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Abstract
Stochastic Gradient Descent with a constant learning rate (constant SGD) simulates a Markov chain
with a stationary distribution. With this perspective, we derive several new results. (1) We show
that constant SGD can be used as an approximate Bayesian posterior inference algorithm. Specif-
ically, we show how to adjust the tuning parameters of constant SGD to best match the stationary
distribution to a posterior, minimizing the Kullback-Leibler divergence between these two distri-
butions. (2) We demonstrate that constant SGD gives rise to a new variational EM algorithm that
optimizes hyperparameters in complex probabilistic models. (3) We also show how to tune SGD
with momentum for approximate sampling. (4) We analyze stochastic-gradient MCMC algorithms.
For Stochastic-Gradient Langevin Dynamics and Stochastic-Gradient Fisher Scoring, we quantify
the approximation errors due to finite learning rates. Finally (5), we use the stochastic process per-
spective to give a short proof of why Polyak averaging is optimal. Based on this idea, we propose
a scalable approximate MCMC algorithm, the Averaged Stochastic Gradient Sampler.

Keywords: approximate Bayesian inference, variational inference, stochastic optimization, stochas-
tic gradient MCMC, stochastic differential equations

1. Introduction

Stochastic gradient descent (SGD) has become crucial to modern machine learning. SGD optimizes
a function by following noisy gradients with a decreasing step size. The classical result of Robbins
and Monro (1951) is that this procedure provably reaches the optimum of the function (or local op-
timum, when it is nonconvex) (Bouleau and Lepingle, 1994). Recent studies investigate the merits
of adaptive step sizes (Duchi et al., 2011; Tieleman and Hinton, 2012), gradient or iterate averag-
ing (Toulis et al., 2016; Défossez and Bach, 2015), and constant step-sizes (Bach and Moulines,
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2013; Flammarion and Bach, 2015). Stochastic gradient descent has enabled efficient optimiza-
tion with massive data, since one can often obtain noisy-but-unbiased gradients very cheaply by
randomly subsampling a large dataset.

Recently, stochastic gradients (SG) have also been used in the service of scalable Bayesian
Markov Chain Monte Carlo (MCMC) methods, where the goal is to generate samples from a con-
ditional distribution of latent variables given a data set. In Bayesian inference, we assume a proba-
bilistic model p(θ,x) with data x and hidden variables θ; our goal is to approximate the posterior

p(θ |x) = exp{log p(θ,x)− log p(x)}. (1)

These so-called stochastic gradient MCMC algorithms—such as SG Langevin dynamics (Welling
and Teh, 2011), SG Hamiltonian Monte Carlo (Chen et al., 2014), SG thermostats (Ding et al.,
2014), and SG Fisher scoring (Ahn et al., 2012)—employ stochastic gradients of log p(θ,x) to
improve convergence and computation of existing sampling algorithms. Also see Ma et al. (2015)
for a complete classification of these algorithms.

The similarities between SGD as an optimization algorithm and stochastic gradient MCMC
algorithms raise the question of how exactly these two types of algorithms relate to each other. The
main questions we try to address in this paper are:

• What is the simplest modification to SGD that yields an efficient approximate Bayesian sam-
pling algorithm?

• How can we construct other sampling algorithms based on variations of SGD such as pre-
conditioning (Duchi et al., 2011; Tieleman and Hinton, 2012), momentum (Polyak, 1964) or
Polyak averaging (Polyak and Juditsky, 1992)?

To answer these questions, we draw on the theoretical analysis tools of continuous-time stochas-
tic differential equations (Bachelier, 1900; Gardiner et al., 1985) and variational inference (Jordan
et al., 1999).

As a simple example, consider SGD with a constant learning rate (constant SGD). Constant SGD
first marches toward an optimum of the objective function and then bounces around its vicinity. (In
contrast, traditional SGD converges to the optimum by decreasing the learning rate.) Our analysis
below rests on the idea that constant SGD is a stochastic process with a stationary distribution,
one that is centered on the optimum and that has a certain covariance structure. The main idea
is that we can use this stationary distribution to approximate a posterior. In contrast, stochastic
gradient MCMC algorithms take precautions to sample from an asymptotically exact posterior, but
at the expense of slower mixing. Our inexact approach enjoys minimal implementation effort and
typically faster mixing. It is a hybrid of Monte Carlo and variational algorithms, and complements
the toolbox of approximate Bayesian inference.

Here is how it works. We apply constant SGD as though we were trying to minimize the negative
log-joint probability − log p(θ,x) over the model parameters θ. Constant SGD has several tunable
parameters: the constant learning rate, the minibatch size, and the preconditioning matrix (if any)
that we apply to the gradient updates. These tuning parameters all affect the stationary distribution
of constant SGD; depending on how they are set, this stationary distribution of θ will be closer to
or farther from the posterior distribution p(θ|x). If we set these parameters appropriately, we can
perform approximate Bayesian inference by simply running constant SGD.

In more detail, we make the following contributions:
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1. First, we develop a variational Bayesian view of stochastic gradient descent. Based on its
interpretation as a continuous-time stochastic process—specifically a multivariate Ornstein-
Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930; Gardiner et al., 1985)—we com-
pute stationary distributions for a large class of SGD algorithms, all of which converge to
a Gaussian distribution with a non-trivial covariance matrix. The stationary distribution is
parameterized by the learning rate, minibatch size, and preconditioning matrix.

Results about the multivariate OU process make it easy to minimize the KL divergence be-
tween the stationary distribution and the posterior analytically. We can thus relate the optimal
step size or preconditioning matrix to the Hessian and noise covariances near the optimum.
The optimal preconditioners relate to AdaGrad (Duchi et al., 2011), RMSProp (Tieleman and
Hinton, 2012), and classical Fisher scoring (Longford, 1987). We demonstrate how these
different optimization methods compare when used for approximate inference.

2. We show that constant SGD gives rise to a new variational EM algorithm (Bishop, 2006)
which allows us to use SGD to optimize hyperparameters while performing approximate in-
ference in a Bayesian model. We demonstrate this by fitting a posterior to a Bayesian multi-
nomial regression model.

3. We use our formalism to derive the stationary distribution for SGD with momentum (Polyak,
1964). Our results show that adding momentum only changes the scale of the covariance
of the stationary distribution, not its shape. This scaling factor is a simple function of the
damping coefficient. Thus we can also use SGD with momentum for approximate Bayesian
inference.

4. Then, we analyze scalable MCMC algorithms. Specifically, we use the stochastic-process
perspective to compute the stationary distribution of Stochastic-Gradient Langevin Dynamics
(SGLD) by Welling and Teh (2011) when using constant learning rates, and analyze stochastic
gradient Fisher scoring (SGFS) by Ahn et al. (2012). The view from the multivariate OU
process reveals a simple justification for this method: we confirm that the preconditioning
matrix suggested in SGFS is indeed optimal. We also derive a criterion for the free noise
parameter in SGFS that can enhance numerical stability, and we show how the stationary
distribution is modified when the preconditioner is approximated with a diagonal matrix (as
is often done in practice for high-dimensional problems).

5. Finally, we analyze iterate averaging (Polyak and Juditsky, 1992), where one successively
averages the iterates of SGD to obtain a lower-variance estimator of the optimum. Based on
the stochastic-process methodology, we give a shorter derivation of a known result, namely
that the convergence speed of iterate averaging cannot be improved by preconditioning the
stochastic gradient with any matrix. Furthermore, we show that (under certain assumptions),
Polyak iterate averaging can yield an optimal stochastic-gradient MCMC algorithm, and that
this optimal sampler can generate exactly one effectively independent sample per pass through
the dataset. This result is both positive and negative; it suggests that iterate averaging can be
used as a powerful Bayesian sampler, but it also argues that no SG-MCMC algorithm can
generate more than one useful sample per pass through the data, and so the cost of these
algorithms must scale linearly with dataset size.
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Our paper is organized as follows. In Section 3 we review the continuous-time limit of SGD,
showing that it can be interpreted as an OU process. In Section 4 we present consequences of
this perspective: the interpretation of SGD as variational Bayes and results around preconditioning
and momentum. Section 5 discusses SG Langevin Dynamics and SG Fisher Scoring. In Section 6
we discuss Polyak averaging for optimization and sampling. In the empirical study (Section 7),
we show that our theoretical assumptions are satisfied for different models, that we can use SGD
to perform gradient-based hyperparameter optimization, and that iterate averaging gives rise to a
Bayesian sampler with fast mixing.

2. Related Work

Our paper relates to Bayesian inference and stochastic optimization.
Scalable MCMC. Recent work in Bayesian statistics focuses on making MCMC sampling al-

gorithms scalable by using stochastic gradients. In particular, Welling and Teh (2011) developed
stochastic-gradient Langevin dynamics (SGLD). This algorithm samples from a Bayesian poste-
rior by adding artificial noise to the stochastic gradient which, as the step size decays, comes to
dominate the SGD noise. Also see Sato and Nakagawa (2014) for a detailed convergence anal-
ysis of the algorithm. Though elegant, one disadvantage of SGLD is that the step size must be
decreased to arrive at the correct sampling regime, and as step sizes get small so does mixing speed.
Other research suggests improvements to this issue, using Hamiltonian Monte Carlo (Chen et al.,
2014) or thermostats (Ding et al., 2014). Shang et al. (2015) build on thermostats and use a similar
continuous-time formalism as used in this paper.

Ma et al. (2015) give a complete classification of possible stochastic gradient-based MCMC
schemes.

Below, we will analyze properties of stochastic gradient Fisher scoring (SGFS; Ahn et al., 2012),
an extention to SGLD. This algorithm speeds up mixing times in SGLD by preconditioning gradi-
ents with the inverse gradient noise covariance. Ahn et al. (2012) show that (under some assump-
tions) SGFS can eliminate the bias associated with running SGLD with non-vanishing learning
rates. Our approach to analysis can extend and sharpen the results of Ahn et al. (2012). For exam-
ple, they propose using a diagonal approximation to the gradient noise covariance as a heuristic; in
our framework, we can analyze and rigorously justify this choice as a variational Bayesian approx-
imation.

Maclaurin et al. (2016) also interpret SGD as a non-parametric variational inference scheme, but
with different goals and in a different formalism. The paper proposes a way to track entropy changes
in the implicit variational objective, based on estimates of the Hessian. As such, the authors mainly
consider sampling distributions that are not stationary, whereas we focus on constant learning rates
and distributions that have (approximately) converged. Note that their notion of hyperparameters
does not refer to model parameters but to parameters of SGD.

Stochastic Optimization. Stochastic gradient descent is an active field (Zhang, 2004; Bottou,
1998). Many papers discuss constant step-size SGD. Bach and Moulines (2013); Flammarion and
Bach (2015) discuss convergence rate of averaged gradients with constant step size, while Défossez
and Bach (2015) analyze sampling distributions using quasi-martingale techniques. Toulis et al.
(2014) calculate the asymptotic variance of SGD for the case of decreasing learning rates, assuming
that the data is distributed according to the model. None of these papers consider the Bayesian
setting. Dieuleveut et al. (2017) also analyzed SGD with constant step size and its relation to
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Markov chains. Their analysis resulted in a novel extrapolation scheme to improve the convergence
behavior of iterate averaging.

The fact that optimal preconditioning (using a decreasing Robbins-Monro schedule) is achieved
by choosing the inverse noise covariance was first shown in (Sakrison, 1965), but here we derive
the same result based on different arguments and suggest a scalar prefactor. Note the optimal scalar
learning rate of 2/Tr(BB>), whereBB> is the SGD noise covariance (as discussed in Section 4 or
this paper), can also be derived based on stability arguments. This was done in the context of least
mean square filters (Widrow and Stearns, 1985).

Finally, Chen et al. (2016) also draw analogies between SGD and scalable MCMC. They suggest
annealing the posterior over time to use scalable MCMC as a tool for global optimization. We
follow the opposite idea and suggest to use constant SGD as an approximate sampler by choosing
appropriate learning rate and preconditioners.

Stochastic differential equations. The idea of analyzing stochastic gradient descent with
stochastic differential equations is well established in the stochastic approximation literature (Kush-
ner and Yin, 2003; Ljung et al., 2012). Recent work focuses on dynamical aspects of the algorithm.
Li et al. (2015) discuss several one-dimensional cases and momentum. Li et al. (2017) give a math-
ematically rigorous justification of the continuous-time limit. Chen et al. (2015) analyze stochastic
gradient MCMC and study their convergence properties using stochastic differential equations.

Our work makes use of the same formalism but has a different focus. Instead of analyzing
dynamical properties, we focus on stationary distributions. Further, our paper introduces the idea of
minimizing KL divergence between multivariate sampling distributions and the posterior.

Variational Inference. Variational Inference (VI) denotes a set of methods which aim at ap-
proximating a Bayesian posterior by a simpler, typically factorized distribution. This is done by
minimizing Kullback-Leibler divergence or related divergences between these distributions (Jor-
dan et al., 1999; Opper and Saad, 2001). For the class of models where the conditional distri-
butions are in the exponential family, the variational objective can be optimized by closed-form
updates (Ghahramani and Beal, 2000), but this is a restricted class of models with conjugate priors.
A scalable version of VI, termed Stochastic Variational Inference (SVI), relies on stochastic gra-
dient descent for data subsampling (Hoffman et al., 2013). For non-conjugate models, Black-Box
variational inference (Ranganath et al., 2014) has enabled SVI for a large class of models, but this
approach may suffer from high-variance gradients. A modified form of black-box variational infer-
ence relies on re-parameterization gradients (Salimans and Knowles, 2013; Kingma and Welling,
2014; Rezende et al., 2014; Kucukelbir et al., 2015; Ruiz et al., 2016). This version is limited to
continuous latent variables but typically has much lower-variance gradients.

In this paper, we compare against the Gaussian reparameterization gradient version of black-box
variational inference as used in Kingma and Welling (2014); Rezende et al. (2014); Kucukelbir et al.
(2015) which we refer to as BBVI. We find that our approach performs similarly in practice, but it
is different in that it does not optimize the parameters of a simple variational distribution. Rather,
it controls the shape of the approximate posterior via the parameters of the optimization algorithm,
such as the learning rate or preconditioning matrix.
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3. Continuous-Time Limit Revisited

We first review the theoretical framework that we use throughout the paper. Our goal is to charac-
terize the behavior of SGD when using a constant step size. To do this, we approximate SGD with
a continuous-time stochastic process (Kushner and Yin, 2003; Ljung et al., 2012).

3.1 Problem Setup

Consider loss functions of the following form:

L(θ) = 1
N

∑N
n=1`n(θ), g(θ) ≡ ∇θL(θ). (2)

Such loss functions are common in machine learning, where L(θ) ≡ L(θ,x) is a loss function that
depends on data x and parameters θ. Each `n(θ) ≡ `(θ,xn) is the contribution to the overall loss
from a single observation xn. For example, when finding a maximum-a-posteriori estimate of a
model, the contributions to the loss may be

`n(θ) = − log p(xn | θ)− 1
N log p(θ), (3)

where p(xn | θ) is the likelihood and p(θ) is the prior. For simpler notation, we will suppress the
dependence of the loss on the data.

From this loss we construct stochastic gradients. Let S be a set of S random indices drawn
uniformly at random from the set {1, . . . , N}. This set indexes functions `n(θ), and we call S a
“minibatch” of size S. Based on the minibatch, we used the indexed functions to form a stochastic
estimate of the loss and a stochastic gradient,

L̂S(θ) = 1
S

∑
n∈S `n(θ), ĝS(θ) = ∇θL̂S(θ). (4)

In expectation the stochastic gradient is the full gradient, i.e., g(θ) = E[ĝS(θ)]. We use this stochas-
tic gradient in the SGD update

θ(t+ 1) = θ(t)− ε ĝS(θ(t)). (5)

Above and for what follows, we assume a constant (non-decreasing) learning rate ε.
Eqs. 4 and 5 define the discrete-time process that SGD simulates from. We will approximate it

with a continuous-time process that is easier to analyze.

3.2 SGD as an Ornstein-Uhlenbeck Process

We now show how to approximate the discrete-time Eq. 5 with a continuous-time Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930). This leads to the stochastic differential equation below in
Eq. 11. To justify the approximation, we make four assumptions. We verify its accuracy empirically
in Section 7.

Assumption 1 Observe that the stochastic gradient is a sum of S independent, uniformly sampled
contributions. Invoking the central limit theorem, we assume that the gradient noise is Gaussian
with covariance 1

SC(θ), hence

ĝS(θ) ≈ g(θ) + 1√
S

∆g(θ), ∆g(θ) ∼ N (0, C(θ)). (6)
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Assumption 2 We assume that the covariance matrix C(θ) is approximately constant with respect
to θ. As a symmetric positive-semidefinite matrix, this constant matrix C factorizes as

C(θ) ≈ C = BB>. (7)

Assumption 2 is justified when the iterates of SGD are confined to a small enough region around a
local optimum of the loss (e.g. due to a small ε) that the noise covariance does not vary significantly
in that region.

We now define ∆θ(t) = θ(t+ 1)− θ(t) and combine Eqs. 5, 6, and 7 to rewrite the process as

∆θ(t) = −ε g(θ(t)) + ε√
S
B∆W, ∆W ∼ N (0, I) . (8)

This can be interpreted as a finite-difference equation that approximates the following continuous-
time stochastic differential equation:

dθ(t) = −εg(θ)dt+ ε√
S
B dW (t). (9)

Assumption 3 We assume that we can approximate the finite-difference equation (8) by the stochas-
tic differential equation (9).

This assumption is justified if either the gradients or the learning rates are small enough that the
discretization error becomes negligible.

Assumption 4 We assume that the stationary distribution of the iterates is constrained to a region
where the loss is well approximated by a quadratic function,

L(θ) = 1
2 θ
>Aθ. (10)

(Without loss of generality, we assume that a minimum of the loss is at θ = 0.) We also assume that
A is positive definite.

The symmetric matrix A is thus the Hessian at the optimum. Assumption 4 makes sense when the
loss function is smooth and the stochastic process reaches a low-variance quasi-stationary distribu-
tion around a deep local minimum. The exit time of a stochastic process is typically exponential
in the height of the barriers between minima, which can make local optima very stable even in the
presence of noise (Kramers, 1940).

SGD as an Ornstein-Uhlenbeck process. The four assumptions above result in a specific kind
of stochastic process, the multivariate Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930):

dθ(t) = −εA θ(t)dt+ 1√
S
εB dW (t) (11)

This connection helps us analyze properties of SGD because the Ornstein-Uhlenbeck process
has an analytic stationary distribution q(θ) that is Gaussian. This distribution will be the core ana-
lytic tool of this paper:

q(θ) ∝ exp
{
−1

2θ
>Σ−1θ

}
. (12)
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The covariance Σ satisfies

ΣA+AΣ = ε
SBB

>. (13)

(More details are in Appendix B.) Without explicitly solving this equation, we see that the resulting
covariance Σ is proportional to the learning rate ε and inversely proportional to the magnitude of A
and minibatch size S. This characterizes the stationary distribution of running SGD with a constant
step size.

Discussion of Assumptions 1–4. Our analysis suggests that constant SGD and Langevin-type
diffusion algorithms (Welling and Teh, 2011) are very similar. Both types of algorithms can be
characterized by three regimes. First, there is a search phase where the algorithm approaches the
optimum. In this early phase, assumptions 1–4 are often violated and it is hard to say anything
general about the behavior of the algorithm. Second, there is a phase where SGD has converged to
the vicinity of a local optimum. Here, the objective already looks quadratic, but the gradient noise
is small relative to the average gradient g(θ). Thus SGD takes a relatively directed path towards the
optimum. This is the regime where our assumptions should be approximately valid, and where our
formalism reveals its use. Finally, in the third phase the iterates are near the local optimum. Here,
the average gradient g(θ) is small and the sampling noise becomes more important. In this final
phase, constant SGD begins to sample from its stationary distribution.

Finally, we note that if the gradient noise covariance C does not have full rank, then neither will
the stationary covariance Σ. This scenario complicates the analysis in Section 4, so below we will
assume that C has full rank. This could be enforced easily by adding very low-magnitude isotropic
artificial Gaussian noise to the stochastic gradients.

4. SGD as Approximate Inference

We discussed a continuous-time interpretation of SGD with a constant step size (constant SGD). We
now discuss how to use constant SGD as an approximate inference algorithm. To repeat the set-up
from the introduction, consider a probabilistic model p(θ,x) with data x and hidden variables θ;
our goal is to approximate the posterior p(θ |x) in Eq. 1.

We set the loss to be the negative log-joint distribution (Eqs. 2 and 3), which equals the neg-
ative log-posterior up to an additive constant. The classical goal of SGD is to minimize this loss,
leading us to a maximum-a-posteriori point estimate of the parameters. This is how SGD is used
in many statistical models, including logistic regression, linear regression, matrix factorization, and
neural networks. In contrast, our goal here is to tune the parameters of SGD so that its stationary
distribution approximates the posterior.

Fig. 1 shows an example. Here we illustrate two Bayesian posteriors—from a linear regression
problem (top) and a logistic regression problem (bottom)—along with iterates from a constant SGD
algorithm. In these figures, we set the parameters of the optimization to values that minimize the
Kullback-Leibler (KL) divergence between the stationary distribution of the OU process and the
posterior—these results come from our theorems below. The left plots optimize both a precondi-
tioning matrix and the step size; the middle plots optimize only the step size (both are outlined in
Section 4.1). We can see that the stationary distribution of constant SGD can be made close to the
exact posterior.

Fig. 2 also compares the empirical covariance of the iterates with the predicted covariance in
terms of Eq. 13. The close match supports the assumptions of Section 3.
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Figure 1: Posterior distribution f(θ) ∝ exp {−NL(θ)} (blue) and stationary sampling distributions
q(θ) of the iterates of SGD (cyan) or black box variational inference (BBVI) based on reparame-
terization gradients. Rows: linear regression (top) and logistic regression (bottom) discussed in
Section 7. Columns: full-rank preconditioned constant SGD (left), constant SGD (middle), and
BBVI (Kucukelbir et al., 2015) (right). We show projections on the smallest and largest principal
component of the posterior. The plot also shows the empirical covariances (3 standard deviations)
of the posterior (black), the covariance of the samples (yellow), and their prediction (red) in terms
of the Ornstein-Uhlenbeck process, Eq. 13.

Figure 2: Empirical and predicted covariances of the iterates of stochastic gradient descent, where
the prediction is based on Eq. 13. We used linear regression on the wine quality data set as detailed
in Section 7.1.
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We will use this perspective in three ways. First, we develop optimal conditions for constant
SGD to best approximate the posterior, connecting to well-known results around adaptive learning
rates and preconditioners (Duchi et al., 2011; Tieleman and Hinton, 2012). Second, we propose an
algorithm for hyperparameter optimization based on constant SGD. Third, we use it to analyze the
stationary distribution of stochastic gradient descent with momentum (Polyak, 1964).

4.1 Constant Stochastic Gradient Descent

First, we show how to tune constant SGD’s parameters to minimize KL divergence to the posterior;
this is a type of variational inference (Jordan et al., 1999). The analysis leads to three versions of
constant SGD—one with a constant step size, one with a full preconditioning matrix, and one with
a diagonal preconditioning matrix. Each yields samples from an approximate posterior, and each
reflects a different tradeoff between efficiency and accuracy. Finally, we show how to use these
algorithms to learn hyperparameters.

Assumption 4 from Section 3 says that the posterior is approximately Gaussian in the region
that the stationary distribution focuses on,

f(θ) ∝ exp
{
−N

2 θ
>Aθ

}
. (14)

The scalar N corrects the averaging in equation 2. Furthermore, in this section we will consider a
more general SGD scheme that may involve a preconditioning matrix H instead of a scalar learning
rate ε:

θt+1 = θt −HĝS(θ(t)).

We will set the parameters of SGD to minimize the KL divergence between the stationary dis-
tribution q(θ) (Eqs. 12 and 13) and the posterior f(θ) (Eq. 14). This involves the the learning rate ε
or more generally the preconditioning matrix H and the minibatch size S:

{H∗, S∗} = arg min
H,S

KL(q || f).

First, consider a scalar learning rate ε (or a trivial preconditioner H = εI). The distributions f(θ)
and q(θ) are both Gaussians. Their means coincide, at the minimum of the loss, and so their KL
divergence is

KL(q || f) = −Eq[log f(θ)] + Eq[log q(θ)]

= 1
2

(
NEq[θ>Aθ]− log |NA| − log |Σ| −D

)
= 1

2 (NTr(AΣ)− log |NA| − log |Σ| −D) ,

where | · | is the determinant and D is the dimension of θ.
We suggest three variants of constant SGD that generate samples from an approximate posterior.

Theorem 1 (Constant SGD) Under Assumptions A1-A4, the constant learning rate that minimizes
KL divergence from the stationary distribution of constant SGD to the posterior is

ε∗ = 2 SN
D

Tr(BB>)
. (15)

10



STOCHASTIC GRADIENT DESCENT AS APPROXIMATE BAYESIAN INFERENCE

Proof To prove this claim, we face the problem that the covariance of the stationary distribution de-
pends indirectly on ε through Eq. 13. Inspecting this equation reveals that Σ0 ≡ S

ε Σ is independent
of S and ε. This simplifies the entropy term log |Σ| = D log(ε/S) + log |Σ0|. Since Σ0 is constant,
we can neglect it when minimizing KL divergence.

We also need to simplify the term Tr(AΣ), which still depends on ε and S through Σ. To do this,
we again use Eq. 13, from which follows that Tr(AΣ) = 1

2(Tr(AΣ) + Tr(ΣA)) = ε
2STr(BB>).

The KL divergence is therefore, up to constant terms,

KL(q||f)
c
= εN

2S Tr(BB>)−D log(ε/S). (16)

Minimizing KL divergence over ε/S results in Eq. 15 for the optimal learning rate.

Theorem 1 suggests that the learning rate should be chosen inversely proportional to the average
of diagonal entries of the noise covariance, and proportional to the ratio between the minibatch size
and dataset size.

Since both the posterior f and the variational distribution q are Gaussian, one might wonder
if also the reverse KL divergence is viable. While the KL divergence can be computed up to a
constant, we cannot remove its dependence on the unknown stationary distribution Σ using Eq. 13,
unless A and Σ commute. This setup is discussed in Appendix C.

Instead of using a scalar learning rate, we now consider a positive-definite preconditioning ma-
trix H . This gives us more tuning parameters to better approximate the posterior.

Theorem 2 (Preconditioned constant SGD) The preconditioner for constant SGD that minimizes
KL divergence from the stationary distribution to the posterior is

H∗ = 2S
N (BB>)−1. (17)

Proof To prove this, we need the Ornstein-Uhlenbeck process which corresponds to preconditioned
SGD. Replacing the constant learning rate in Eq. 11 with a positive-definite preconditioning matrix
H results in

dθ(t) = −HAθ(t)dt+ 1√
S
HB dW (t).

All our results carry over after substituting εA← HA, εB ← HB. Eq. 13, after the transformation
and multiplication by H−1 from the left, becomes

AΣ +H−1ΣAH = 1
SBB

>H. (18)

Using the cyclic property of the trace, this implies that

Tr(AΣ) = 1
2(Tr(AΣ) + Tr(H−1AΣH)) = 1

2STr(BB>H). (19)

Consider now the log determinant term, log |Σ|, which still has an implicit dependence on H . We
first define Q = ΣH−1, hence Q> = H−1Σ since Σ, H and H−1 are symmetric. Eq. 18 can
be written as AΣH−1 + H−1ΣA = 1

SBB
>, which is equivalent to QA + AQ> = 1

SBB
>.
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Thus, we see that Q is independent of H . The log determinant term is up to a constant log |Σ| =
log |H|+ log |Q|. Combining Eq. 19 with this term, the KL divergence is up to a constant

KL(q||f)
c
= N

2STr(BB>H) + log |H|+ log |Q|. (20)

Taking derivatives with respect to the entries of H results in Eq. 17.

In high-dimensional applications, working with large dense matrices is impractical. In those
settings we can constrain the preconditioner to be diagonal. The following corollaries are based on
the proof of Theorem 2:

Corollary 3 The optimal diagonal preconditioner for SGD that minimizes KL divergence to the
posterior is H∗kk = 2S

NBB>kk
.

Proof This follows from Eq. 20, where we restrict the preconditioning matrix to be diagonal.

Corollary 4 Under assumptions A1-A4, preconditioning with the full inverse noise covariance as
in Theorem 2 results in samples from the exact posterior.

Proof Consider Eq. 18. Inserting H = 2S
N (BB>)−1 results in AΣ + H−1ΣAH = 2

N I which is
solved by Σ = A−1/N which is the posterior covariance.

We showed that the optimal diagonal preconditioner is the inverse of the diagonal part of the
noise matrix. Similar preconditioning matrices have been suggested earlier in optimal control the-
ory based on very different arguments, see (Widrow and Stearns, 1985). Our result also relates to
AdaGrad and its relatives (Duchi et al., 2011; Tieleman and Hinton, 2012), which also adjust the
preconditioner based on the square root of the diagonal entries of the noise covariance. In Ap-
pendix F we derive an optimal global learning rate for AdaGrad-style diagonal preconditioners. In
Section 7, we compare three versions of constant SGD for approximate posterior inference: one
with a scalar step size, one with a dense preconditioner, and one with a diagonal preconditioner.

Remark on estimating the noise covariance. In order to use our theoretical insights in practice,
we need to estimate the stochastic gradient noise covariance C ≡ BB>. We do this in an online
manner. As before, let gt be the full gradient, ĝS,t be the stochastic gradient of the full minibatch,
and ĝ1,t be the stochastic gradient of the first sample in the minibatch at time t (which has a much
larger variance if S � 1). For large S, we can approximate gt ≈ ĝS,t, and thus obtain an estimator
of the noise covariance by (ĝ1,t− ĝS,t)(ĝ1,t− ĝS,t)>. Following Ahn et al. (2012), we can now build
an online estimate Ct that approaches C by the following recursion,

Ct = (1− κt)Ct−1 + κt(ĝ1,t − ĝS,t)(ĝ1,t − ĝS,t)>. (21)

Above, κt is a decreasing learning rate. Ahn et al. (2012) have proven that such an online average
converges to the noise covariance in the optimum at long times (provided that κt ∼ 1/t and that N
is sufficiently large). We found that this online estimator works well in practice, even though our
theoretical assumptions would require preconditioning SGD with the true noise covariance in finite

12
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time. Regarding the computational overhead of this procedure, note that similar online estimates
of the gradient noise are carried out in adaptive SGD schemes such as AdaGrad (Duchi et al.,
2011) or RMSProp (Tieleman and Hinton, 2012). When using a diagonal approximation to the
noise covariance, the costs are proportional in the number of dimensions and mini-batch size; this
efficiency means that the online estimate does not spoil the efficiency of SGD. Full preconditioning
scales quadratically in the dimension and is therefore impractical in many real-word setups.

4.2 Constant SGD as Variational EM

Consider a supervised probabilistic model with joint distribution p(y, θ|x, λ) = p(y|x, θ)p(θ|λ)
that factorizes into a likelihood and prior, respectively. Our goal is to find optimal hyperparameters
λ. Jointly point-estimating θ and λ by following gradients of the log joint leads to overfitting or
degenerate solutions. This can be prevented in a Bayesian approach, where we treat the parameters θ
as latent variables. In Empirical Bayes (or type-II maximum likelihood), we maximize the marginal
likelihood of the data, integrating out the main model parameters:

λ? = arg maxλ log p(y|x, λ) = arg maxλ log
∫
θ p(y, θ|x, λ)dθ.

When this marginal log-likelihood is intractable, a common approach is to use variational expectation-
maximization (VEM) (Bishop, 2006), which iteratively optimizes a variational lower bound on the
marginal log-likelihood over λ. If we approximate the posterior p(θ|x, y, λ) with some distribu-
tion q(θ), then VEM tries to find a value for λ that maximizes the expected log-joint probability
Eq[log p(θ, y|x, λ)].

Constant SGD gives rise to a simple VEM algorithm that applies to a large class of differentiable
models. Define L(θ, λ) = − log p(y, θ |x, λ). If we interpret the stationary distribution of SGD as
a variational approximation to a model’s posterior, we can justify following a stochastic gradient
descent scheme on both θ and λ:

θt+1 = θt − ε∗∇θL(θt, λt); λt+1 = λt − ρt∇λL(θt, λt). (22)

While the update for θ uses the optimal constant learning rate ε∗ and therefore samples from an
approximate posterior, the λ update uses a decreasing learning rate ρt and therefore converges to a
local optimum. The result is a type of VEM algorithm.

We stress that the optimal constant learning rate ε∗ is not unknown, but can be estimated based
on an online estimate of the noise covariance C ≡ BB>, as given in Eq. 21. In Section 7 we show
that gradient-based hyperparameter learning is a cheap alternative to cross-validation.

4.3 Stochastic Gradient with Momentum

The continuous-time formalism also allows us to explore extensions of classical SGD. One of the
most popular methods is stochastic gradient with momentum (Polyak, 1964; Sutskever et al., 2013).
Here, we give a version of this algorithm that allows us to sample from an approximate posterior.

SGD with momentum doubles the dimension of parameter space in introducing an additional
momentum variable v that has the same dimension as θ. Position and momentum are coupled in
such a way that the algorithm keeps memory of some of its past gradients. The updates of SGD
with momentum are

v(t+ 1) = (1− µ)v(t)− ε ĝS(θ(t))

θ(t+ 1) = θ(t) + v(t+ 1).

13
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This involves the damping coefficient µ ∈ [0, 1]. For µ = 1 (infinite damping or overdamping), the
momentum information gets lost and we recover SGD.

As before we assume a quadratic objective L = 1
2θ
>Aθ. Going through the same steps A1-A4

of Section 3 that allowed us to derive the Ornstein-Uhlenbeck process for SGD, we find

dv = −µvdt− εAθdt+ 1√
S
εB dW, (23)

dθ = vdt.

We solve this set of stochastic equations asymptotically for the long-time limit. We reformulate the
stochastic equation in terms of coupled equations for the moments. (This strategy was also used
by Li et al. (2015) in a more restricted setting). The first moments of the set of coupled stochastic
differential equations give

dE[v] = −µE[v]dt− εAE[θ]dt, dE[θ] = E[v]dt.

Note we used that expectations commute with the differential operators. These deterministic equa-
tions have the simple solution E[θ] = 0 and E[v] = 0, which means that the momentum has
expectation zero and the expectation of the position variable converges to the optimum (at 0).

In order to compute the stationary distribution, we derive and solve similar equations for the
second moments. These calculations are carried out in Appendix D, where we derive the following
conditions:

E[vv>] = ε
2E[θθ>]A+ ε

2AE[θθ>], (24)

µE[vv>] = ε2

2SBB
>.

Eq. 25 relate to equilibrium thermodynamics, where E[vv>] is a matrix of expected kinetic energies,
while 1

2(E[θθ>]A+AE[θθ>]) has the interpretation of a matrix of expected potential energies. The
first equation says that energy conservation holds in expectation, which is the case for an equilibrium
system which exchanges energy with its environment. The second equation relates the covariance of
the velocities with BB>, which plays the role of a matrix-valued temperature. This is known as the
fluctuation-dissipation theorem (Nyquist, 1928). Combining both equations and using Σ = E[θθ>]
yields

ΣA+AΣ = ε
µSBB

>. (25)

This is exactly Eq. 13 of SGD without momentum, however, with the difference that the noise
covariance is re-scaled by a factor ε

µS instead of ε
S .

We have shown that ε, S, and µ play similar roles: only the combination ε
µS affects the KL di-

vergence to the posterior. Thus, no single optimal constant learning rate exists—many combinations
of ε, µ, and S can yield the same stationary distribution. But different choices of these parameters
will affect the dynamics of the Markov chain. For example, Sutskever et al. (2013) observe that, for
a given effective learning rate ε

µS , using a smaller µ sometimes makes the discretized dynamics of
SGD more stable. Also, using very small values of µ while holding ε

µ fixed will eventually increase
the autocorrelation time of the Markov chain (but this effect is often negligible in practice).
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5. Analyzing Stochastic Gradient MCMC Algorithms

We have analyzed well-known stochastic optimization algorithms such as SGD, preconditioned
SGD and SGD with momentum. We now investigate Bayesian sampling algorithms. A large class
of modern MCMC methods rely on stochastic gradients (Welling and Teh, 2011; Ahn et al., 2012;
Chen et al., 2014; Ding et al., 2014; Ma et al., 2015). The central idea is to add artificial noise to the
stochastic gradient to asymptotically sample from the true posterior.

In practice, however, the algorithms are used in combination with several heuristic approxi-
mations, such as non-vanishing learning rates or diagonal approximations to the Hessian. In this
section, we use the variational perspective to quantify these biases and help understanding these
algorithms better under more realistic assumptions.

5.1 SGLD with Constant Rates

To begin with, we we analyze the well-known Stochastic Gradient Langevin Dynamics by Welling
and Teh (2011). This algorithm has been carefully analyzed in the long time limit where the stochas-
tic gradient noise vanishes as the learning rate goes to zero, and where mixing becomes infinitely
slow (Sato and Nakagawa, 2014). Here we analyze an approximate version of the algorithm, SGLD
with a constant learning rate. We are interested in the stationary distribution of this approximate
inference algorithm.

The discrete-time process that describes Stochastic Gradient Langevin dynamics is

θt+1 = θt − ε
2N∇̂θL(θt) +

√
ε V (t),

where V (t) ∼ N (0, I) is a vector of independent Gaussian noises. Following assumptions 1–4 of
Section 3, V becomes the Wiener noise dV and the corresponding continuous-time process is

dθ = −1
2εNAθdt+

√
εdV + ε 1√

S
NB dW.

Above, dV and dW are vectors of independent Wiener noises, i.e. E[dWdV >] = E[dV dW>] = 0.
The analog of Eq. 13 is then

1
2N(AΣ + ΣA) = I + εN

2SBB
>.

In the limit of ε → 0, we find that Σ−1 = NA, meaning the stationary distribution becomes
identical to the posterior. However, for non-zero ε, there are discrepancies. These correction-
terms are positive. This shows that the posterior covariance is generally overestimated by Langevin
dynamics, which can be attributed to non-vanishing learning rates at long times.

5.2 Stochastic Gradient Fisher Scoring

We now investigate Stochastic Gradient Fisher Scoring (Ahn et al., 2012), a scalable Bayesian
MCMC algorithm. We use the variational perspective to rederive the Fisher scoring update and
identify it as optimal. We also analyze the sampling distribution of the truncated algorithm, one
with diagonal preconditioning (as it is used in practice), and quantify the bias that this induces.

The basic idea here is that the stochastic gradient is preconditioned and additional noise is added
to the updates such that the algorithm approximately samples from the Bayesian posterior. More
precisely, the update can be cast into the following form:

θ(t+ 1) = θ(t)− εH ĝ(θ(t)) +
√
εHEW (t). (26)
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The matrix H is a preconditioner and EW (t) is Gaussian noise; we control the preconditioner and
the covariance EE> of the noise. Stochastic gradient Fisher scoring suggests a preconditioning
matrix H that leads to samples from the posterior even if the learning rate ε is not asymptotically
small. We show here that this preconditioner follows from our variational analysis.

Theorem 5 (Stochastic Gradient Fisher Scoring) Under Assumptions A1-A4, the positive-definite
preconditioner H in Eq. 26 that minimizes KL divergence from the stationary distribution of SGFS
to the posterior is

H∗ = 2
N (εBB> + EE>)−1. (27)

Proof To prove the claim, we go through the steps of Section 3 to derive the corresponding Ornstein-
Uhlenbeck process, dθ(t) = −εHAθ(t)dt+H [εB +

√
εE] dW (t). For simplicity, we have set the

minibatch size S to 1. In Appendix E, we derive the following KL divergence between the posterior
and the sampling distribution:

KL(q||p) = −N
4 Tr(H(εBB> + EE>)) + 1

2 log |T |+ 1
2 log |H|+ 1

2 log |NA|+ D
2 .

(T is constant with respect to H , ε, and E.) We can now minimize this KL divergence over the
parameters H and E. When E is given, minimizing over H gives Eq. 27.

Eq. 27 not only minimizes the KL divergence, but makes it 0, meaning that the stationary sam-
pling distribution is the posterior. This solution corresponds to the suggested Fisher Scoring update
in the idealized case when the sampling noise distribution is estimated perfectly (Ahn et al., 2012).
Through this update, the algorithm thus generates posterior samples without decreasing the learn-
ing rate to zero. (This is in contrast to Stochastic Gradient Langevin Dynamics by Welling and Teh
(2011).)

In practice, however, SGFS is often used with a diagonal approximation of the preconditioning
matrix (Ahn et al., 2012; Ma et al., 2015). However, researchers have not explored how the sta-
tionary distribution is affected by this truncation, which makes the algorithm only approximately
Bayesian. We can quantify its deviation from the exact posterior and we derive the optimal diagonal
preconditioner, which follows from the KL divergence in Theorem 5:

Corollary 6 When approximating the Fisher scoring preconditioner by a diagonal matrix H∗kk or
a scalar H∗scalar, respectively, then

H∗kk =
2

N
(εBB>kk + EE>kk)

−1 and H∗scalar =
2D

N
(
∑
k

[εBB>kk + EE>kk])
−1.

Note that we have not made any assumptions about the noise covariance E. We can adjust it in
favor of a more stable algorithm. For example, in the interests of stability we might want to set a
maximum step size hmax, so that Hkk ≤ hmax for all k. We can adjust E such that Hkk ≡ hmax in
Eq. 27 becomes independent of k. Solving for E yields EE>kk = 2

hmaxN − εBB
>
kk.

Hence, to keep the learning rates bounded in favor of stability, one can inject noise in dimensions
where the variance of the gradient is too small. This guideline is opposite to the advice of Ahn et al.
(2012) to choose B proportional to E, but follows naturally from the variational analysis.
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An additional benefit of SGFS over simple constant SGD is that the sum of gradient noise and
Gaussian noise will always look “more Gaussian” than the gradient noise on its own. An extreme
case is when the gradient covariance BB> is not full rank; in this situation injecting full-rank
Gaussian noise could prevent degenerate behavior.

6. A Bayesian View on Iterate Averaging

We now apply our continuous-time analysis to the technique of iterate averaging (Polyak and Ju-
ditsky, 1992). Iterate averaging was derived as an optimization algorithm, and we analyze this
algorithm in Section 6.1 from this perspective. In Section 6.2 we show that iterate averaging can
also be used as a Bayesian sampling algorithm.

6.1 Iterate Averaging for Optimization

Iterate averaging further refines SGD’s estimate of the optimal parameters by averaging the iterates
produced by a series of SGD steps. Polyak and Juditsky (1992) proved the remarkable result that
averaged SGD achieves the best possible convergence rate among stochastic gradient algorithms1,
including those that use second-order information such as Hessians. This implies that the conver-
gence speed of iterate averaging cannot be improved when premultiplying the stochastic gradient
with any preconditioning matrix. We use stochastic calculus to show that the stationary distribution
of iterate averaging is the same for any constant preconditioner. Based on slightly stronger-than-
usual assumptions, we give a short proof on why this result holds.

To eliminate asymptotic biases, iterate averaging usually requires a slowly decreasing learn-
ing rate. We consider a simplified version with a constant rate, also analyzed in (Zhang, 2004;
Nemirovski et al., 2009).

Algorithm. Before we begin iterate averaging, we assume that we have run ordinary constant
SGD for long enough that it has reached its stationary distribution and forgotten its intialization. In
this scenario, we use iterate averaging to “polish” the results obtained by SGD.

Iterate averaging estimates the location of the minimum of L using a sequence of stochastic
gradients ĝS , and then computes an average of the iterates in an online manner,

θt+1 = θt − εĝS(θt), (28)

µ̂t+1 = t
t+1 µ̂t + 1

t+1 θt+1.

After T stochastic gradient steps and going over to continuous times, this average is

µ̂ ≈ 1
T

∫ T
0 θ(t)dt ≡ µ̂′. (29)

The average µ̂ and its approximation µ̂′ are random variables whose expected value is the minimum
of the objective. (Again, this assumes θ(0) is drawn from the SGD process’s stationary distribution.)

The accuracy of this estimator µ̂′ after a fixed number of iterations T is characterized by its
covariance matrix D. Using stochastic calculus, we can compute D from the autocorrelation matrix
of the stationary distribution of the OU process, shown in Appendix G. We prove that

D ≡ E
[
µ̂′µ̂′>

]
≈ 1

εT

(
Σ(A−1)> +A−1Σ

)
. (30)

1. To be more precise, averaged SGD is optimal among methods that only have access to a stochastic gradient oracle—if
more is known about the source of the noise then sometimes better rates are possible (e.g., Johnson and Zhang, 2013;
Defazio et al., 2014).
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This approximation ignores terms of order 1/(Tε)2. This term is small since we assume that the
number of iterations T is much larger than the inverse learning rate 1/ε. The covariance shrinks
linearly over iterations as we expect from Polyak and Juditsky (1992). We use Eq. 13 to derive

D ≈ 1
TSA

−1BB>(A−1)>.

Note that this covariance depends only on the number of iterations T times the minibatch size
S, not on the step size ε. Since TS is the total number of examples that are processed, this means
that this iterate averaging scheme’s efficiency does not depend on either the minibatch size or the
step size, proven first in (Polyak and Juditsky, 1992).

We can make a slightly stronger statement. If we precondition the stochastic gradients with a
positive-definite matrix H (for example, the inverse of the Hessian evaluated at the minimum), it
turns out that the covariance of the estimator remains unchanged. The resulting Ornstein-Uhlenbeck
process is dθ = −HAθ(t)dt+ 1√

S
HB dW (t). The resulting stationary covariance D′ of precondi-

tioned iterate averaging is the same as above:

D′ ≈ 1
T (HA)−1( 1√

S
HB)( 1√

S
HB)>((HA)>)−1

= 1
TSA

−1H−1HBB>HH−1A−1

= 1
TSA

−1BB>A−1.

(31)

Both the stationary distribution and the autocorrelation matrix change as a result of the precondi-
tioning, and these changes exactly cancel each other out.

This optimality of iterate averaging was first derived by Polyak and Juditsky (1992), using
quasi-martingales. Our derivation is based on stronger assumptions, but is shorter.

6.2 Finite-Window Iterate Averaging for Posterior Sampling

Above, we used the continuous-time formalism to quickly rederive known results about the optimal-
ity of iterate averaging as an optimization algorithm. Next, as in Section 4, we will analyze iterate
averaging as an algorithm for approximate posterior inference.

We will show that (under some optimistic assumptions), iterate averaging requires exactly N
gradient calls to generate one sample drawn from the exact posterior distribution, where N is the
number of observations. That is, there exist conditions under which iterate averaging generates
one true posterior sample per pass over the data. This result is both exciting and discouraging; it
implies that, since our assumptions are all optimistic and iterate averaging is known to saturate the
Cramér-Rao bound, no black-box stochastic-gradient MCMC algorithm can generate samples in
time sublinear in the number of data points.

In addition to Assumptions 1–4 of Section 3, we need an additional assumption for our theoret-
ical considerations to hold:

Assumption 5 Assume that the sample size N is large enough that the Bernstein-von Mises the-
orem (Le Cam, 1986) applies (hence the posterior is Gaussian). Also assume that the observed
dataset was drawn from the model p(y |θ) with parameter θ = 0. Then A = BB>, that is, the
Fisher information matrix equals the Hessian.

This simplifies equation 13:

AΣ + ΣA = ε
SBB

> A5
=⇒ Σ =

ε

2S
I. (32)
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Algorithm 1 The Iterate Averaging Stochastic Gradient sampler (IASG)
input: averaging window T = N/S, number of samples M , input for SGD.
for t = 1 to M ∗ T do

θt = θt−1 − ε ĝS(θt−1); // perform an SGD step;
if tmodT = 0 then

µt/T = 1
T

∑T−1
t′=0 θt−t′ ; // average the T most recent iterates

end
end
output: return samples {µ1, . . . , µM}.

That is, the sampling distribution of SGD is isotropic.
Stationary distribution. We will consider the sampling distribution of the average of T succes-

sive samples from the stationary SGD process with step size ε. Going to the continuous-time OU
formalism, we show in Appendix G that the stationary covariance of the iterate averaging estimator
defined in Eq. 30 is

D =
1

ST
A−1 +

1

εST 2
UΛ−2(e−εTΛ − I)U>, (33)

where U is orthonormal, Λ is diagonal, and UΛU> = A is the eigendecomposition of the Hessian
A. We have previously assumed that the posterior has covariance 1

NA
−1. Thus, to leading order in

the ratio 1/(εTΛ), the stationary distribution of fixed-window iterate averaging is a scaled version
of the posterior.

If we choose T = N/S, so that we average the iterates of a single pass through the dataset,
then the iterate-averaging sampling distribution will have approximately the same covariance as the
posterior,

D? =
1

N
A−1 +

S

ε

1

N2
UΛ−2(e−

ε
S
NΛ − I)U>

=
1

N
UΛ−1

(
I +

S

ε

1

N
Λ−1(e−

ε
S
NΛ − I)

)
U>.

(34)

D? and A−1 have identical eigenvectors, and their eigenvalues differ by a factor that goes to zero
as ε

S becomes large. Conversely, as ε
S approaches zero, all of these eigenvalues approach ε

2S as in
Eq. 32. (This can be shown by taking a second-order Maclaurin approximation of e−

εN
S

Λ.)
Our analysis gives rise to the Iterate Averaging Stochastic Gradient sampler (IASG), described

in Algorithm 1. We now investigate its approximation error and efficiency.
Approximation error, step size, and minibatch size. We now focus on the correction terms

that lead to deviations between the iterate averaging estimator’s covariance D∗ and the posterior
covariance 1

NA
−1.

The analysis above tells us that we can ignore these correction terms if we choose a large enough
ε
S . But the analysis in previous chapters assumes that ε

S is small enough that assumptions 1–4 hold.
These considerations are in tension.

When is ε
S “large enough”? Eq. 34 shows that the relative error is largest in the direction of the

smallest eigenvalue λmin ≡ mink Λkk of A (corresponding to the least-constrained direction in the
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posterior). We will focus our analysis on the relative error in this direction, which is given by

errmax ≡ S
ε

1
Nλmin

(e−
S
ε
Nλmin − 1).

We are given N and λmin, but we can control ε
S . To make errmax small, we must therefore choose

ε
S >

c
Nλmin

for some constant c. So larger datasets and lower-variance posteriors let us use smaller
stepsizes.

It is hard to say in general how small εS needs to be to satisfy assumptions 1–4. But if assumption
4 is satisfied (i.e., the cost is approximately quadratic), then assumption 3 (no discretization error)
cannot hold if ε > 2

λmax
. This is the step size at which the discretized noise-free gradient descent

process becomes unstable for quadratic costs. (We define λmax ≡ maxk Λkk analogous to λmin.)
Combining this observation with the analysis above, we see that this iterate averaging scheme

will not work unless

2

Sλmax
>
ε

S
>

c

Nλmin
⇒ 2

c
>
S

N

λmax

λmin
.

That is, we need the dataset size N to be large enough relative to the condition number λmax
λmin

of
the Hessian A if this simple iterate-averaging scheme is to generate good posterior samples. If the
condition number is large relative to N , then it may be necessary to replace the scalar step size ε
with a preconditioning matrix H ≈ A−1 to reduce the effective condition number of the Hessian A.

Efficiency. Next, we theoreticaly analyze the efficiency with which iterate averaging can draw
samples from the posterior, and compare this method to other approaches. We assume that the cost
of analyzing a minibatch is proportional to S. We have shown above that we need to average over
T = N/S samples of SGD to create a sample of iterate averaged SGD. Since this averaging in-
duces a strong autocorrelation, we can only use every T th sample of the chain of averaged iterates.
Furthermore, every sample of SGD incurs a cost at least proportional to D where D is the dimen-
sionality of θ. This means that we cannot generate an independent sample from the posterior in less
than O(S ∗ T ∗D) = O(ND) time; we must analyze at least N observations per posterior sample.

We compare this result with the more classical strategy of estimating the posterior mode via
Newton’s method (which has an O(ND2 +D3) cost) and then estimating the posterior covariance
by computing the inverse-Hessian at the mode, again incurring an O(ND2 +D3) cost. By contrast,
getting an unbiased full-rank estimate of the covariance using MCMC requires generating at leastD
samples, which again costs O(ND2). If N > D, then this is within a constant cost of the classical
approach.

However, it is conceivable that Polyak averaging (Section 6.2) could be used to estimate the
first few principal components of the posterior relatively quickly (i.e., in O(ND) time). This cor-
responds to finding the smallest principal components of A, which cannot be done efficiently in
general. A related question is investigated experimentally in Section 7.2.

The analysis above implies an upper bound on the efficiency of stochastic-gradient MCMC
(SGMCMC) methods. The argument is this: given that assumptions 1–5 hold, suppose that there
exists an SGMCMC method that, for large N , is able to generate effectively independent posterior
samples using d < O(N) operations. Then, if we wanted to estimate the posterior mode, we could
simply average some large number M of those samples to obtain an estimator whose covariance
would be 1

MA
−1. This approach would require dM operations, whereas iterate averaging would

require O(MN) > dM operations to obtain an estimator with the same covariance. But this
contradicts the result of Polyak and Juditsky (1992) that no stochastic-gradient-oracle algorithm can
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Method Wine Skin Protein
constant SGD 18.7 0.471 1000.9
constant SGD-d 14.0 0.921 678.4
constant SGD-f 0.7 0.005 1.8
SGLD (Welling and Teh, 2011) 2.9 0.905 4.5
SGFS-d (Ahn et al., 2012) 12.8 0.864 597.4
SGFS-f (Ahn et al., 2012) 0.8 0.005 1.3
BBVI (Kucukelbir et al., 2015) 44.7 5.74 478.1

Table 1: KL divergences between the posterior and stationary sampling distributions applied to the
data sets discussed in Section 7.1. To estimate the KL divergence, we fitted a multivariate Gaussian
to the iterates of our sampling algorithms and used a Laplace approximation for the posterior. We
compared constant SGD without preconditioning and with diagonal (-d) and full rank (-f) precon-
ditioning against Stochastic Gradient Langevin Dynamics and Stochastic Gradient Fisher Scoring
(SGFS) with diagonal (-d) and full rank (-f) preconditioning, and BBVI.

outperform iterate averaging. Thus, the optimality of iterate averaging as an optimization algorithm,
taken with assumptions 1–5, implies that no SGMCMC algorithm can generate posterior samples
in sublinear time2.

This argument relies on assumptions 1–5 being true, but one can easily construct scenarios in
which they are violated. However, these assumptions are all optimistic; there seems (to us) little
reason to think that problems that violate assumptions 1–5 will be easier than those that do not.

7. Experiments

We test our theoretical assumptions from Section 3 and find good experimental evidence that they
are reasonable in some settings. We also investigate iterate averaging and show that the assump-
tions outlined in 6.2 result in samples from a close approximation to the posterior. We also com-
pare against other approximate inference algorithms, including SGLD (Welling and Teh, 2011),
NUTS (Hoffman and Gelman, 2014), and black-box variational inference (BBVI) using Gaussian
reparametrization gradients (Kucukelbir et al., 2015). In Section 7.3 we show that constant SGD
lets us optimize hyperparameters in a Bayesian model.

7.1 Confirming the Stationary Distribution’s Covariance

In this section, we confirm empirically that the stationary distributions of SGD with KL-optimal
constant learning rates are as predicted by the Ornstein-Uhlenbeck process.

Real-world data. We first considered the following data sets.

• The Wine Quality Data Set3, containing N = 4, 898 instances, 11 features, and one integer
output variable (the wine rating).

2. At least, not without exploiting additional knowledge about the source of gradient noise as do methods like SVRG
and SAGA (Johnson and Zhang, 2013; Defazio et al., 2014).

3. P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, ’Wine Quality Data Set’, UCI Machine Learning Repository.
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Figure 3: Iterate averaging on linear regression, where we generated artificial data as generated from
the model. (a) shows the empirical covariance of the iterates of SGD, whereas (c) shows the aver-
aged iterates with optimally chosen time window. The resulting covariance strongly resembles the
true posterior covariance in (b). This shows that iterate averaging may result in posterior sampling.

• A data set of Protein Tertiary Structure4, containing N = 45, 730 instances, 8 features and
one output variable.

• The Skin Segmentation Data Set5, containing N = 245, 057 instances, 3 features, and one
binary output variable.

We applied linear regression on data sets 1 and 2 and applied logistic regression on data set 3. We
rescaled the feature to unit length and used a mini-batch of size S = 100, S = 100 and S = 10000
for the three data sets, respectively. The quadratic regularizer was 1. The constant learning rate was
adjusted according to Eq. 15.

Fig. 1 shows two-dimensional projections of samples from the posterior (blue) and the station-
ary distribution (cyan), where the directions were chosen two be the smallest and largest principal
component of the posterior. Both distributions are approximately Gaussian and centered around
the maximum of the posterior. To check our theoretical assumptions, we compared the covariance
of the sampling distribution (yellow) against its predicted value based on the Ornstein-Uhlenbeck
process (red), where very good agreement was found. Since the predicted covariance is based on
approximating SGD as a multivariate Ornstein-Uhlenbeck process, we conclude that our modeling
assumptions are satisfied to a very good extent. Since the wine dataset is smaller than the skin seg-
mentation data set, it has a broader posterior and therefore requires a larger learning rate to match
it. For this reason, discretization effects play a bigger role and the stationary distribution of pre-
conditioned SGD on wine does not exactly match the posterior. The unprojected 11-dimensional
covariances on wine data are also compared in Fig. 2. The rightmost column of Fig. 1 shows
the sampling distributions of black box variational inference (BBVI) using the reparametrization
trick (Kucukelbir et al., 2015). Our results show that the approximation to the posterior given by
constant SGD is not worse than the approximation given by BBVI.

We also computed KL divergences between the posterior and stationary distributions of various
algorithms: constant SGD with KL-optimal learning rates and preconditioners, Stochastic Gradient
Langevin Dynamics, Stochastic Gradient Fisher Scoring (with and without diagonal approximation)

4. Prashant Singh Rana, ’Protein Tertiary Structure Data Set’, UCI Machine Learning Repository.
5. Rajen Bhatt, Abhinav Dhall, ’Skin Segmentation Dataset’, UCI Machine Learning Repository.
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and BBVI. For SG Fisher Scoring, we set the learning rate to ε∗ of Eq. 15, while for Langevin
dynamics we chose the largest rate that yielded stable results (ε = {10−3, 10−6, 10−5} for data sets
1, 2 and 3, respectively). Table 1 summarizes the results. We found that constant SGD can compete
in approximating the posterior with the MCMC algorithms under consideration. This suggests
that the most important factor is not the artificial noise involved in scalable MCMC, but rather the
approximation of the preconditioning matrix.

Figure 4: Convergence speed comparison between IASG (top), SGLD (middle), and NUTS (bot-
tom) on linear regression. The plots show minimal (yellow) and maximal (blue) posterior marginal
variances, respectively, as a function of iterations, measured in units of passes through the data.
Error bars denote one standard deviation. Red solid lines show the ground truth. Left plots were
initialized in the posterior maximum, whereas in the right column, we initialized randomly.

7.2 Iterate Averaging as Approximate MCMC

In the following, we show that under the assumptions specified in Section 6.2, iterate averaging with
a constant learning rate and fixed averaging window results in samples from the posterior.

Synthetic data. In order to strictly satisfy the assumptions outlined in Section 6.2, we generated
artificial data that came from the model. We chose a linear regression model with a Gaussian prior
with precision λ = 1. We first generated N = 10, 000 covariates by drawing them from a D = 10
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Figure 5: Posterior covariances as estimated by different methods, see also Fig. 4. The top row
shows results where we initialized the samplers in the maximum posterior mode. The bottom rows
were initialized randomly. For MAP initialization, all samplers find a good estimate of the posterior.
When initializing randomly, IASG performs better than NUTS and SGLD.

dimensional Gaussian with unit covariance. We drew the true weight vector from the prior. We then
generated the corresponding response variables from the linear regression model.

In a first experiment, we confirmed that iterate averaging may result in samples from the exact
posterior, shown in Fig. 3. The left panel shows the empirical covariance matrix of the iterates of
SGD. The middle and right panel show the posterior covariance and empirical covariance of the
averaged iterates, respectively. As predicted by our theory, there is a very strong resemblance which
demonstrates that constant-rate iterate averaging with the right rates and averaging windows may
actually result in samples from the posterior. To generate this plot, we then ran constant SGD with
a constant learning rate ε = 0.005 for 10 ∗D ∗N = 106 iterations and a minibatch size S = 1 and
used an averaging window of N/S = 104, as predicted by the theory presented earlier in order to
achieve samples from the posterior.

Next, we analyzed the convergence speed of Iterate-Averaged Stochastic Gradients (IASG, see
Algorithm 1) compared to related methods. Fig. 4 shows these comparisons for three modern scal-
able MCMC algorithms: SGLD (Welling and Teh, 2011) and NUTS (Hoffman and Gelman, 2014).
We investigated how quickly these algorithms could give us estimates of the posterior covariances.
To better visualize the convergence behavior, we focussed on diagonal entries of the posterior co-
variance, the marginal variances. As before, the data were generated from the model such the
theoretical assumptions of 6.2 applied. We then ran the samplers for up to 103 ∗D effective passes
through the data. For IASG and SGLD we used a minibatch size of S = 10 and an averaging
window of N/S = 1000. The constant learning rate of IASG was ε = 0.003 and for SGLD we de-
creased the learning rate according to the Robbins-Monro schedule of εt = ε0√

1000+t
where we found

ε0 = 10−3 to be optimal. NUTS automatically adjusts its learning rate and uses non-stochastic gra-
dients.
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The left column of Fig. 4 shows the results of these experiments. We found the convergence
speeds of the samplers to be highly dependent on whether we optimized the samplers in the maxi-
mum posterior mode (termed MAP-initialization: this partially eleminates the initial bias and burn-
in phase) or whether the samplers were initialized randomly, as in a real-world application. Thus,
we show both results: while the the right column shows random initializations, the left one shows
MAP-initialization. The rows of Fig. 4 show results of IASG (top), SGLD (middle), and NUTS (bot-
tom). Each entry shows the smallest and largest marginal variance of the posterior over iterations,
as estimated from these methods, where we excluded the first 10 iterations to avoid large biases. We
also give the standard deviations for these estimates based on 100 independent Markov chains. The
solid red lines show the ground truth of these marginal variances. Fig. 5 shows additional results
on the same experiments, where we display the posterior estimates of the three different samplers
under the two different initializations.

We found that in both initializations, IASG can find a fast approximate solution to the posterior.
It uses stochastic gradients which gives it a competitive advantage over NUTS (which uses full gra-
dients) in particular in the early search phase of the sampler. Langevin dynamics behaves similarly
at early iterations (it also employs stochastic gradients). However, compared to IASG, we see that
the Langevin algorithm has a much larger standard error when estmating the posterior covariances.
This is because it uses a decreasing Robbins-Monro learning rate that slows down equilibration at
long times. In contrast, IASG uses a constant learning rate and therefore converges fast. Note that
in practice a large variance may be as bad as a large bias, especially if posterior estimates are based
on a single Markov chain. This is also evident in Fig. 5, which shows that for random initializa-
tion, both NUTS and SGLD reveal less of the structure of the true posterior covariance compared to
IASG.

When initialized in the posterior maximum, we see that all algorithms perform reasonably well
(though SGLD’s estimates are still highly variable even after 10, 000 sweeps through the dataset).
IASG converges to a stable estimate much faster than SGLD or NUTS, but produces slightly biased
estimates of the smallest variance.

7.3 Optimizing Hyperparameters

We test the hypothesis of Section 4.2, namely that constant SGD as a variational algorithm gives
rise to a variational EM algorithm where we jointly optimize hyperparameters using gradients while
drawing samples form an approximate posterior. To this end, we experimented with a Bayesian
multinomial logistic (a.k.a. softmax) regression model with normal priors. The negative log-joint is

L ≡ − log p(y, θ|x) = λ
2

∑
d,k θ

2
dk −

DK
2 log(λ) + DK

2 log 2π

+
∑

n log
∑

k exp{
∑

d xndθdk} −
∑

d xndθdyn ,
(35)

where n ∈ {1, . . . , N} indexes examples, d ∈ {1, . . . , D} indexes features and k ∈ {1, . . . ,K}
indexes classes. xn ∈ RD is the feature vector for the nth example and yn ∈ {1, . . . ,K} is the class
for that example. Eq. 35 has the degenerate maximizer λ =∞, θ = 0, which has infinite posterior
density which we hope to avoid in our approach.

Real-world data. In all experiments, we applied this model to the MNIST dataset (60, 000
training examples, 10, 000 test examples, 784 features) and the cover type dataset (500, 000 training
examples, 81, 012 testing examples, 54 features).
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Figure 6: Validation loss as a function of L2 regularization parameter λ. Circles show the values of
λ that were automatically selected by SGD and BBVI.

Fig. 6 shows the validation loss achieved by maximizing equation 35 over θ for various values
of λ. This gives rise to the continuous blue curve. The value for constant SGD was obtained
using Eq. 22, hence using constant learning rates for θ and decreasing learning rates for λ. BBVI
was carried out by optimizing a variational lower bound in mean-field variational inference, and
optimizing hyperparameters based on this lower bound.

The results suggest that BBVI and constant SGD yield similar results. Thus, constant SGD can
be used as an inexpensive alternative to cross-validation or other VEM methods for hyperparameter
selection.

8. Conclusions

In this paper, we built on a stochastic process perspective of stochastic gradient descent and various
extensions to derive several new results. Under specified assumptions, SGD is approximated by a
multivariate Ornstein-Uhlenbeck process, which possesses an analytic solution. We computed the
stationary distribution of constant SGD and analyzed its properties.

We analyzed SGD together with several extensions, such as momentum, preconditioning, and
iterate averaging. The shape of the stationary distribution is controlled by the parameters of the
algorithm such as the constant learning rate, preconditioning matrix, or averaging period. We can
thus tune these parameters to minimize the Kullback-Leibler divergence between the stationary
distribution and a Bayesian posterior. This view uses these stochastic optimization algorithms as
approximate inference. We also analyzed stochastic gradient Langevin dynamics and stochastic
gradient Fisher scoring and were able to analyze approximation errors for these algorithms.

The Bayesian view on constant-rate SGD allows us to use this algorithm as a new variational
EM algorithm. We suggested and tested a double SGD scheme which uses decreasing learning rates
on the hyperparameters and constant learning rates on the main parameters. We showed that this is
both easy to implement and prevents us from finding degenerate solutions; it is a cheap alternative
to cross-validation for many complex models.

Last, our analysis suggests the many similarities between sampling and optimization algorithms
that can be explored using the stochastic process perspective. A future direction might be to explore
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similarities in the noise characteristics of black-box variational inference algorithms and Langevin-
type MCMC. Further exploring the use of iterate averaging as a Bayesian algorithm is another
interesting avenue for further studies.
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Appendix A. Examples: Ornstein-Uhlenbeck Formalism

Let us illustrate the Ornstein-Uhlenbeck formalism based on two simple examples. First, consider
the following quadratic loss,

L(θ) = − 1
2N

∑N
n=1 ||xn − θ||2. (36)

Let us define x̄ = 1
N

∑N
n=1 xn as the empirical mean of the data points. The gradient is g(θ) =

(x̄−θ), and the stochastic gradient is ĝ(θ) = 1
S

∑S
s=1(xs−θ). Because the gradient is linear in x, the

noise covariance is just the covariance of the data: Σx ≡ C/S = 1
S2E

[∑
s,s′(xs − x̄)(xs′ − x̄)>

]
=

1
SE[(xn − x̄)(xn − x̄)>]. We can shift the parameter θ → θ + x̄, resulting in θ∗ = 0. Note that the
Hessian A ≡ I is just unity. According to Eq. 38,

q(θ) ∝ exp
{
− S

2ε(θ − x̄)>Σ−1
x (θ − x̄)

}
.

as the resulting stationary distribution. Next, consider linear regression, where we minimize

L(θ) = − 1
2N

∑
n(yn − x>n θ)2. (37)

We can write the stochastic gradient as ĝ = Âθ − µ̂, where µ̂ = 1
S

∑
s xsys and Â = 1

S

∑
s xsx

>
s

are estimates based on a mini-batch of size S. The sampling noise covariance is C(θ) = E[(ĝ −
g)(ĝ − g)>] = E[ĝĝ>] − gg>, where E[ĝĝ>] = E[(Âθ − µ̂)(Âθ − µ̂)>]. We see that the noise
covariance is quadratic, but unfortunately it cannot be further simplified.

Fig. 1 shows the objective function of linear regression (blue) and the sampling distribution
of stochastic gradient descent (yellow) on simulated data. We see that both distributions do not
coincide, because the sampling distribution is also affected by the noise covariance.

Appendix B. Stationary Covariance

The Ornstein-Uhlenbeck process has an analytic solution in terms of the stochastic integral (Gar-
diner et al., 1985),

θ(t) = exp(−At)θ(0) +
√

ε
S

∫ t

0
exp[−A(t− t′)]BdW (t′) (38)

Following Gardiner’s book and usingA = A>, we derive an algebraic relation for the stationary
covariance of the multivariate Ornstein-Uhlenbeck process. Define Σ = E[θ(t)θ(t)>]. Using the
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formal solution for θ(t) given in the main paper, we find

AΣ + ΣA = ε
S

∫ t

−∞
A exp[−A(t− t′)]BB> exp[−A(t− t′)]dt′

+ ε
S

∫ t

−∞
exp[−A(t− t′)]BB> exp[−A(t− t′)]dt′A

= ε
S

∫ t

−∞

d

dt′

(
exp[−A(t− t′)]BB> exp[−A(t− t′)]

)
= ε

SBB
>.

We used that the lower limit of the integral vanishes by the positivity of the eigenvalues of A.

Appendix C. Reverse KL Divergence Setup

It is interesting to also consider the case of trying to minimize the reverse KL divergence, i.e.
KL(f ||q) instead of KL(q||f). One might assume that this is possible since both the variational
distribution and the posterior are assumed to be Gaussian. This turns out to lead only to a feasible
algorithm in the special case where the Hessian in the optimum A and the stationary covariance Σ
commute. In more detail, the KL-divergence between the posterior and the stationary distribution
is (up to constants):

KL(f ||q) = Ef [log f ]− Ef [log q] (39)

= 1
2Ef

[
θ>Σ−1θ

]
+ 1

2 log |Σ|+ const.

= 1
2NTr(A−1Σ−1) + 1

2 log |Σ|+ const.

While we were able to derive this divergence, it turns out that we cannot in general eliminate its
dependence in the stationary covariance and re-express it in terms of BB>, using Eq. 13. However,
if A and Σ commute, we can proceed as follows:

Tr(A−1Σ−1) = Tr((ΣA)−1) (40)
AΣ=ΣA

= 2Tr((ΣA+AΣ)−1)

Eq. 13
= 2S

ε Tr((BB>)−1)

Following the logic of Theorems 1 and 2, we find the following result for the optimal learning rate:

ε∗ =
2S

ND
Tr((BB>)−1). (41)

Interestingly, when comparing Eq. 15 with Eq. 41, we find that the inverse of the trace of the noise
covariance gets replaced by the trace of the inverse noise covariance. While KL(q||f) suggests to
choose the learning rate inversely proportional to the largest Eigenvalue of the noise, KL(f ||q) thus
suggests to choose the learning rate proportional to the inverse of the smallest Eigenvalue of the
noise. Both approaches have thus a different emphasis on how to fit the posterior mode, in a similar
fashion as variational inference and expectation propagation. Note, however, that A and Σ rarely
commute in practice, and thus KL(q||f) is the only viable option.
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Appendix D. SGD With Momentum

Here, we give more details on the deviations of the results on SGD with momentum. In order
to compute the stationary distribution of Eq. 23, we need to solve the equations for the second
moments:

dE[θθ>] = E[dθθ> + θdθ>]

= (E[vθ>] + E[θv>])dt, (42)

dE[θv>] = E[dθv> + θdv>]

= E[vv>]dt− µE[θv>]dt− εE[θθ>]Adt, (43)

dE[vθ>] = E[dvθ> + vdθ>]

= E[vv>]dt− µE[vθ>]dt− εAE[θθ>]dt, (44)

dE[vv>] = E[dvv> + vdv>] + E[dvdv>]

= −2µE[vv>]dt− εAE[θv>]dt− εE[vθ>]Adt+ ε2

S BB
>dt. (45)

In the last equation we used the fact that according to Ito’s rule, there is an additional non-vanishing
contribution due to the noise, E[dvdv>] = ε2

S E[B dWdW>B>] = ε2

S BB
>dt. This contribution

does not exist for the other correlators; for more details see e.g. (Gardiner et al., 1985).
Since we are looking for a stationary solution, we set the left hand sides of all equations to

zero. Eq. 42 implies that E[vθ>] + E[θv>] = 0, hence the cross-correlation between momentum
and position is anti-symmetric in the stationary state. We can thus add Eqs. 43 and 44 to find
0 = dE[vθ>+θv>] = 2E[vv>]dt− εAE[θθ>]dt− εE[θθ>]Adt. Combining this with Eq. 45 yields

E[vv>] = ε
2E[θθ>]A+ ε

2AE[θθ>]

µE[vv>] = ε2

2SBB
> − 1

2ε(AE[θv>] + E[vθ>]A)︸ ︷︷ ︸
=0

.

Last, we show that the underbraced term is zero, which gives Eq. 25 in the main paper. Denote
ξ = E[θv>] = −ξ> which is antisymmetric due to Eq. 42. First of all, Aξ + ξ>A is obviously
symmetric. It is simultaneously antisymmetric due to the following calculation:

∑
k Aikξkj +∑

k ξ
>
ikA
>
kj =

∑
k Aikξkj −

∑
k ξkiAjk =

∑
k Aikξkj −

∑
k Ajkξki. This term swaps the sign as i

and j are interchanged. Being both symmetric and antisymmetric, it is zero.

Appendix E. Stochastic Gradient Fisher Scoring

We start from the Ornstein-Uhlenbeck process with minibatch size S = 1,

dθ(t) = −εHAθ(t)dt+H
[
εBdW (t) +

√
εEdV (t)

]
⇔

dθ(t) = −A′θ(t)dt+B′dW (t),

where we define A′ ≡ εHA and B′ ≡ H
√
ε2BB> + εEE>, and use the fact that the dynamics

of CdW (t) + DdV (t) are equivalent to
√
CC> +DD>dW (t). Here we are using matrix square

roots, so B′B′> = εH(εBB> + EE>)H .
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As derived in the paper, the variational bound is (up to a constant)

KL
c
=
N

2
Tr(AΣ)− 1

2 log(|Σ|).

To evaluate it, the task is to remove the unknown covariance Σ from the bound. To this end, as
before, we use the identity for the stationary covariance A′Σ + ΣA′> = B′B′>. The criterion for
the stationary covariance is equivalent to

HAΣ + ΣAH = εHBB>H +HEE>H.

We can further simplify this expression as follows:

AΣ +H−1ΣAH = εBB>H + EE>H

⇒ Tr(AΣ) =
1

2
Tr(H(εBB> + EE>)).

As above, we can also reparameterize the covariance as Σ = TH , so that T does not depend on H:

HAΣ + ΣAH = εHBB>H +HEE>H

AΣH−1 +H−1ΣA = εBB> + EE>

AT + T>A = εBB> + EE>.

The KL divergence is therefore

KL =
N

2
Tr(AΣ)− D

2
− 1

2
log(N |A|)− 1

2
log |Σ|

=
N

4
Tr(H(εBB> + EE>))− D

2
− 1

2
log(N |A|)− 1

2
log |T | − 1

2
log |H|, (46)

which is the result we give in the main text.

Appendix F. Square Root Preconditioning

We analyze the case where we precondition with a matrix that is proportional to the square root of
the diagonal entries of the noise covariance.

We define

G =
√

diag(BB>)

as the diagonal matrix that contains square roots of the diagonal elements of the noise covariance.
We use an additional scalar learning rate ε .

Theorem 7 (Taking square roots) Consider SGD preconditioned with G−1 as defined above. Un-
der the previous assumptions, the constant learning rate which minimizes KL divergence between
the stationary distribution of this process and the posterior is

ε∗ = 2DS
NTr(BB>G−1)

. (47)
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Proof We read off the appropriate KL divergence from the proof of Theorem 2 with G−1 ≡ H:

KL(q||f)
c
= εN

2S Tr(BB>G−1)− Tr log(G) + D
2 log ε

S −
1
2 log |Σ|

Minimizing this KL divergence over the learning rate ε yields Eq. 47.

Appendix G. Iterage Averaging

We now prove our result for the covariance of the averaged iterates. We first need an identity for the
non-equal-time covariance in the stationary state:

E[θ(t)θ(s)>] =

{
Σe−εA(s−t) t < s

e−εA(t−s)Σ t ≥ s.
(48)

To derive it, one uses the formal solution of the Ornstein-Uhlenbeck process for θ(t) in combination
with Eq. 29, see also (Gardiner et al., 1985) for more details. Note that for t = s, it simplifies to
E[θ(t)θ(t)>] = Σ, as one would expect.

We are averaging over T time steps. Going to the continuous-time OU formalism, we are
interested in the following quantity, which is the equal-time covariance of the time-averaged iterates:

D ≡ E

[(
1

T

∫ T

0
θ(t)dt

)(
1

T

∫ T

0
θ(s)ds

)>]
.

This can be further broken down to two contributions:

D =
1

T 2

∫ T

0

∫ T

0
E[θ(t)θ(s)>]dsdt

=
1

T 2

∫ T

0

∫ t

0
E[θ(t)θ(s)>]dsdt+

1

T 2

∫ T

0

∫ T

t
E[θ(t)θ(s)>]dsdt

We now use the eigendecompositionA = UΛU> of the Hessian, the autocorrelation Eq. 48, as well
as the identity ecA = UecΛU>. The first term becomes

1

T 2

∫ T

0

∫ t

0
E[θ(t)θ(s)>]dsdt =

1

T 2

∫ T

0

∫ t

0
e−εA(t−s)Σdsdt

=
1

T 2

∫ T

0

∫ t

0
Ue−εΛ(t−s)U>Σdsdt

=
1

εT 2

∫ T

0
UΛ−1(I− e−εtΛ)U>Σdt

=
1

εT
A−1Σ +

1

ε2T 2
UΛ−2(e−εTΛ − I)U>Σ.

(49)

The calculation for the second term goes analogously and yields

1

T 2

∫ T

0

∫ T

t
E[θ(t)θ(s)>]dsdt =

1

εT
ΣA−1 +

1

ε2T 2
ΣUΛ−2(e−εTΛ − I)U>.
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Both equations combined give us

D =
1

εT
(A−1Σ + ΣA−1)

+
1

ε2T 2
(UΛ−2(e−εTΛ − I)U>Σ + ΣUΛ−2(e−εTΛ − I)U>).

(50)

When εTΛ� 1 (valid for sufficiently long averaging periods T ), we obtain

D ≈ 1

εT
(A−1Σ + ΣA−1),

which is Eq. 30 in the main text. We can also simplify the expression for Σ = ε
2S I , as motivated in

Section 6.2. In this case, Eq. 50 results in

D =
1

ST
A−1 +

1

εST 2
(UΛ−2(e−εTΛ − I)U>).

This is exactly Eq. 33 in the main text.
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