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ABSTRACT

In this paper, we introduce an audio mosaicing technique
based on performing posterior inference on a probabilistic
generative model. Whereas previous approaches to concate-
native synthesis and audio mosaicing have mostly tried to
match higher-level descriptors of audio or individual STFT
frames, we try to directly match the magnitude spectrogram
of a target sound by combining and overlapping a set of
short samples at different times and amplitudes. Our use
of the graphical modeling formalism allows us to use a stan-
dard Markov Chain Monte Carlo (MCMC) posterior infer-
ence algorithm to find a set of time shifts and amplitudes for
each sample that results in a layered composite sound whose
spectrogram approximately matches the target spectrogram.

1. INTRODUCTION

Concatenative synthesis and audio mosaicing techniques take
databases of recorded sounds and attempt to combine them
to produce a sound matching a target specification [5, 7, 3].

In this paper, we propose an audio mosaicing technique
that attempts to solve the following problem: given a set of
(short) recorded source sounds, how can we match a (longer)
target sound as closely as possible by repeating and com-
bining our source sounds at different times and amplitudes?
More formally, we have a set of K source sounds xk, and we
want to find a set of K functions g(t,k) with which to con-
volve each sound xk such that the sum of these convolutions
z is perceptually similar to our target sound:

z(t) =
K

∑
k=1

∞

∑
u=0

g(t−u,k)xk(u) (1)

Since we allow our source sounds to overlap in time, the
dimensionality of the space of possible output sounds grows
exponentially with the number of source sounds, and find-
ing a globally optimal solution becomes difficult. We take
a probabilistic modeling approach that allows us to apply
standard techniques from Bayesian statistics.

We define a probabilistic generative model, the Shift-
Invariant Mixture of Multinomials (SIMM), corresponding
to a process by which we will generate our output sound

from our source sounds, and assume that this model gener-
ated our target sound. SIMM has a matrix of hidden vari-
ables ω that correspond to the functions g(t,k) that we want
to find. We can find a good set of functions g(t,k) by finding
a value for ω with high posterior likelihood given the target
sound—that is, a value for ω that could plausibly have led
to our model generating our target sound. Our probabilistic
framework allows us to use a Gibbs sampling algorithm to
perform approximate posterior inference [4].

In the sequel, we describe our generative model, define
a Gibbs sampler to infer the model’s hidden variables, show
how those hidden variables tell us how to produce our output
sound, and present the results of applying our approach to
various combinations of input sources and target sounds.

2. THE SIMM MODEL

Our SIMM model is adapted from the Shift-Invariant Hier-
archical Dirichlet Process (SIHDP) [2]. It can be interpreted
as a fully Bayesian variant on Shift-Invariant Probabilistic
Latent Component Analysis [6].

2.1. Data Representation

We begin by computing the magnitude spectrogram of our
target audio using W non-overlapping windows of S samples
each (multiplied by a Hanning window), yielding B = S

2 +1
frequency bins per window 1. We will refer to the magnitude
in bin b of window w as ŷwb. We normalize the magnitude
spectrogram ŷ so that ∑

B
b=1 ∑

W
w=1 ŷwb = 1.

We compute a scaled and quantized version of ŷ, ȳ,
which we will treat as a histogram giving the counts of am-
plitude quanta at each time w and frequency bin b:

ȳwb = round(WBν ŷwb) (2)

N =
B

∑
b=1

W

∑
w=1

ȳwb (3)

ν is a constant controlling how finely we quantize the spec-
trogram. Choosing ν = 1 gives us an average of about one

1A shorter hop size can be used, but using non-overlapping windows is
simpler and reduces computational overhead. A lack of time resolution has
not been a problem in our experiments.
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Figure 1. The graphical model for SIMM. Shaded nodes
represent observed data, unshaded nodes represent hidden
variables. Directed edges denote that the variable pointed
to depends on the variable from which the edge origi-
nates. Nodes with two variable names denote tuples drawn
jointly—for example, ci and bi are drawn jointly from a
multinomial distribution with parameter φki

, and depend on
both ki and φki

. Only bi is directly observed, so only that
half of the node is shaded. Plates denote replication of each
variable within the plate by the number at the lower right.

quantum per window/bin; higher values of ν yield a closer
approximation to the continuous spectrogram and more ex-
pense. The order of these quanta is arbitrary, so we can
model them as being drawn independently from our model.

2.2. Generative Process

We assume we are given a set of K normalized magnitude
spectrogram matrices φk of size C×B, such that φkcb is the
magnitude in frequency bin b at window c in sound source k,
and ∑

C
c=1 ∑

B
b=1 φkcb = 1 for each k ∈ {1, . . . ,K}. These spec-

trograms come from the sound sources we will use to recon-
struct the target sound. The normalized spectrograms can
also be interpreted as joint multinomial distributions over
base times c and bins b. That is, φkcb gives the probabil-
ity of drawing a quantum i with base time c and frequency b
given that the quantum is coming from the kth source sound.

The generative process for SIMM is:

1. Draw a K×L matrix ω defining a joint multinomial
distribution over sources k and time offsets l from a
symmetric Dirichlet distribution with parameter η :

ω ∼ Dir(η , . . . ,η) (4)

ωkl is the joint probability of drawing a quantum from
source k with time offset l.

2. For each quantum i ∈ {1, . . . ,N}:

(a) Draw a source ID ki and a time offset li jointly
from Mult(ω):

{ki, li} ∼Mult(ω) (5)

(b) Draw a base time ci and a frequency bin bi jointly
from the spectrogram/joint distribution φki

:

{ci,bi} ∼Mult(φki
) (6)

(c) Set the observed time wi for quantum i based on
the base time ci and the time offset li:

wi = ci + li (7)

3. For each time w and frequency B, count the quanta
appearing at w and b to yield ȳwb, the magnitude in
the quantized spectrogram at w and b.

Each observed quantum i appears at time wi and frequency
bin bi, which are selected according to the process above.
We assume that quanta always add constructively. This as-
sumption ignores the possibility of phase cancellation be-
tween sources, but it makes our simple mixture modeling
approach possible. We leave building a more complicated
phase-aware model as future work.

Figure 1 shows SIMM as a graphical model, which sum-
marizes the dependencies between the variables. Given this
generative process and an observed spectrogram ŷ, we will
infer values for the process’s hidden parameters k, l,ω.

3. INFERENCE AND SYNTHESIS

Our primary objective is to find a good value for the matrix
ω, which defines the joint distribution over time offsets l
and sources k. Once we have inferred ω from the data, it
will tell us by how much to time-shift and scale each short
component to recreate the target sound.

3.1. Gibbs Sampler

We use Gibbs sampling, a Markov Chain Monte Carlo
(MCMC) technique that allows us to approximate a sample
from the posterior distribution P(k, l|w,b,φ,η), since this
distribution is difficult to compute analytically. In Gibbs
sampling, we repeatedly sample new values for each vari-
able conditioned on the values of all other variables. After
an initial “burn-in” period, the distribution of the sampled k
and l converges to their true posterior distribution [4].

We can avoid sampling ω, since we have placed a con-
jugate Dirichlet prior on ω and can therefore compute the
posterior predictive likelihood of {ki, li} given the other k’s
and l’s (denoted k−i and l−i) and the hyperparameter η . We
therefore resample only the values for the source indicators
k and the time offsets l. This leads to faster convergence,
since it lets us work in a lower-dimensional space. Once we
have estimates for k and l, we can compute the Maximum
A Posteriori (MAP) value for ω|k, l,η .

To resample each pair ki, li, we need to compute the joint
posterior likelihood that the quantum i appearing at time wi



and bin bi was drawn from a source k at a time offset l:

P(ki = k, li = l|wi,bi,k−i, l−i,φ,η) ∝

P(ci = wi− l,bi|ki = k, li = l,φ)× (8)
P(ki = k, li = l|k−i, l−i,η)

The joint likelihood of the base time ci = wi− l and the fre-
quency bin bi is given by the component distribution φk:

P(ci = wi− l,bi|ki = k, li = l,φk) = φkcibi (9)

The likelihood of the pair k, l conditioned on η and the other
source indicators k−i and time offsets l−i is

P(ki = k, li = l|k−i, l−i,η)
=

∫
ω P(ω|η)ωkldω (10)

= nkl+η

N−1+KLη

Where nkl is the number of other quanta coming from source
k with time offset l. We can compute the integral in equation
10 analytically because the Dirichlet distribution is conju-
gate to the multinomial distribution.

Using equations 9 and 10, equation 8 becomes:

P(ki = k, li = l|wi,bi,k−i, l−i,φ,η) ∝ φkcibi

nkl +η

N−1+KLη

(11)
We repeatedly resample the source indicator ki and time

offset li for each observed quantum i conditioned on the
other indicators k−i and l−i until 20 iterations have gone
by without the posterior likelihood P(k, l|w,b,η ,φ) yield-
ing a new maximum. At this point we assume that the Gibbs
sampler has converged and that we have found a set of val-
ues for k and l that is likely conditioned on the data.

Once we have drawn values from the posterior for k and
l, we compute the MAP estimate ω̂ of the joint distribution
over sources and timesω conditioned on k, l, and the hyper-
parameter η . Since the prior on ω is a Dirichlet distribution,
the MAP estimate ω̂ of ω|k, l,η is given by:

ω̂kl ∝ max(0,nkl +η−1) (12)

Here nkl is the total number of observed quanta that came
from source k at time l.

3.2. Sonifying the MAP Estimate

By sonifying ω̂, the MAP estimate of ω, we can produce
an approximate version of our input audio using only the
short sources corresponding to the component distributions
φ. ω̂kl gives the amplitude of source k at time offset l, which
corresponds to sample S(l− 1), where S is the number of
samples per window, and samples begin at sample 0. If we
convolve each short input source k by a signal g such that

g(t,k) =
{

0 if mod(t,S) 6= 0
ω̂k, t

S +1 if mod(t,S) = 0 (13)

Figure 2. Top: Spectrogram of 2.3 seconds of Young MC’s
“Bust a Move.” Bottom: Spectrogram of 2.3 seconds of the
same song reconstructed from spoken words from the TIMIT
corpus using our SIMM model.

and add the result for each source, we obtain a signal whose
spectrogram approximates the spectrogram of the target. Fig-
ure 2 shows an example of the final result of this process.

3.3. Resampling η

η controls the sparseness of our joint distribution ω over
times and sources. Rather than specify η a priori, we place
a gamma prior on η and adapt the hyperparameter sampling
technique in [1] to resample η each iteration.

4. EVALUATION

Ultimately the effectiveness of our approach should be eval-
uated qualitatively. Sound examples generated by the
method described in this paper are available at
http://www.cs.princeton.edu/˜mdhoffma/icmc2009.

We also performed a quantitative evaluation of our ap-
proach. We tested SIMM’s ability to find an arrangement of
the given components φ to match the target spectrogram ŷ
by computing and sonifying a MAP estimate ω̂ of the joint
distribution over times and components as described in sec-
tion 3, then comparing the sum of the magnitudes of the

http://www.cs.princeton.edu/~mdhoffma/icmc2009


AC/DC Young MC
Sound Source K Sample Length Error η Error η

Noise N/A N/A 0.6395 N/A 0.6265 N/A
Ramones 100 116 ms 0.3844 0.004569 0.4039 0.001979
Ramones 200 116 ms 0.3787 0.002386 0.4100 0.003376
AC/DC 100 116 ms 0.3455 0.005579 0.3821 0.003689
AC/DC 200 116 ms 0.3349 0.002382 0.3841 0.001939

MC Hammer 100 116 ms 0.3838 0.005017 0.3753 0.003875
MC Hammer 200 116 ms 0.3740 0.002993 0.3732 0.002499

TIMIT 100 464 ms 0.5898 0.004742 0.6102 0.003262
TIMIT 200 464 ms 0.5275 0.002097 0.6110 0.001796

Table 1. Errors obtained by our approach when trying to match songs by AC/DC and Young MC using various sets of sound
sources, and the learned values of the hyperparameter η . In all cases our method outperforms a baseline of white noise. Note
that lower errors do not necessarily translate to a more aesthetically interesting result.

differences between the normalized spectrograms of the tar-
get sound and resynthesized sound. Let ẑ be the normalized
spectrogram of the resynthesized sound. Our error metric is

err = 0.5
B

∑
b=1

W

∑
w=1
|ẑwb− ŷwb| (14)

which ranges between 0.0 (perfect agreement between the
spectrograms) and 1.0 (no overlap between the spectrograms).

Table 4 presents the errors obtained by our approach
when trying to match 23.2 second clips (1000 512-sample
windows at 22.05 KHz) from the songs “Dirty Deeds Done
Dirt Cheap” by AC/DC and “Bust a Move” by Young MC,
using samples selected at random from the songs “Dirty
Deeds Done Dirt Cheap,” “Blitzkrieg Bop” by the Ramones,
and “U Can’t Touch This” by MC Hammer. We also used
words spoken by various speakers from the TIMIT corpus
of recorded speech as source samples. Samples from similar
songs tend to produce lower errors, whereas the model had
trouble reproducing music using spoken words. The speech
samples produce a quantitatively weaker match to the target
audio, but the “automatic a cappella” effect of trying to re-
produce songs using speech proved aesthetically interesting.

All output sounds are available at the URL given above.

5. DISCUSSION

We presented a new audio mosaicing approach that attempts
to match the spectrogram of a target sound by combining a
vocabulary of shorter sounds at different time offsets and
amplitudes. We introduced the SIMM model and showed
how to use it to find a set of time offsets and amplitudes that
will result in an output sound that matches the target sound.
Our probabilistic approach is extensible, and we expect fu-
ture refinements will yield further interesting results.
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