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Abstract
Word embeddings are a widely-used tool to an-
alyze language, and exponential family embed-
dings (Rudolph et al., 2016) generalize the tech-
nique to other types of data. One challenge to
fitting embedding methods is sparse data, such
as a document/term matrix that contains many
zeros. To address this issue, practitioners typi-
cally downweight or subsample the zeros, thus
focusing learning on the non-zero entries. In this
paper, we develop zero-inflated embeddings, a
new embedding method that is designed to learn
from sparse observations. In a zero-inflated em-
bedding (ZIE), a zero in the data can come from
an interaction to other data (i.e., an embedding)
or from a separate process by which many ob-
servations are equal to zero (i.e. a probability
mass at zero). Fitting a ZIE naturally down-
weights the zeros and dampens their influence
on the model. Across many types of data—
language, movie ratings, shopping histories, and
bird watching logs—we found that zero-inflated
embeddings provide improved predictive perfor-
mance over standard approaches and find better
vector representation of items.

1. Introduction
Word embeddings use distributed representations to cap-
ture usage patterns in language data (Harris, 1954; Rumel-
hart et al., 1988; Bengio et al., 2003; Mikolov et al.,
2013a;b; Pennington et al., 2014). The main idea is to fit
the conditional distribution of words by using vector repre-
sentations, called embeddings. The learned parameters—
the embedding vectors—are useful as features about the
meanings of words. Word embeddings have become a
widely used method for unsupervised analysis of text.
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In a recent paper, Rudolph et al. (2016) developed expo-
nential family embeddings. Their work casts embeddings
in a probabilistic framework and generalizes them to model
various types of high-dimensional data.

Exponential family embeddings give a recipe for creating
new types of embeddings. There are three ingredients. First
is a notion of a context, e.g., a neighborhood of surround-
ing words around a word in a document. Second is a condi-
tional distribution of data given its context, e.g., a categor-
ical distribution for a word. Third is an “embedding struc-
ture” that captures parameter sharing, e.g., that the embed-
ding vector for PHILOSOPHY is the same wherever it ap-
pears in the data. Rudolph et al. (2016) show that exponen-
tial family embeddings embody many existing methods for
word embeddings. Further, they easily extend to other sce-
narios, such as movie ratings, shopping basket purchases,
and neuroscience data.

Many applications of embeddings—both the classical ap-
plication to language and the others types of data—involve
sparse observations, data that contain many zero entries.
As examples, shoppers do not purchase most of the items in
the store, authors do not use most of the words in a vocab-
ulary, and movie-watchers do not view most of the movies
in an online collection. Sparse observations are challeng-
ing for many machine learning methods because the zeros
dominate the data. Most methods will focus on capturing
and predicting them, and embeddings are no exception.

Folk wisdom says that zeros in sparse data contain less in-
formation than the non-zeros. Consequently, practitioners
use various methods to downweight them (Hu et al., 2008)
or downsample them, as is often the case in word embed-
dings (Mikolov et al., 2013b; Rudolph et al., 2016). Empir-
ically, methods that downweight and downsample the zeros
far outperform their counterparts.

What this folk wisdom suggests is that zeros often occur
for one of two reasons—either they are part of the underly-
ing process that we are trying to model, such as capturing
the meanings of words, or they part of a different process,
such as that only a particular part of speech belongs in a
particular location in a sentence. As other examples, a film
enthusiast might not watch a movie either because she does
not think she will like it or because she has never heard of
it; a shopper might not buy a brand of cookies either be-
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cause he doesn’t like them or because he didn’t see them.
Motivated by this intuition, we develop zero-inflated em-
beddings, a probabilistic embedding model that captures
the special status of the zeros in the data matrix.

The main idea is as follows. Exponential family embed-
dings model the conditional distribution of each data point
given its context, where the parameter to that distribution
relates to the embedding vectors. In a zero-inflated embed-
ding, the conditional distribution places extra probability
mass on zero, capturing conditions other than the embed-
ding under which an item might not appear. If an observed
zero is explained by this extra probability, then the cor-
responding item is not exposed to its relation with other
items.

The probability of seeing a zero that is not from the em-
bedding model can be a fixed quantity or can depend on
other properties, such as the popularity of an item, demo-
graphics about the shopper, or the parts of speech of the
context words. While zero-inflated embeddings sometimes
fall into the class of an exponential family embedding (as in
the Bernoulli case), they sometimes reflect a more complex
distribution.

The practical effect is that zero-inflated embeddings intelli-
gently downweight the zeros of the data—the embeddings
no longer need to explain all of the zeros—and empirically
improve the learned representations of the words or other
type of data. We will demonstrate zero-inflated embed-
dings on language, movie ratings, and shopping baskets, as
described above. We also study zero-inflated embeddings
on bird watching logs (Munson et al., 2015), where fea-
tures like time and location can influence which birds are
possible to see.

Below, we develop zero-inflated embeddings and show
how we can flexibly define the “exposure model” along-
side the exponential family embedding model. We derive
two algorithms to fit them and study them on a variety of
data sets. Zero-inflated embeddings improve performance
in language, shopping histories, recommendation system
data, and bird watching logs.

Related work. The main thread of work on downweight-
ing zeros comes from recommendation systems, where ab-
sent user-item interaction can be misconstrued as a user dis-
liking an item. Hu et al. (2008) and Rendle et al. (2009)
proposed to manually down-weight zeros and showed ex-
cellent empirical performance. Liang et al. (2016) builds
on this work and introduces an exposure model to explain
zero entries. The exposure model captures whether a user
does not see an item or intentionally chooses not to con-
sume it. In a sense, zero-inflated embeddings build on
Liang et al. (2016), using a type of “exposure model” in
the context of embeddings and capturing item-item interac-

tions. They also share similarities with the spike and slab
model (Mitchell & Beauchamp, 1988) and zero-inflated re-
gression models (Lambert, 1992).

2. Zero-Inflated Embeddings
We first review exponential family embeddings. We then
develop zero-inflated embeddings.

2.1. Exponential Family Embedding

An Exponential Family Embedding (EFE) generalizes
word embedding to other types of data. It uses vector
representations to capture conditional probabilities of data
given a context. Specifically, an EFE aims to learn vec-
tor representation of items, that is, to represent each item
j ∈ {1, . . . , J} with an embedding vector ρj ∈ RK and a
context vector αj ∈ RK . Vectors ρj and αj for all j are
denoted as ρ and α, respectively.

An EFE model learns from observation-context pairs. In
each pair i ∈ {1, . . . , N}, the observation xi = {xij : j ∈
si} contains values observed from one or multiple items in
si, and the context yi = {yij : j ∈ ci} contains the values
of related items in a context set ci.

An EFE is defined by three elements: the context, the con-
ditional distribution, and the embedding structure. We
have defined the context. The conditional distribution of
xi given its context yi is from the exponential family,

xi ∼ ExpFam
(
η(yi, si), T (xi)

)
, (1)

where the context yi provides the natural parameter
through η(yi, si), and T (xi) is the sufficient statistics.

The embeddings come into play in the natural parameter,

η(yi, si) = f
(
ρ>si

∑
j∈ci

yijαj

)
, (2)

where the columns of ρsi are embedding vectors of items
in si and f(·) is a link function. The EFE conditional prob-
ability p(xi|yi;ρsi ,αci) specifies the distribution of the
values of items in si in their context. When there is no
ambiguity, we write the probability as p(xi|yi). By fitting
the conditional probability, the embedding model captures
the interaction between items in si and items in ci.

The embedding structure of EFE decides how the vectors
of items are shared by different observation-context pairs.
It is essentially the definition of ci and si, which indicate
how to attach item indices j-s to pair indices i-s.

Finally, an EFE puts Gaussian prior over α and ρ. For all
j,

αj ∼ Gaussian(0, σ2
αI) (3)

ρj ∼ Gaussian(0, σ2
ρI) (4)
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where I is a K-identity matrix and σ2
α and σ2

ρ are hyper-
parameters controlling the variance of the context and em-
bedding vectors.

An EFE infers α and ρ by maximizing the conditional log
likelihood of observations given their contexts. The learned
vectors α and ρ are able to capture the correlation between
items and their contexts.

We give two examples. In movie ratings, we can extract
observation-context pairs from a person’s ratings: the ob-
servation xi is the rating of a single movie in si, |si| = 1,
and the context is the ratings yi of all other movies rated by
the same person. In language, the observation at a text po-
sition is a one-hot vector xi indicating which word is there
and the context yi is the vector representation of words in
the context. In this case si and ci are both the entire vo-
cabulary, {1, . . . , J}. The original word embedding model
(Bengio et al., 2003; Mnih & Hinton, 2007) assumes the
conditional distribution to be the multinomial distribution
with 1 trial. The word2vec model optimized by negative
sampling (NEG) (Mikolov et al., 2013b) uses a product of
Bernoulli distributions as the conditional distribution.

2.2. Exposure modeling with zero-inflation

An EFE explains every observation xi by an item’s inter-
action with its context. However, as we described in Sec-
tion 1, we may not want the embeddings to explain every
observation, especially when they are dominated by zeros.

A Zero-Inflated Embedding (ZIE) places extra probability
mass at zero in the embedding distribution. This mass can
be thought of as the probability that the corresponding item
is not “exposed” to its interaction with other items. In a
ZIE, the embeddings vectors need not capture the (zero)
data that are explained by the extra mass.

In more detail, for each observed value xij we explicitly
define an exposure indicator bij to indicate whether the cor-
responding item j is exposed to the interaction with context
items (bij = 1) or not (bij = 0). Each bij is a random vari-
able from Bernoulli distribution with probability uij ,

bij ∼ Bernoulli(uij). (5)

The exposure indicators and exposure probabilities of the
items in the observation xi are collectively denoted as bi =
{bij : j ∈ si} and ui = {uij : j ∈ si} respectively.

In many applications, we have the information about the
exposure probability uij . Suppose we have a set of covari-
ates vi ∈ Rd for each i related to the exposure probability.
We fit uij with a logistic regression,

uij = logistic(w>j vi + w0
j ), (6)

where wj are the coefficients and w0
j is the intercept. (If

there is no such covariates, then only the intercept term is

used, which means that the exposure probabilities of items
are shared by observation-context pairs.)

Next, we incorporate the exposure indicator into the em-
bedding model. When xi = {xij} is an observation with
only one item j, the indicator bij decides whether xij is
zero or from the embedding distribution,

xij ∼
{
δ0 if bij = 0
ExpFam

(
η(yi, si), T (xij)

)
if bij = 1

. (7)

The distribution δ0 has probability mass 1 at 0.

When xi has multiple entries, the indicator vector bi de-
cides the exposure of each item separately. The items not
exposed have zero values,

xij ∼ δ0, ∀j ∈ si, bij = 0. (8)

Let the items exposed be s+i = {j : j ∈ si, bij = 1}, and
their values are x+

i = {xij : j ∈ si, bij = 1}. Then x+
i is

from a smaller embedding model restricted to s+i .

x+
i ∼ ExpFam

(
η(yi, s

+
i ), T (x+

i )
)
. (9)

We have p(xi|yi,bi) = p(x+
i |yi,bi) when si has either

single or multiple items.

Finally, if the exposure probabilities are fit by covariates
then each weight vector wj is also given a Gaussian prior,

wj ∼ Gaussian(0, σ2
wI), j = {1, . . . , J}. (10)

The identity matrix I has size d here, and σ2
w is the hyper-

parameter.

2.3. Inference

In this subsection, we derive the method of inferring α
and ρ from ZIE. The approach is to maximize the log-
likelihood

∑
i log p(xi|yi,ui) with all hidden variables bi

marginalized.

In this subsection, we derive the solution with ui-s instead
of (wj , w

0
j )-s for notational simplicity. Once we can calcu-

late the gradient of each ui, the gradient calculation of each
(wj , w

0
j ) is straightforward. The probability p(x+

i |yi,bi)
is indeed from the basic embedding model, and we denote
it as p̂(x+

i |yi) to explicitly show how the basic embedding
model is positioned in the solution.

The inference is easy when the observation xi is about one
item. We can either use EM to maximize its exact varia-
tional lower bound or directly marginalize out the hidden
variable. We briefly give both solutions here, as they have
different indications of zero inflation.

We first give the EM solution. In E step, we calculate the
posterior distribution p(bij |xij ,yi, uij) of each exposure
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indicator bij . This distribution is a Bernoulli distribution,
and its parameter is denoted as µij . Applying the Bayesian
rule, we have

µij =

{
uij p̂(xij=0|yi)

1−uij+uij p̂(xij=0|yi) if xij = 0

1 if xij 6= 0
. (11)

The lower bound of the log-likelihood of pair i is

E
[

log p(xij |yi, bij)
]
−KL(µij , uij) ={

µij log p̂(xij |yi)−KL(µij , uij) if xij = 0
log p̂(xij |yi) + log uij if xij 6= 0

. (12)

The expectation is taken with respect to p(bij |xij ,yi, uij),
and KL(µij , uij) is the KL-divergence from the prior to
posterior of bij . In M step, the lower bound is maximized
with respect to α and ρ. Note that, there is no need to take
derivative with respect to µij when taking gradient steps
even though it is a function ofα and ρ, because µij already
maximizes the lower bound (Hoffman et al., 2013).

Eq. (12) shows that zero-inflation downweights zero en-
tries by µij when learning α and ρ. This method of down-
weighting zeros is derived in a systematic way instead of a
hack.

We can also marginalize bij directly.

p(xij |yi, uij) ={
uij p̂(xij = 0|yi) + (1− uij) if xij = 0
uij p̂(xij |yi) if xij 6= 0

. (13)

This equation makes the zero-inflation clearer.

Now let’s work on the inference problem when xi has val-
ues of multiple items. In this case, we need to consider an
embedding model p̂(x+

i |yi) for each configuration of bi,
so there are potentially exponential number of embedding
models to consider. We have to exploit the structure of the
embedding model to give a tractable MLE problem. In this
paper, we consider two special cases, that the embedding
models are independent for items in si, and that the obser-
vation xi is from a multinomial distribution.

In the first case, the embedding model is the product of
the embedding models with the same context. Word2vec
with NEG training is a special case with single models as
Bernoulli embedding (Mikolov et al., 2013b).

p(xi|yi,bi;ρsi ,αci) =
∏
j∈si

p(xij |yi, bij ;ρj ,αci). (14)

The exposure indicators are independent of each other, so
the entire model can be decomposed over items in si and
solved as single models. We omit the detail here.

Now we consider the case when the embedding distribution
is multinomial with 1 trial, which is the model assumption
of word embedding prior to the proposal of NEG training
(Bengio et al., 2003; Mikolov et al., 2013a). The link func-
tion f(·) is the identity function, so the vector products
in η(·) directly give logits of the multinomial distribution.
Denote the natural parameter as ηi = ρ>si

∑
j∈ci yijαj .

The probability vector of the multinomial distribution is
πi = softmax(ηi).

The logarithm of the joint probability of the model for one
pair is

log p(xi,bi|yi) = log p̂(x+
i |yi) + log p(bi). (15)

Note that the probability p̂(x+
i |yi) is from the embedding

model decided by bi. To learn the model, we need to maxi-
mize the log-likelihood of the data with the hidden variable
bi marginalized.

To avoid considering exponentially large number of mod-
els, we use the following relation between the full embed-
ding model and the one with items exposed only in s+i .

log p̂(x+
i |yi) = log p̂(xi|yi)− log(b>i πi). (16)

Here the last term re-normalizes the probability of p̂(xi|yi)
to get the probability of picking one from these items that
are exposed.

Expand p̂(xi|yi) and cancel the normalizer, then we have

log p̂(x+
i |yi) = ηij∗ − log(b>i exp(ηi)). (17)

Here j∗ is the index such that xij∗ = 1.

Now we consider the problem of marginalizing bi via vari-
ational inference. Let q(bi) be the variational distribu-
tion. Combine Eq. (15) and (17), then the variational lower
bound is,

Lq = Eq(bi)
[

log p̂(x+
i |yi)

]
−KL(q(bi), p(bi))

= ηij∗ − Eq
[

log(b>i exp(ηi))
]
−KL(q(bi), p(bi)).

(18)

KL(q(bi), p(bi)) is the KL-divergence of p(bi) from the
posterior q(bi).

This lower bound often needs to be maximized in the online
manner due the large quantity of data, but the expectation
of the logarithm is challenging to estimate even with mod-
erate size of si. In this work, we find a data-related lower
bound of the expectation term.

Let γ be any subset of si such that j∗ ∈ γ and |γ| = r, and
biγ be the sub-vector of bi indexed by γ. If

exp(ηij∗)∑
j∈si exp(ηij)

≥ r

|si|
, (19)
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then b>i exp(ηi) ≤ |si|
r b>iγ exp(ηiγ) for any bi, and then

we have another lower bound

max
q
Lq ≥ max

q(biγ)
ηij∗ − Eq(biγ)

[
log(b>iγ exp(ηiγ))

]
+ log

r

|si|
−KL(q(biγ), p(biγ)). (20)

Here q(biγ) is the marginal of some q(bi).

We maximize the objective on the r.h.s. of Eq. (20) with re-
spect to q(biγ) and model parameters. In each iteration of
calculation, we randomly sample a subset γ, maximize the
lower bound with respect to q(biγ), and calculate the gra-
dient of model parameters. The maximization with respect
to q(biγ) is tractable for small r. For larger r, we restrict
the form of q(biγ). In our experiment, we set r = 5, and let
q(biγ) assign zero probability to any bi that has more than
one zero entry. Then we only need to consider r configura-
tions of bi: the case that all items in γ are exposed and the
cases that only one item, j ∈ γ, j 6= j∗, is not exposed, so
the maximization with respect to q(biγ) can be calculated
efficiently.

The lower bound in Eq. (20) essentially uses r − 1 “neg-
ative” items in the random set γ to contrast the item j∗ in
a smaller multinomial distribution. Since the set γ is ran-
domly selected, every j 6= j∗ has the chance to be used as a
negative sample. The maximization procedure encourages
the model to get larger value of ηij∗ , and empirically the
condition (19) often holds.

2.4. Computation with Subgradient

The data for embedding is often in large amount, so op-
timization with stochastic gradients is critically important.
In problems where si has only one item, a pair with non-
zero observation often provides more informative gradients
than a pair with zero observation. In our optimization, we
keep all pairs with non-zero observations and sub-sample
zero observations to estimate an unbiased stochastic gra-
dient. The resultant optimization is much faster than that
with full gradient.

3. Empirical Study
In this section, we empirically evaluate the Zero-Inflated
Embeddings. We compare four models, two baselines and
two variants of our model, in the following subsections:
1) EFE is the basic exponential family embedding model;
2) EFE-dz assigns weight 0.1 to zero entries in the train-
ing data (same as (Rudolph et al., 2016)); 3) ZIE-0 is the
zero-inflated embedding model and fits the exposure prob-
abilities with the intercept term only; and 4) ZIE-cov fits
exposure probabilities with covariates.

All models are evluated with four datasets, eBird-PA,

Table 1. Information about datasets.
dataset # item # nonzero sparsity range # covar

eBird-PA 213 410k 0.08 N 13
MovieLens-100K 811 78.5k 0.1 0-3 6

Market 7903 737k 10−3 N 20
Wiki-S 10000 365m 10−4 0/1 11

MovieLens-100K, Market, and Wiki-S, which will be in-
troduced in detail in the following subsections. Their gen-
eral information is tabulated in Table 1. The last column
lists the number of exposure covariates, which is used by
ZIE-cov to fit the exposure probability.

All four models are optimized by AdaGrad (Duchi et al.,
2011) implemented in TensorFlow1, and the AdaGrad pa-
rameter η for step length is set to 0.1. One tenth of the
training set is separated out as the validation set, whose
log-likelihood is used to check whether the optimization
procedure converges. The variance parameters ofα, ρ, and
w are set to 1 for all experiments.

We report two types of predictive log-likelihood on the test
set, the log-likelihood of all observations (denoted as “all”)
and that of non-zero entries only (denoted as “pos”). For
non-zero entries, the predictive log-likelihood is calculated
as log p(xi|yi,xi > 0) = log p(xi|yi) − log(1 − p(xi =
0|yi)). The predictive log-likelihood is also estimated
through sub-sampling in the same way as in training. We
use α vectors as embeddings of items.

3.1. Bird embedding from bird observations

In this experiment, we embed bird species into the vector
space by studying their co-occurance pattern in bird obser-
vations(Munson et al., 2015). The data subset eBird-PA
consists of bird observations from a rectangular area that
mostly overlaps Pennsylvania and the period from day 180
to day 210 of years from 2002 to 2014. Each datum in the
subset is a checklist of counts of 213 bird species reported
from one observation event. The values of these counts
range from zero to hundreds. Some extraordinarily large
counts are treated as outliers and set to the mean of posi-
tive counts of that species. Associated with each checklist
there are 13 observation covariates, such as effort time, ef-
fort distance, and observation time of the day. The dataset
is randomly split into two thirds as the training set and one
third as the test set.

The embedding model use Poisson distribution to fit the
count of each species j given the counts of all other species
for each checklist, so si = {j} and ci = {1, . . . J}\j.
The link function is log softplus(·), which means the Pois-
son parameter λ is the softplus function of the linear prod-
uct. The embedding dimension K iterates over the set

1https://www.tensorflow.org/
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Table 2. ZIE models improve predictive log-likelihood on bird
data.

K EFE EFE-dz ZIE-0 ZIE-cov

32
all −0.416(.002) −0.555(.001) −0.324(.001) −0.314(.001)
pos −2.407(.017) −1.855(.012) −1.844(.011) −1.840(.011)

64
all −0.374(.002) −0.490(.001) −0.308(.001) −0.298(.001)
pos −2.140(.016) −1.727(.013) −1.736(.012) −1.739(.012)

128
all −0.348(.002) −0.459(.001) −0.300(.001) −0.291(.001)
pos −1.992(.019) −1.681(.015) −1.705(.015) −1.708(.015)

{32, 64, 128}.

Performance comparison: Table 2 shows the predictive
log-likelihoods of the four models with different values of
K. The two models with zero-inflation get much better pre-
dictive log-likelihood on the entire test set. On positive ob-
servations, ZIE models get similar results with the model
downweighting zero entries. ZIE-cov performs slightly
better than ZIE-0 on all observations and has similar per-
formance with ZIE-0 on positive observations. We have
also tried other negative weights (0.05, 0.2) for EFE-dz and
found a similar trend: smaller weight gives slightly bet-
ter predictive log-likelihood on positive observations but
worse overall predictive log-likelihood.

Sensitiveness to data sparsity: We down-sample pos-
itive observations of one common species, American
Robin (Figure 1, left), and test how the embedded vec-
tors changes. Specifically, we randomly set positive
counts of American Robin to zero and keep only r =
{0.005, 0.01, 0.05, 0.1} of positive counts. For each r,
we compared the embedded vectors learned from down-
sampled data with those learned from the original data.

The vectors are compared by their respectively induced
Poisson parameter λ. Let j∗ be the index of American
Robin, then for each species j 6= j∗, the distribution of
the count of j given one American Robin has parameter
λj = softplus(ρ>j αj∗).

From the original and down-sampled data, we get two em-
beded vectors and then have two Poisson parameters λorigj

and λdown
j . The first measure of difference is the symmet-

ric KL divergence (sKL) of the predictive probabilities of
presence calculated from the two λ values with Poisson dis-
tribution,

∆p = sKL
(
p(xj > 0;λorigj ), p(xj > 0;λdownj )

)
.

The second measure is the absolute difference of λ values,
∆λ = |λorigj − λdownj |. These two measures are averaged
over all species.

Table 3 shows these measures calculated from different
models with K = 64. We can see that the embedding
model with exposure explanation is less sensitive to miss-
ing observations.

Exposure explanation: We also explore what the exposure

Table 3. The measures (∆p / ∆λ) of embedded vectors calculated
at 4 levels of downsampling (smaller is better). Embedded vectors
learned by ZIE models are more resistant to down-sampling.

d.s. ratio EFE EFE-dz ZIE-0 ZIE-cov
0.005 0.870/0.123 0.628/0.172 0.463/0.024 0.460/0.032
0.01 1.099/0.947 0.649/0.306 0.384/0.007 0.351/0.052
0.05 0.373/0.084 0.313/0.078 0.217/0.023 0.245/0.018
0.1 0.404/0.085 0.287/0.067 0.212/0.022 0.263/0.017

Figure 1. Three bird species in study. Left: American Robin, mid-
dle: Bald Eagle, right: Eastern Screech-Owl.

probability captures about zero observations. We check the
learned coefficients w of the species Bald Eagle (Figure 1,
middle). Its coefficient corresponding to the effort hours
of the observation is large, at the percentage of 0.83 of all
birds. It agrees with bird watching, since eagles are usu-
ally rare and need long time to be spotted. Another exam-
ple is Eastern Screech-Owl (Figure 1, right), which is only
active at night. Its two coefficients corresponding to the
observation time at hours 7-12 and hours 12-18 of the day
are the smallest among all species. With the learned coef-
ficients, the exposure probabilites are able distinguish the
generative process of zeros according to their observation
conditions and thus downweight zeros more correctly.

3.2. Movie embedding from movie ratings

In this experiment, we study movie ratings and embed
movies as vectors. The MovieLens-100K dataset (Harper
& Konstan, 2015) consists of movie ratings from different
users. It is preprocessed in the same way as Rudolph et al.
(2016): translating ratings above 2 to the range 1-3 and
treating absent ratings and ratings no greater than 2 as ze-
ros. We remove all movies with less than 20 ratings. Six
covariates, the age, the gender, and four profession cate-
gories, are extracted from each user and used as exposure
covariates.

For the ratings from the same person, the embedding model
fit the rating of one movie given the ratings of all other
movies. The embedding distribution is the binomial dis-
tribution with 3 trials. The parameter K ranges over
{8, 16, 32}. We run 10 fold cross validation on this dataset.

Performance comparison: In this result, ZIE-0 and ZIE-
cov performs much better than the two baselines in predic-
tive performance on all entries. With zero-entries down-
weighted, EFE-dz is able to predict non-zeros better than
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Table 4. ZIE models improves predictive log-likelihood values on
movie rating data.

K EFE EFE-dz ZIE-0 ZIE-cov

8 all −0.461(.001) −0.740(.001) −0.350(.001) −0.349(.001)
pos −1.870(.007) −1.145(.003) −1.170(.004) −1.163(.004)

16 all −0.450(.001) −0.706(.001) −0.348(.001) −0.348(.001)
pos −1.795(.007) −1.146(.003) −1.214(.004) −1.207(.004)

32 all −0.450(.001) −0.669(.001) −0.348(.001) −0.349(.001)
pos −1.758(.007) −1.152(.004) −1.267(.005) −1.265(.005)
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Figure 2. Exposure probability versus rating frequency. Movies
with high rating frequency and movies with low ratings tend to
get high exposure probability.

ZIE-0 and ZIE-cov, but it is much less capable to predict
which entries are zero. ZIE-cov slightly improves over
ZIE-0 in predictive log-likelihood of both types.

Exposure probability versus rating frequency: We in-
vestigate the exposure probability learned without covari-
ates. We plot the exposure probability of movie versus its
frequency of ratings in Fig.2. Each dot represents a movie,
its position indicating its exposure probability and rating
frequency, and its color being the average of its positive
ratings. The exposure probability is from the vector u.

This figure shows that the exposure probability generally
correlates with the popularity of the movie. However, some
movies with low rating frequency are given high exposure
probabilities. These movies have low ratings, which can
and should be explained by the embedding component. For
example, the movie “Money Train”, whose average rat-
ing is at the percentage of 0.08 among all movies, has the
largest ratio of exposure probability over rating frequency.
The movies with high rating frequency get high exposure
probabilities no matter their average rating is high or not.

3.3. Product embedding from market baskets

In this experiment, we embed products in grocery stores
into the vector space. The Market dataset (Bronnenberg
et al., 2008) consists of purchase records of anonymous
households in grocery stores. Each record is for a sin-
gle shopping trip and contains the costumer ID, respective
counts of items purchased, and other information. From
the dataset, we take 20 related covariates, such as income
range, working hours, age group, marital status, and smok-

Table 5. ZIE models improves the predictive log-likelihood on
Market data

K EFE EFE-dz ZIE-0 ZIE-cov

32
all −0.014(.000) −0.024(.000) −0.009(.000) −0.007(.000)
pos −4.719(.024) −2.169(.012) −2.195(.012) −1.060(.004)

64
all −0.014(.000) −0.022(.000) −0.009(.000) −0.008(.000)
pos −4.581(.023) −2.030(.011) −2.190(.012) −1.127(.005)

128
all −0.015(.000) −0.023(.000) −0.009(.000) −0.008(.000)
pos −4.746(.023) −2.041(.011) −2.290(.012) −1.295(.005)

ing status, to describe each user.

The embedding model fits the count of one item given
counts of other items in the same shopping trip. All
embedding models use Poisson distribution as the con-
ditional distribution and log softplus(·) as the link func-
tion. The covariates of each item-context pair are the co-
variates of the customer making the shopping trip. This
dataset is randomly split into a training set and a test set by
2:1. The number K of embedding dimensions ranges over
{16, 32, 64}.

Performance comparison: On this dataset, we compare
the performances by the predictive log-likelihood on the
test set. Table 5 shows the predictive log-likelihood of dif-
ferent models. ZIE-cov gives the largest values of predic-
tive log-likelihood of both type. The exposure covariates of
this dataset is informative, so the improvement of ZIE-cov
is significant.

3.4. Word embedding

In this subsection, we test word embedding with Wikipedia
documents. We take the first million documents of the
Wikipedia corpus prepared by Reese et al. (2010). The
words in these documents have been tagged by FreeLing
with part-of-speech (POS) tags. We keep the top 10,000
frequent words as our vocabulary and remove all words not
in the vocabulary. The covariates of each word is from
the POS tag of the preceding word no matter the word is
removed or not. The original FreeLing POS tags has 64
types, and we combine them into 11 larger types, such as
noun, verb, and adverb. The covariates are indicators of
these 11 types. The subset is further split into a training set
and a test set by 2:1.

On this dataset, we test embedding models with Bernoulli
distribution (ZIE) and our relaxed multinomial distribution
( ZIE-m). ZIE-cov and ZIE-m-cov use the tag type as the
exposure covariates. For Bernoulli distributions, zero en-
tries are downweighted by weight 0.0005 (the target word
versus 5 negative words). For multinomial distribution, we
randomly sample 5 words as the set r for each word-context
pair. We use a context window size of 1, so the context of
a word position is the two words before and after the po-
sition. Note that word2vec with CBOW and NEG training
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Table 6. Predictive log-likelihood per document.
K EFE ZIE-0 ZIE-cov
32 −50.1(0.5) −48.0(0.5) −43.5(0.4)
64 −51.1(0.6) −47.2(0.4) −43.1(0.4)

128 −58.5(2.1) −50.0(0.5) −45.5(0.4)

Table 7. Performance of different models on word similarity tasks.
EFE ZIE-0 ZIE-cov ZIE-m-0 ZIE-m-cov GloVe

MEN 0.610 0.616 0.592 0.608 0.611 0.737
WS353 0.537 0.533 0.543 0.557 0.562 0.522

SIMLEX999 0.290 0.281 0.276 0.268 0.264 0.371

Table 8. Nearest words find by three embedding models.
battle philosophy novel class english bible

EFE
combat (0.75) sociology (0.81) book (0.85) division (0.67) welsh (0.88) hebrew (0.75)
defeat (0.73) theology (0.79) novels (0.80) k (0.66) french (0.87) study (0.73)

invasion (0.73) tradition (0.77) poem (0.79) field (0.63) spanish (0.86) biblical (0.73)

ZIE-0
fire (0.62) religion (0.69) story (0.72) division (0.56) french (0.85) poetry (0.63)

battles (0.62) society (0.68) book (0.71) family (0.55) swedish (0.81) hebrew (0.61)
assault (0.61) theology (0.67) novels (0.70) classes (0.54) irish (0.79) dictionary (0.60)

ZIE-cov
battles (0.61) principles (0.69) novels (0.76) classes (0.56) french (0.84) biblical (0.64)
assault (0.60) religion (0.68) story (0.74) rank (0.54) spanish (0.83) hebrew (0.63)
attack (0.59) theology (0.67) fantasy (0.71) grade (0.53) swedish (0.75) texts (0.61)

(Mikolov et al., 2013b) is generally the same as EFE when
it takes some settings related to implementation details.

Performance comparison:

Tab. 6 shows the average predictive log-likelihood per doc-
ument on the test set by Bernoulli embedding models.
The embedding model gets the best predictive performance
when it uses POS tags to fit the exposure probability.

We also compare all models on three benchmark datasets
of word similarities, MEN (Baroni et al., 2014), WS353
(Finkelstein et al., 2002), and SIMLEX999 (Hill et al.,
2014), and show the results in Table 7, with each entry be-
ing Spearman’s correlation of embedding similarities and
human-rated similarities. The code is from the repository 2

constructed by Jastrzebski et al. (2017). The last column as
a reference shows the performance of GloVe (Pennington
et al., 2014) word vectors with dimension 300 trained on
6 billion documents. The results on the three tasks shows
that ZIE models perform slightly better than the baseline
model.

Word relation learned with exposure explanation: To
better understand how the exposure model affects the em-
bedded vectors of words, we check cosine similarities of
word vectors α learned by different models. Table 8 shows
examples of similar words discovered by Bernoulli embed-
ding models.

We have two interesting observations. First, word embed-
ding with zero-inflation often gives lower similarity scores
than the one without. This means the embedded word vec-
tors of ZIE models are more spread out in the space. Sec-
ond, the distance between a noun word and its plural form
often have shorter distance with the vectors learned by ZIE-

2https://github.com/kudkudak/word-embeddings-benchmarks

cov. The difference of a word and its plural form are more
in grammar than semantics. The POS tags can partially
explain the grammatical difference. For example, numbers
(tagged as number) often go before a plural instead of a sin-
gular word. In such cases, the singular word as a negative
example will be downweighted, and thus the embedding
component is more likely to treat the singular word and its
plural as similar words.

4. Summary
In this work, we have proposed zero-inflated exponential
family embedding. With the exposure indicator explaining
unrelated zero observations, the real embedding component
is able to focus more on observations from item interac-
tions, so the embedded vectors can better represent items in
terms of item relations. We have investigated ZIE for two
types of embedding models: the observation being from
one and multiple items. We have also developed the infer-
ence algorithms for different embedding models with zero
inflation. Experiment results indicate that ZIE improves
the predictive log-likelihood of the data. Qualitative anal-
ysis shows that the embedded vectors from the ZIE model
have better quality than the vectors learned with the basic
embedding model.
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