neural networks
for Bayesian inference. Hybrids between VAEs and GANs
have been introduced in many forms [Larsen et al., 2016,
Donahue et al., 2017, Srivastava et al., 2017, Mescheder
et al., 2017]. All of these use the auxiliary classifier adver-
sarially, to encourage distribution matching, whereas we are
encouraging distributions not to match - specifically, we are
encouraging dependence between latents and observations
by making the joint different from the product of marginals.
ane [2021] use an auxiliary classifier for noise-contrastive
estimation between the prior and the aggregate posterior to
address the ‘prior hole’ problem. Rather than auxiliary clas-
sifiers, sey [2019] add auxiliary decoders aiming to avoid
collapsed optima.

This work provides a foundation for connecting advances
in contrastive learning with the VAE framework, giving us
control over what information is preserved (vs what the
representations are invariant to). CPC [Oord et al., 2019]
introduces the InfoNCE mutual information bound, apply-
ing it to representations obtained by applying autoregressive
models to sequential data. [Wu et al., 2018] proposes the
instance discrimination problem, which suggests matching
observations with encodings of perturbed versions of the
same observation - for example, two different augmentations
of an image, like brightness shifts - learning representations
that are invariant to these factors. MoCo [He et al., 2020]
proposes a ‘momentum queue’ to hold encodings from re-
cent batches to increase the number of ‘negatives’ being
compared to substantially; it surpasses the performance of
representations learned by supervised neural networks on
various computer vision tasks. Zhu et al. [2020] allows for
contrastive learning without large numbers of negatives via a
small modification to the InfoNCE objective, that provides a
more practical bound on the mutual information. Tschannen
et al. [2020] provides connections of these techniques and
associated mutual information bounds to metric learning,
which could also be an interesting perspective to bring to
representation learning with VAEs.

6 CONCLUSIONS

We present a new method for protecting against posterior
collapse in VAEs. In doing so, we establish a connection
between VAEs and contrastive representation learning. We
show inference critics increase the mutual information be-
tween latents and observations by maximizing the CPC
lower bound. Experiments on three datasets show the effec-
tiveness of the approach, with significant efficiency gains.
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