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ABSTRACT
We present the Shift-Invariant Hierarchical Dirichlet Process (SI-
HDP), a nonparametric Bayesian model for modeling multiple
songs in terms of a shared vocabulary of latent sound sources.
The SIHDP is an extension of the Hierarchical Dirichlet Process
(HDP) that explicitly models the times at which each latent com-
ponent appears in each song. This extension allows us to model
how sound sources evolve over time, which is critical to the hu-
man ability to recognize and interpret sounds. To make inference
on large datasets possible, we develop an exact distributed Gibbs
sampling algorithm to do posterior inference. We evaluate the SI-
HDP’s ability to model audio using a dataset of real popular music,
and measure its ability to accurately find patterns in music using
a set of synthesized drum loops. Ultimately, our model produces
a rich representation of a set of songs consisting of a set of short
sound sources and when they appear in each song.

1. INTRODUCTION

Much interesting work has been done in recent years on analyz-
ing and finding good representations of music audio data for tasks
such as content-based recommendation, audio fingerprinting, and
automatic metadata generation. A common approach is to adapt
the bag-of-words exchangeability assumption from text modeling
and build a statistical model of a song or class of songs that learns
the statistical properties of feature vectors describing short (com-
monly 10-500 ms) frames of audio. Although this approach makes
modeling simpler, it fails to take into account the way that sounds
evolve over time, and can only model the qualities of the mixed au-
dio signal, not of individual sounds that occur simultaneously. In
this paper, we will present the Shift-Invariant Hierarchical Dirich-
let Process (SIHDP), a generative model that moves beyond this
approach and allows us to represent songs in terms of the instru-
ments and other sounds that generated them.

The same instruments tend to appear in multiple recordings
in different combinations, and without hand-generated metadata
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there is no way of knowing a priori how many or which sources
will appear in a given recording. This suggests that a model based
on the Hierarchical Dirichlet Process (HDP) would be ideally
suited to modeling groups of songs, since it represents groups of
observations (such as songs) as being generated by an initially un-
specified number of shared latent components [1].

However, the HDP requires that our observations be directly
comparable, which is not the case for audio data. Human listen-
ers need to hear how a sound evolves over time to recognize and
interpret that sound, but computers cannot directly observe when
events in audio signals begin and end. We therefore modified the
HDP to make it invariant to shifts in time by explicitly modeling
when in each song latent sources appear.

This allows us to discover a shared vocabulary of latent sources
that describe different events in our set of songs, and to produce a
rough transcription of each song in terms of that shared vocabu-
lary. This transcription provides a rich representation of our songs
with which we can compare and analyze our songs.

We perform posterior inference on the SIHDP using Gibbs
sampling. To make it feasible to do inference on large data sets
in a reasonable amount of time, we also develop an exact paral-
lel Gibbs sampler for the SIHDP that can also be applied to the
original HDP.

2. A SHIFT-INVARIANT NONPARAMETRIC BAYESIAN
MODEL

We define a probabilistic generative model for recorded songs. We
assume that a song is generated by repeatedly selecting a sonic
component from a set of available components and then selecting
both a time at which it occurs and an amplitude with which it is
manifested. Such a component might be, for example, a snare
drum or the note middle C on a piano. Components may overlap
in time. (This resembles the process by which a sample-based
sequencer produces audio.)

Below, we will present a probabilistic generative model that
corresponds to this process. Rather than operate directly on a
time-domain representation of audio, we use a quantized time-
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Figure 1: Spectrogram of 4.64 seconds (200 512-sample win-
dows) of the AC/DC song “Dirty Deeds Done Dirt Cheap,” anno-
tated with the locations in time and frequency of a few instrument
sounds.

frequency representation that is robust to imperceptible changes
in phase. Further, this representation allows us to adapt existing
models designed to handle counts data.

2.1. Data Representation

We represent each song using a quantized time-frequency spectro-
gram representation derived from the Short-Time Fourier Trans-
form (STFT). First, we divide the song into a series of W short
non-overlapping frames of S samples each. We multiply each
frame by the Hanning window and compute the magnitude spec-
trum of the Discrete Fourier Transform (DFT) for that window of
samples. This yields B = S

2
+ 1 coefficients giving the amplitude

in that window of evenly spaced frequencies from 0 Hz to one half
of the sampling rate.

After doing this for each frame, we have aB×W matrix ŷj of
non-negative real numbers, with ŷjbw giving the amplitude of DFT
frequency bin b at time step w. Since the overall amplitude scale
of digital audio is arbitrary, we can normalize our spectrograms
ŷj so that

PB
b=0

PW
w=1 ŷjbw = 1, and ŷj defines a multinomial

probability distribution over times w and frequencies b.
Finally, we transform each normalized ŷj into quantized counts

data whose empirical distribution approximates ŷj . We multiply
the normalized ŷj by a constant ν ×W ×B and round the result
to get the number of observed magnitude “quanta” ȳjbw in bin b at
time w of song j:

ȳjbw = round(νWBŷjbw) (1)

Nj =

BX
b=1

WX
w=1

ȳjbw (2)

ν is roughly the average number of quanta per time/bin pair, and
Nj is the total number of observed quanta in song j. We use the
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Figure 2: The graphical model for our shift-invariant HDP, de-
scribed in section 2.2.

notation yji = {wji, bji} to refer to the ith (exchangeable) quan-
tum of energy in song j as occurring at time wji and bin bji, for
i ∈ {1, . . . , Nj}.

Although we only discuss DFT spectrogram data in this pa-
per, our model could also be applied to other time-frequency rep-
resentations such as the constant-Q spectrogram or the output of a
wavelet transform.

2.2. Generative Process

We present the Shift-Invariant Hierarchical Dirichlet Process (SI-
HDP), a generative model for our quantized spectrogram data that
is an extension of the Hierarchical Dirichlet Process (HDP) [1]
with discrete observations. The HDP assumes an infinite number
of multinomial mixture componentsφk drawn independently from
a Dirichlet prior with parameter ε:

φk ∼ Dir(ε, . . . , ε)

An infinite vector β defining the global proportions of these com-
ponents is drawn from a stick-breaking process with concentration
parameter γ (denoted GEM(γ)). Each group j of observations
draws a group-level set of proportions πj from a Dirichlet Process
(DP) with concentration parameter α and the multinomial defined
by β as its base distribution:

β ∼ GEM(γ); πj ∼ DP(α,Mult(β))

The ith observation in group j is drawn by first choosing a compo-
nent kji from the group-level proportion distribution πj , and then
drawing the observation yji from φkji

:

kji ∼ Mult(πj); yji ∼ φkji

We will use a variant of the HDP to analyze groups of songs.
Our analysis will find:

1. The set of components used to generate those songs.

2. When and how prominently those components appear in
each song.
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In order to do this, we need to explicitly model how prominent
each component is at any given time in each song.

The SIHDP extends the HDP by modeling each observed time
wji as a sum of two terms: a base time cji ∈ {1, . . . , C} and
a discrete time offset lji ∈ {−C + 1, . . . ,W − 1}. We define
L = W + C − 1 to be the size of this set of possible time offsets.
We set C to be the length of the latent components that we wish to
model (which will be short relative to the song). The time offsets l
can take on any range of values such that there is some c for which
l + c ∈ {1, . . . ,W}.

As in the HDP, we begin by drawing a set of latent compo-
nents φ from a symmetric Dirichlet prior with parameter ε, but φ
is now a two-dimensional joint distribution over base times c and
frequency bins b. Each φ can be interpreted as a normalized spec-
trogram of a short audio source. The global component proportion
vector β is again drawn from a stick-breaking process with con-
centration parameter γ, and the song-level component proportion
vector πj for each song j is drawn from a DP with concentration
parameter α and base distribution Mult(β).

Each component k in song j in the SIHDP has a set of multino-
mial distributions ωjk over time offsets drawn from a symmetric
Dirichlet prior with parameter η.

Each observed quantum of energy yji consists of a time wji
and a frequency bin bji at which the quantum appears. To gener-
ate yji, we first select a component kji to generate the quantum.
We draw kji from Mult(πj), the song-level distribution over com-
ponents. We then draw a base time cji and frequency bji jointly
from φkji

, and draw a time offset lji from the distribution over
time offsets ωjkji for component kji in song j.

The observed quantum appears at time wji = cji + lji and
frequency bji.

The full generative process for the SIHDP is:

φk ∼ Dir(ε, . . . , ε) ωjk ∼ Dir(η, . . . , η)

β ∼ GEM(γ) πj ∼ DP(α,Mult(β))

kji ∼ Mult(πj) lji ∼ Mult(ωjkji)

cji, bji ∼ Mult(φkji
) wji = cji + lji

yji = {wji, bji} (3)

The SIHDP is a hierarchical nonparametric Bayesian version
of Shift-Invariant Probabilistic Latent Component Analysis (SI-
PLCA) [2]. It improves on SI-PLCA by allowing components to
be shared across multiple songs, and by automatically determin-
ing the number of latent components that are needed to explain the
data.

This SIHDP is also related to the Transformed Dirichlet Pro-
cess (TDP) in that draws from a countably infinite global set of
mixture components undergo transformations to generate obser-
vations [3]. In the TDP, however, transformations are associated
with observations indirectly through table assignments in the Chi-
nese Restaurant Franchise (CRF). This means that the concentra-
tion paramater α influences both the group-level component pro-
portions π and the number of transformations that a group of ob-
servations (such as a song or an image) can take on; a high α si-
multaneously makes each πj less likely to diverge from the global
component proportions β and makes a large number of transfor-
mations in each group j more likely.

Our model takes a simpler approach, directly associating each
observation yji with a transformation lji that depends only on the
cluster assignment kji and a group-level multinomial distribution
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Figure 3: A graphical representation of our model’s MAP estimate
of π for the 40 synthetic drum loops. A darker pixel in row k
of column j indicates a higher relative proportion πjk of latent
component k in song j.

over transformations ωjkji . We do not need to use the CRF ma-
chinery of the HDP to generate transformations, since our set of
transformations is discrete. We note that this decoupled approach
can be generalized to continuous transformations by using a set of
DP’s for each group to discretize a space of continuous transfor-
mations. This may be worth exploring in other models.

Although this paper is focused on the applications of the SI-
HDP to music, it could equally well be applied to any of the other
application areas described in [2], such as images or video. Like-
wise, although we only discuss shift-invariance in time, analogous
models can be constructed that are invariant to shifts in frequency
at extra computational expense. A log-frequency representation
such as the constant-Q transform would be a more appropriate in-
put for such a model than the linear frequency spectrogram.

To learn the posterior distribution over the model parameters
conditioned on the observed spectrograms, we adapt the direct as-
signment Gibbs sampler from [1]. This Gibbs sampler gives us
a set of samples from the posterior distribution over a set of the
variables in our model, which we then use to compute a Maximum
A Posteriori (MAP) estimate of the remaining parameters. Full
details of the inference procedure can be found in appendix A.

3. EVALUATION

We conducted several experiments to test the SIHDP on music au-
dio data—one using synthetic drum loops and three using songs
taken from the CAL500 dataset, which consists of 500 songs of
various genres of Western popular music each recorded by a differ-
ent artist within the last 50 years [5]. In all experiments, we placed
a gamma(1, 0.0001) prior on both α and γ, and set ε = 0.02 and
η = 0.01.

3.1. Drum Loop Transcription

We synthesized a set of 40 randomly generated 32-beat drum loops
lasting 6 seconds each. We studied the SIHDP’s ability to discover
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Figure 4: Left: Two latent distributions φk discovered by our
model. Right: Spectrograms of two drum samples closely match-
ing the latent components at left.

the drum sounds that were used to create the files, and when in each
file they appear. We used a simple algorithm to generate the loops:
for each drum s at each beat i in song j, we draw a Bernoulli
variable rsij ∼ Bern(ps) that indicates whether or not drum s
is present at beat i. If it is, then we draw its amplitude asij ∼
Unif(0.3, 0.9), otherwise we set asij = 0. Audio was synthesized
using the ChucK music programming language [6] and two sets of
drum samples from Apple’s GarageBand.

Our objective was to recover from the audio alone an estimate
of a for each drum in each song, without any prior knowledge
of what the drum samples sound like (aside from their maximum
length), how many there are, or how frequently they appear.

We ran our Gibbs sampler until the posterior likelihood failed
to increase for 20 iterations on the 40 synthesized files, choosing
C = 10 and ν = 0.25. We then computed a MAP estimate of
the time offset distribution ω|k, l, and calculated a distribution ω′

quantized to 32 beats, so that ω′jki is the probability that a quantum
of energy generated by component k in song j will fall anywhere
in beat i. ω̂jki = πjkω

′
jki is then the relative prominence of com-

ponent k at beat i in loop j.
Figure 3 graphically represents the distribution π discovered

by our model. Note that most of the latent components tend to ap-
pear in either the first 20 loops or the last 20, but not both. This is
because the first 20 loops were generated using a different set of
drum samples than the last 20, and our model was able to distin-
guish between the two synthetic drum kits.

We evaluated the Bhattacharyya distance for each song be-
tween the joint distribution over components and times defined by
ω̂j and the joint distribution over drums and times defined by our
ground truth aj (normalized so that it can be treated as a multino-
mial distribution). The Bhattacharyya distance between two prob-
ability distributions p and q over the same domainX is a symmet-
ric measure of the dissimilarity of those two distributions, and is
defined as

DB(p, q) = − log

0@X
x∈X

p
p(x)q(x)

1A (4)
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Figure 5: Left: An unsupervised transcription ω̂ generated by our
model of a drum loop. Right: The actual times and amplitudes of
the drum loop. Darker pixels correspond to higher amplitudes.

We assume (naïvely) that the component k in song j that corre-
sponds to drum s is the one that maximizes Corr(ω̂jk,ajs). The
average Bhattacharyya distance between our transcription and the
ground truth was 0.4236 with a standard error of 0.0204. The aver-
age Bhattacharyya distance obtained by repeating the experiment
with a a normalized matrix of numbers drawn uniformly at ran-
dom substituted for ω̂j was 1.1923 with a standard error of 0.0131.
The SIHDP did dramatically better than chance at transcribing the
drum tracks.

Figure 4 compares the spectrograms of two of the drum sam-
ples used to generate our data with the discovered latent compo-
nents they most closely match. Figure 5 compares the ground truth
transcription a with the SIHDP’s transcription ω̂ for a single drum
loop. The rows of ω̂ have been manually ordered to make their
correspondance to the rows of a clearer. The second drum seems
to have been split across two components, but most of the drums
have a clear one-to-one mapping to latent components, which con-
firms our quantitative results. The empty rows correspond to latent
components not used to model this loop.

3.2. Experiments on Recorded Popular Music

We ran our distributed Gibbs sampler on a training set of 48 songs
from the CAL500 dataset to get MAP estimates of the global com-
ponent proportions β, the global components φ, the song-level
component proportions π, and the song-level offset distributions
ω. We set the length C of the latent components to 20 windows.
We used 2000 512-sample windows (46 seconds of audio) from
each song with ν set to 1, for an average of 514,000 observations
per song. The Gibbs sampler took about a day to converge running
on 48 processors, and discovered 575 components.

Figure 6 shows several latent components discovered by the
SIHDP from the 48 training songs. Qualitatively, these sound like
(clockwise from bottom left) a bass drum, a male voice singing
“aah,” a snare drum, and a high-pitched whistle. While the first
three components clearly correspond to real-world sound sources,
it seems more likely that the fourth component is being used to
model fine details of the data that are cannot be captured by the
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Figure 6: Four latent components discovered from 48 songs taken
from the CAL500 corpus of popular music.

more complex components. Preliminary experiments with a more
flexible model suggest that these simple “detail” components are
less common if details of the components are allowed to vary from
song to song.

Figure 7 shows the intensities ω̂jkl = ωjklπjk with which
the 10 most prominent components k appear at each time offset
l in the song “Dirty Deeds Done Dirt Cheap” by AC/DC. Differ-
ent, but related rhythmic patterns for each component are clearly
visible. Exploiting the rhythmic information in this representation
may prove valuable for music information retrieval tasks.

3.2.1. Perplexity

After obtaining MAP estimates of the global component propor-
tions β and the global components φ, we ran our Gibbs sampler
on 400 held-out songs from the same dataset holding the global
component proportions β and the component distributions φ fixed
at the MAP estimates from the training set, and estimated the per-
plexity on the held out data using the harmonic mean of the likeli-
hoods of the data under samples from the posterior of the hidden
parameters1. For comparison, we also built a simple DP model
that also assumes an infinite set of latent components, but has each
song choose a single latent component that it uses to generate ev-
ery observed quantum. We estimated the perplexity of this model
on the same held out data. The DP’s perplexity was 1265.2, and
our SIHDP model’s perplexity was 62.1. This dramatic reduction
in perplexity illustrates the value of modeling songs as mixtures of
latent components.

4. CONCLUSION

In this paper, we presented the Shift-Invariant Hierarchical Dirich-
let Process (SIHDP), a model that can discover a rich represen-
tation of groups of songs in terms of the instruments and vocal

1While this is a widely used method (cf. e.g. [7]) there is some debate
in the statistics community as to its effectiveness compared with alternative
estimation methods such as [8].
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Figure 7: The 10 most prominent components of the unsuper-
vised transcription ω̂ inferred from 11 seconds of the AC/DC song
“Dirty Deeds Done Dirt Cheap.” Some components are relatively
weak here, but become more prominent elsewhere in the song.

sounds that generated those songs. We developed an exact paral-
lel Gibbs sampler that enabled us to run experiments on a signifi-
cant number of songs, and showed that the SIHDP can discover la-
tent audio sources that are shared across multiple songs, as well as
when those sources occur in each song. In the future, we hope ex-
tend our model to capture the temporal structure of songs in terms
of these latent sources, to allow fine details of sources to change
from song to song, and to model pitch more explicitly.
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A. APPENDIX: INFERENCE PROCEDURES

A.1. Direct Assignment Gibbs Sampler

To draw from the posterior, we adapt the direct assignment Gibbs
sampler described in [1]. We integrate out all variables besides the
component indicators k, the time offsets l, and the global compo-
nent proportions β, whose values comprise the state of the Markov
chain.

Resampling the component indicators k and time offsets l:
First, we jointly resample each pair of variables kji, lji indicating
which component kji at what time offset lji generated observation
i in song j, conditioned on the values of all other indicator vari-
ables k−ji, l−ji, the global component proportion weights β, the
observed data y, the concentration parameter α, and the prior on
the mixture components φ defined by ε.

P (kji, lji|k−ji, l−ji,β, α, ε,y) ∝ (5)
P (yji|k, l,y−ji, ε)P (kji, lji|k−ji, l−ji,β, α, η) =

P (yji|k, l,y−ji, ε)P (lji|kji, l−ji, η)P (kji|k−ji,β, α)

Define nlkj to be the number of observations in song j com-
ing from component k with time offset l, excluding the observation
we’re currently resampling. Define ocbjk to be the number of ob-
servations in song j coming from component k with base time c
and frequency bin b, again excluding the current observation.

Given lji and yji = {wji, bji}, we can calculate the base
offset cji = wji − lji, and so the first term becomes:

P (yji|k, l,y−ji, ε) = P (cji, bji|k, l,y−ji, ε)
=
R
φ
P (cji, bji|φ)P (φ|c−ji, b−ji,k, l, ε)dφ

= (ocjibjijkji + ε)/(o··jkji + CBε) (6)

For a new component k, the predictive likelihood is a constant 1
CB

,
since the prior on φ is symmetric.

The marginal likelihood of the component indicator kji con-
ditioned on the other kj,−i in the same song j and on the global
component proportions β is given by the Chinese restaurant fran-
chise:

P (kji|kj,−i,β, α) =

8<:
n·kj+αβk

Nj+α
if k ∈ {1, . . . ,K}

αβnew

Nj+α
if k = knew

(7)

Where βnew is the global likelihood of choosing a component
not currently associated with any observations:

βnew = 1−
KX
k=1

βk (8)

The likelihood of time offset lji conditioned on the other lj,−i
and on kji if kji ∈ {1, . . . ,K} is given by:

P (lji|kji, l−ji, η) =

Z
ω

P (lji|ω)P (ω|lj,−i, η)dω

=
nljikjij + η

n·kjij + ηL
(9)

The predictive likelihood for a new component knew is a constant
1
L

, since the prior on ω is symmetric.
Therefore, the joint posterior likelihood of kji and lji for a

given observation yji = {cji+lji, bji} conditioned on k−ji, l−ji,
y−ji, β, α, and ε is:

P (kji = k, lji = l|k−ji, l−ji,β, ε, α,y)

∝
(ocjibjijk+ε)(n·kj+αβk)(nlkj+η)

(o··jk+CBε)(n··j+α)(n·kj+ηL)
(10)

for k ∈ {1, . . . ,K}. For k = knew,

P (kji = knew, lji = l|β, α,Nj) ∝
αβnew

CBL(Nj − 1 + α)
(11)

If n·k· = 0 for some component k at some point during resam-
pling, then that component may be eliminated from future consid-
erations.

Creating a new mixture component: If kji = knew, then a new
mixture component needs to be created. When this happens, we
draw a stick-breaking weight s ∼ beta(1, γ), set βknew = sβnew

and then update βnew := (1 − s)βnew, as in the direct assignment
sampler for the HDP [1]. We choose the time offset lji uniformly
at random from the set of offsets {wji −C + 1, . . . , wji} that are
consistent with an observation at time wji.

Resampling the global mixture proportions β: After the com-
ponent indicators k and time offsets l have been resampled, we
resample the global component proportions β|k, α, γ by simulat-
ing the Chinese Restaurant Franchise. Let mjk be the number of
tables in restaurant j eating dish k. Then

β|m, γ ∼ Dir(m·1, . . . ,m·K , γ) (12)

For each restaurant j and dish k, draw mjk|α, β, n·kj as follows2:

1. Set mjk = 0

2. For i ∈ {0, . . . , n·kj − 1}:

(a) Increment mjk by ti ∼ Bernoulli( αβk
αβk+i

)

Once m has been drawn for all j, k, redraw β according to equa-
tion 12.

Sampling the components φ: We can also sample the latent
components φ instead of integrating them out—this slows conver-
gence, but makes the distributed inference algorithm presented in
the following section possible, which allows us to apply our model
to larger datasets.

If we instantiate φ rather than integrating it out, equation 10
simplifies to:

P (kji = k, lji = l|k−ji, l−ji,β, ε, α,y)

∝ φcjibjik
(n·kj+αβk)(nlkj+η)

(n··j+α)(n·kj+ηL)
(13)

All other updates are the same as before.
To update φk, we can simply draw from its posterior condi-

tioned on the indicator variables k, l, the observations y, and the
prior parameter ε:

φk|k, l,y, ε ∼ Dir(o1,1,·,k + ε, . . . , oC,B,·,k + ε) (14)

Resampling the hyperparameters α and γ: We can resample
the hyperparameters α and γ in the same way as in the HDP.

2Note that n and o here include all observations in all songs, unlike
when we were redrawing k and l.
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A.2. Distributed Inference

Resampling the component indicators k and time offsets l for each
observation requires O(CKN·) operations per iteration. Say that
our songs are all 2000 512-sample frames long (corresponding to
46 seconds at a sampling rate of 22050 Hz) and we choose ν =
1.0 and C = 20 (corresponding to components lasting 460 ms).
Then if our model discovers 200 latent components, resampling k
and l will require billions of floating-point operations and memory
accesses per song. This may lead to unacceptably long run times
even for small datasets, particularly if the songs are heterogeneous
and a larger number of components is needed to model them.

A solution to this problem is to split the work of resampling k
and l across multiple processors, assigning one processor to deal
with each song j. These indicator variables for each song are con-
ditionally independent of those in all other songs given the global
component proportions β and the components φ, so the only situ-
ation in which we have to do anything differently from the single-
processor Gibbs sampler described in the previous section is when
creating or eliminating components, since these actions affect the
state of the global variables β and φ.

We can put off eliminating components until after all k and
l have been resampled. At that point, if a component k has no
observations associated with it then P (βk > 0|k, α, γ) will be 0
and the component can be eliminated.

Creating a new component knew is more complicated, since cre-
ating a new component involves sampling βknew and φknew , which
alters the global state of the Markov chain in ways that affect other
groups. In [4], Asuncion et al. propose an approximate Gibbs
sampler for the HDP that allows each process to create new com-
ponents as usual, and then merges the component ID’s across pro-
cessors arbitrarily. This approach is not guaranteed to converge,
and they report experimental results in which it converges to a final
number of topics much more slowly than a single-threaded exact
Gibbs sampler does.

We instead propose a method for allowing multiple processes
to create new components without sacrificing consistency. Before
resampling the indicator variables k and l, we draw a set of A
global auxiliary components φK+1,...,K+A from their prior:

φK+a ∼ Dir(ε, . . . , ε) (15)

We also augment the global component proportions β with a series
of A additional weights partitioning the probability mass in βnew

using the stick-breaking process:

sa ∼ beta(1, γ); βK+1 = s1β
new (16)

βK+a = sa(1− sa−1)βK+a−1;

β̂new = (1− sA)βA

Effectively we have sampled from the prior an extra A latent
components not associated with any observations, and assigned
them weights in β according to the stick-breaking process. If we
include these auxiliary components when resampling k and l, then
the model has a set of A new components to which it can assign
observations without having to change any global variables. There
is still a chance that a song will choose a component k̂new for which
we have not sampled a component φ, however:

P (kji = k̂new) ∝ αβ̂new

LB(Nj − 1 + α)
(17)

If the number of auxiliary components A is chosen to be suffi-
ciently large, β̂new will be dramatically smaller than βnew, and so
this will be a much less likely event than choosing a component
k ∈ {K + 1, . . . ,K +A}. It is important to choose a value for A
large enough that k̂new is never chosen, since it is difficult to deal
with this event in a principled way. We could simply abort this
round of resampling k and l, increase A, draw a new set of aux-
iliary variables and try again, but this could potentially introduce
a bias that is hard to account for. In our experiments we chose a
sufficiently large value for A that k̂new was never chosen.

If A is large, a naïve approach introduces significant extra
computation. Since there are no observations associated with the
auxiliary components, however, we can sidestep this extra com-
putation by efficiently precalculating the marginal probability of
associating an observation with any component not yet associated
with any observations. Denote this set as knew = {K+1, . . . ,K+

A, k̂new}.

P (kji ∈ knew|yji,β, β̂new,φ, α,Nj)

∝ P (yji|kji ∈ knew,φ,β, β̂new)× (18)
P (kji ∈ knew|βnew, α,Nj)

The first term can be summarized as a weighted average of the aux-
iliary components φ and the likelihood of an observation drawn
from a φk̂new

P (yji|kji ∈ knew,φ,β, β̂new) (19)

=

CX
c=1

ˆ
P
“
c, bji|kji ∈ knew,φ,β, β̂new

”
×

P (lji = wji − c|kji ∈ knew)
˜

=
1

Lβnew

CX
c=1

 
β̂new

CD
+

K+AX
k=K+1

φcbjikβk

!

The second term is simply the prior likelihood of sitting at any
empty table in the CRF:

P (kji ∈ knew|βnew, α,Nj) =
αβnew

Nj − 1 + α
(20)

Neither of these terms depend on the component indicators k or
the time offsets l, so they only need to be computed once for each
possible frequency bin b before resampling k and l. Then, when
resampling kji we can efficiently sample whether or not kji ∈
knew. If kji /∈ knew (as will usually be the case) we can safely
ignore all auxiliary variables.

A simpler version of this auxiliary variable method can also
be applied to the original HDP formulation, as long as the global
component proportions β and latent components φ are sampled
rather than integrated out, and the space of possible observations
is discrete. Although this case is known to converge slowly, for
some very large datasets this might be outweighed by the ability
to deploy more computational resources.
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