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Abstract

We develop a Bayesian nonparametric Pois-
son factorization model for recommendation
systems. Poisson factorization implicitly
models each user’s limited budget of atten-
tion (or money) that allows consumption of
only a small subset of the available items.
In our Bayesian nonparametric variant, the
number of latent components is theoretically
unbounded and effectively estimated when
computing a posterior with observed user be-
havior data. To approximate the posterior,
we develop an efficient variational inference
algorithm. It adapts the dimensionality of
the latent components to the data, only re-
quires iteration over the user/item pairs that
have been rated, and has computational com-
plexity on the same order as for a parametric
model with fixed dimensionality. We stud-
ied our model and algorithm with large real-
world data sets of user-movie preferences.
Our model eases the computational burden
of searching for the number of latent compo-
nents and gives better predictive performance
than its parametric counterpart.

1 Introduction

Recommendation systems try to predict which items
a user will like based on his or her history of pur-
chases or ratings. One of the most important classes
of recommendation methods is collaborative filtering,
where we extract information from the population of
users to form specific recommendations for each one.
Specifically, collaborative filtering methods analyze a
collection of user/item purchase data, try to find re-
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curring patterns of item preferences among the users,
and then exploit those patterns for each user to rec-
ommend items that he or she has not yet purchased.

In this paper, we extend Poisson factorization (Canny,
2004; Dunson & Herring, 2005; Cemgil, 2009; Gopalan
et al., 2013) for recommendation. Poisson factoriza-
tion (PF) models each user/item observation with a
Poisson whose rate is the dot product of the latent,
non-negative user and item weights. The main compu-
tational problem is posterior inference, i.e., discover-
ing the latent user and item weights given an observed
user/item matrix.

This general procedure is common to many variants
of matrix factorization. However, PF enjoys advan-
tages over classical methods on a variety of data sets,
including those with implicit feedback (a binary ma-
trix indicating which items users consumed) and those
with explicit feedback (a matrix of integer ratings).
Classical matrix factorization, which corresponds to a
Gaussian model of the data (Salakhutdinov & Mnih,
2008), requires complex methods for downweighting
the effect of zeros in the implicit setting (Hu, Koren,
& Volinsky, 2008; Gantner, Drumond, Freudenthaler,
& Schmidt-Thieme, 2012; Dror, Koenigstein, Koren,
& Weimer, 2012), while PF treats all zeros as observa-
tions, implicitly capturing their effect as a limitation
on user resources (Gopalan et al., 2013).

The second advantage of PF algorithms is that they
need only iterate over the viewed items in the observed
matrix of user behavior, i.e., the non-zero elements,
and this is true even for implicit or “positive only”
data sets. (This follows from the mathematical form
of the Poisson distribution.) Thus, Poisson factoriza-
tion takes advantage of the natural sparsity of user
behavior data and scales to massive real-world data.
In contrast, classical matrix factorization must iterate
over both positive and negative examples in the im-
plicit setting. Thus it cannot take advantage of data
sparsity, which makes computation difficult for even
modestly sized problems in the implicit setting.

A limitation of matrix factorization is model selection,



BNP Poisson Factorization for Recommendation Systems

i.e., choosing the number of components with which
to model the data. The typical approach in matrix
factorization, Poisson or Gaussian, is to determine the
number of components by predictive performance on a
held-out set of ratings (Salakhutdinov & Mnih, 2008;
Gopalan et al., 2013). But this can be prohibitively ex-
pensive with large data sets because it requires fitting
many models.

To this end, we develop a Bayesian nonparametric
(BNP) Poisson factorization model. Our model is
based on the weights from a collection of Gamma pro-
cesses, one for each user, which share an infinite col-
lection of atoms. Each atom represents a preference
pattern of items, such as action movies or comedies.
Through its posterior distribution, our model adapts
the dimensionality of the latent representations, learn-
ing the preference patterns (and their number) that
best describe the users.

As for most complex Bayesian models, the main com-
putational challenge is posterior inference, where we
approximate the posterior distribution of the latent
user/item structure given a data set of user/item rat-
ings. We develop an efficient algorithm based on vari-
ational inference, an approach that finds an approxi-
mate posterior distribution via optimization (Jordan
et al., 1999). Our method simultaneously finds both
the latent components and the latent dimensionality,
easily handles large data sets, and takes time roughly
equal to one fit of the model with fixed dimension.

Thus, the contributions of our paper are: (a) a new
Bayesian nonparametric model for Poisson factoriza-
tion, (b) a scalable variational inference algorithm
with nested variational families (Kurihara et al., 2006),
and (c) a thorough study of BNPPF on large scale
movie recommendation problems. On two large real-
world data sets—10M movie ratings from MovieLens
and 100M movie ratings from Netflix—we found that
Bayesian nonparametric PF outperformed (or at least
performed as well as) its parametric counterpart.

There has been significant research on Bayesian non-
parametric factor models. Griffiths and Ghahramani
(2011) introduced the IBP, and developed a Gaussian
BNP factor model with binary weights. Knowles and
Ghahramani (2011) later extended this work to non-
binary weights. Other extensions include (Hoffman et
al., 2010) and (Porteous et al., 2008). Situated within
this literature, our model is a BNP factor model that
assumes non-negative weights and sparse observations.
As we will show below, unlike previous algorithms,
our approach takes advantage of the sparsity and non-
negativity to scale to very large data sets. We analyze
data that cannot be handled by this previous research.

Closer to our model is the work of Titsias (2007),

Zhou et al. (2012), and Broderick et al. (2013).
Titsias (2007) derives a BNP factor model, the infinite
Gamma-Poisson feature model. The Gamma process
can be shown to be the De Finetti mixing distribution
for this model (Thibaux, 2008), with the latent counts
being drawn from a Poisson process. Our model does
not have an underlying latent discrete stochastic pro-
cess. Zhou et al. (2012) generalize (Titsias, 2007) and
extend the infinite prior to a Beta-Gamma-Gamma-
Poisson hierarchical structure. Our model is simpler
than (Zhou et al., 2012) because it is not hierarchical,
and our model choices afford a scalable variational in-
ference algorithm to tackle the kinds of problems that
we are trying to solve. Titsias (2007) uses an MCMC
algorithm that does not scale and Zhou et al. (2012)
further do inference with a truncated model (which
also does not scale). Finally, Broderick et al. (2013)
give a more general class of hierarchical models than
(Zhou et al., 2012) but, again, only develop MCMC
algorithms. Our model is simpler than and comple-
ments (Broderick et al., 2013)—Poisson factorization
does not immediately fall out of their framework—and,
again, affords scalable inference algorithms.

Finally, we remark that although we focus on recom-
mendation systems, our BNP model can be used in
a broader range of applications requiring matrix fac-
torization, such as topic modeling (Canny, 2004) or
community detection (Ball et al., 2011).

2 Bayesian Nonparametric Poisson
Factorization

We develop a statistical model of user/item rating ma-
trices. Our data are observations yui, which contains
the rating that user u gave to item i, or zero if no
rating was given. The data can be based on “implicit
feedback”, where yui is one if the user consumed it and
zero otherwise. User behavior data is typically sparse,
i.e., most of the ratings are zero.

In Poisson factorization for recommendation (Gopalan
et al., 2013), each user and each item is associated
with a K-dimensional latent vector of positive weights.
Let θu = [θu1, . . . , θuK ]> be the weight vector of user
u, and βi = [βi1, . . . , βiK ]> be the weight vector of
item i. The weights are given Gamma priors and each
observation yui is modeled by a Poisson distribution
parameterized by the inner product of the user’s and
item’s weights,

βik ∼ Gamma(a, b), (1)

θuk ∼ Gamma(c, d), (2)

yui ∼ Poisson(θ>u βi). (3)

The number of components is fixed. Throughout the
paper we parameterize the Gamma with its shape and
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rate. Gopalan et al. (2013) fit the model with different
values of K and select the one that gives best perfor-
mance on a held-out set of ratings.

Choosing the value of K is a nuisance because it is
expensive to fit many models on large data sets. We
want a model with support over arbitrary K such that
the posterior distribution captures the effective latent
dimensionality of our data. The desirable properties
for such a model are: (i) The user weights θu and item
weights βi must be infinite-dimensional non-negative
vectors, (ii) the expected dot product θ>u βi of any pair
must be finite, and (iii) the item weights βi have to be
shared among all users.

We place independent and identical Gamma priors
over each element of the infinite-dimensional vector
βi, following Eq. 1. Since all elements βik are iid, to
satisfy condition (ii), we require the convergence of∑∞
k=1 E [θuk]. A natural way to construct a summable

infinite set of positive weights is to use a Gamma pro-
cess (Ferguson, 1973) for each user weight vector θu.
A Gamma process, GP(c,H), has two parameters: c
the rate parameter and H the base measure. A draw
from a Gamma process is an atomic random mea-
sure with finite total mass when H is finite. This
means that a draw from a Gamma process gives an
infinite collection of positive-valued random weights
(the atom weights) whose summation is almost surely
finite. Thus, we make θuk the weights of a draw from
a Gamma process.

To ensure the items are shared among all users and sat-
isfy condition (iii), we need to match the item weights
to the user weights. Notice that the item weights are
indexed by the natural numbers. Thus, to match the
user weights to the item weights, we need an order-
ing of the user weights. We use a size-biased order-
ing. The size-biased ordering promotes sharing by
penalizing higher index components. We obtain per-
user Gamma process weights, in size-biased order, by
scaling the stick-breaking construction of the Dirich-
let process with a Gamma random variable. Miller
(2011) states this construction for Gamma processes
with unit scale. In general, scaling the sticks from a
Dirichlet process by a draw from Gamma(α, c) yields
a draw from a Gamma process with parameters c and
H, where H(Ω) = α (Zhou & Carin, 2013). While α
governs the sparsity of the user weights, both α and c
influence the rating budget available to the user.

Using the scaled sticks for θu, the generative process
for the Bayesian nonparametric Poisson factorization
model with N users and M items is as follows:

1. For each user u = 1, . . . , N :

(a) Draw su ∼ Gamma(α, c).

(b) Draw vuk ∼ Beta(1, α),
for k = 1, . . . ,∞.

(c) Set θuk = su · vuk
∏k−1
i=1 (1− vui),

for k = 1, . . . ,∞.

2. Draw βik ∼ Gamma(a, b),
for k = 1, . . . ,∞, i = 1, . . . ,M .

3. Draw yui ∼ Poisson(
∑∞
k=1 θukβik),

for u = 1, . . . , N , i = 1, . . . ,M .

Unlike draws from a standard Gamma process, these
atoms are shared across users. In this way, our model
is similar to a hierarchical Gamma process (Çinlar,
1975). However, in a hierarchical Gamma process, the
atoms are shared across users through the common
base measure. In contrast, the atoms in our model
are shared due to the size-biased ordering. Intuitively,
components with different indices are unlikely to be
similar due to the penalty levied by the size-biased or-
dering. This method of sharing atoms can be leveraged
in other hierarchical BNP models like the hierarchical
Dirichlet process (Teh & Jordan, 2010).

Note that, unlike BNP Gaussian matrix factorization
(Knowles & Ghahramani, 2011), the generative pro-
cess provides a sparse observation matrix. The proba-
bility of yui being zero can be lower bounded as

p(yui = 0) ≥ exp
(
−aα
bc

)
(4)

and, therefore, the expected number of zeros in the
observation matrix is lower bounded by NM exp(−aαbc )
(see the Supplementary Material for the proof).

3 Inference

In this section, we derive a scalable mean-field infer-
ence algorithm to deal with large data sets. Variational
inference provides an alternative to MCMC methods
as a general source of approximation methods for infer-
ence in large-scale probabilistic models (Jordan et al.,
1999). Variational inference algorithms are in general
computationally less expensive compared to MCMC
methods and do not suffer from limitations involving
mixing of the Markov chains, although they involve
solving a non-convex optimization problem.

Variational inference algorithms approximate the pos-
terior by defining a parametrized family of distribu-
tions over the hidden variables and then fitting the
parameters to find a distribution that is close to the
posterior in terms of Kullback-Leibler divergence.

For convenience, and similarly to previous works
(Dunson & Herring, 2005; Zhou et al., 2012; Gopalan
et al., 2013), we introduce for each user-item pair
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the auxiliary latent variables zui,k, such that zui,k ∼
Poisson(θukβik). Due to the additive property of Pois-
son random variables, each observation yui can be ex-
pressed as

yui =

∞∑
k=1

zui,k. (5)

Thus, the variables zui,k preserve the marginal Poisson
distribution of the observation yui. Note that when
yui = 0, the posterior distribution of zui,k will place
all its mass on zui,k = 0. Consequently, our inference
procedure needs to only consider zui,k for those user-
item pairs such that yui > 0. This is not the case for
BNP Gaussian MF (Knowles & Ghahramani, 2011)
and makes our inference procedure extremely efficient
for sparse user/item data.

Using the auxiliary variables, and introducing the no-
tation β = {βi}, s = {su}, v = {vuk} and z = {zui,k},
the joint distribution over the hidden variables can be
written as

p(z,β, s,v|α, c, a, b) =

N∏
u=1

p(su|α, c)
∞∏
k=1

N∏
u=1

p(vuk|α)

×
∞∏
k=1

M∏
i=1

p(βik|a, b)
∞∏
k=1

N∏
u=1

M∏
i=1

p(zui,k|θuk, βik), (6)

and the observations are generated following Eq. 5.

The mean-field family considers the latent variables to
be independent of each other, yielding the completely
factorized variational distribution:

q(z,β, s,v) =

N∏
u=1

q(su)

∞∏
k=1

N∏
u=1

q(vuk)

∞∏
k=1

M∏
i=1

q(βik)

×
N∏
u=1

M∏
i=1

q(zui), (7)

in which we denote by zui the vector with the infinite
collection of variables zui,k for user u and item i.

Typical mean field methods optimize the KL diver-
gence by coordinate ascent, iteratively optimizing each
parameter while holding the others fixed. These up-
date are easy to derive for conditionally conjugate vari-
ables, i.e., variables whose complete conditional is in
the exponential family (Ghahramani & Beal, 2001).
(The complete conditional is the conditional distribu-
tion of a latent variable given the observations and all
other latent variables). This is the case for most of
the variables in our model and for these variables we
set the form of their variational distributions to be the
same as their complete conditionals.

The exceptions are the stick proportions. These
variables are not conditionally conjugate because the

Beta prior over the stick proportions vuk is not conju-
gate to the Poisson likelihood. Rather, the complete
conditional for the stick proportions vuk is a truncated
Gamma distribution. Letting the variational distribu-
tion be in the prior or the complete conditional family
results in coordinate updates that do not have a closed
form. Therefore, we resort to a degenerate delta dis-
tribution for q(vuk), i.e., q(vuk) = δτuk

(vuk), an alter-
native that is widely used in the BNP literature (Liang
et al., 2007; Bryant & Sudderth, 2012).1

Finally, we handle the infinite collection of variational
factors in Eq. 7 by adapting the technique of Kurihara
et al. (2006), in which the variational families are
nested over a truncation level T . We allow for an
infinite number of components for the variational dis-
tribution, but we tie the variational distribution after
level T to the prior. Specifically, q(vuk) and q(βik) are
set to the prior for k ≥ T + 1.

With these considerations in mind, the forms of the
variational distributions in Eq. 7 are as follows:

q(su) = Gamma(su|γu,0, γu,1),

q(vuk) =

{
δτuk

(vuk), for k ≤ T,
p(vuk), for k ≥ T + 1,

q(βik) =

{
Gamma(βik|λik,0, λik,1), for k ≤ T,
p(βik), for k ≥ T + 1,

q(zui) = Mult(zui|yui,φui). (8)

We now describe the specific updates for each varia-
tional parameter. Figure 1 gives the algorithm.

1. The update equations for the user scaling param-
eters γu,0 and γu,1 are given by

γu,0 = α+

M∑
i=1

yui, (9)

γu,1 = c+ E

 ∞∑
k=1

vuk

k−1∏
j=1

(1− vuj)

 M∑
i=1

βik

 ,
(10)

where E [·] denotes expectation with respect to
the distribution q. The infinite sum in the update
equation for γu,1 can be split into the sum of the

1In variational inference, minimizing the KL divergence
is equivalent to maximizing an objective function called
ELBO (evidence lower bound). When the support of the
variational distribution and the true posterior do not coin-
cide, maximizing the ELBO is not equivalent to minimiz-
ing the KL divergence. In our case, q(vuk) is a degenerate
delta function and, therefore, its support is not the whole
interval [0, 1]. The resulting algorithm that maximizes the
ELBO can be understood instead as a variational expecta-
tion maximization algorithm (Beal & Ghahramani, 2003).
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Given a truncation level T , for all users and items,
initialize the user scaling parameters {γu,0, γu,1}
and the item parameters {λik,0, λik,1} to the prior
with a small random offset. Initialize the stick
proportions τuk, where k ≤ T , randomly.

Repeat until convergence:

1. For each user/item pair such that yui > 0,

• Update the multinomial parameter φui
using Eq. 16.

2. For each user,

• Update the user scaling parameters γu,0
and γu,1 using Eq. 9 and Eq. 10.

• Update the user stick proportions τuk for
all k ≤ T using Eq. 12.

3. For each item,

• Update the item weight parameters λik,0
and λik,1 using Eq. 13 and Eq. 14 for all
k ≤ T .

Figure 1: Batch variational inference for the Bayesian
nonparametric Poisson factorization model. Each it-
eration only needs to consider the non-zero elements
of the user/item matrix.

terms for k ≤ T and the sum of the terms for
k ≥ T + 1. The first sum is straightforward to
compute, but the second one involves infinitely
many terms. However, it results in a convergent
geometric series whose value is given by

E

 ∞∑
k=T+1

vukYuT

 k−1∏
j=T+1

(1− vuj)

 M∑
i=1

βik


= YuTD, (11)

where YuT =
∏T
k=1(1 − τuk) and D =∑M

i=1 E
[
βi(T+1)

]
= Ma/b.

2. The update equations for the stick proportions τuk
can be obtained by taking the derivative of the ob-
jective function with respect to τuk and setting it
equal to zero. This yields the quadratic equation
Aukτ

2
uk+Bukτuk+Cuk = 0, where the coefficients

Auk, Buk and Cuk are provided in the Supplemen-
tary Material. Solving for τuk, we get

τuk =
−Buk ±

√
B2
uk − 4AukCuk

2Auk
, (12)

and we discard the solution that is not in [0, 1].

Note that we require α > 1 for the variational
objective to be a concave function of τuk.

3. For the item weights, the equations for the varia-
tional parameters λik,0 and λik,1 are straightfor-
ward due to the conditional conjugacy of the dis-
tributions involved:

λik,0 = a+

N∑
u=1

yuiφui,k, (13)

λik,1 = b+

N∑
u=1

E

suvuk k−1∏
j=1

(1− vuj)

 . (14)

4. Exploiting the Gamma-Poisson conjugacy, we
know that the optimal q(zui) can be parameter-
ized by an infinite-dimensional vector φui whose
components take the form

φui,k ∝ exp{E [log θuk] + E [log βik]}. (15)

Let Rui,k = E [log θuk] + E [log βik]. Then,

φui,k =
exp{Rui,k}∑∞
k=1 exp{Rui,k}

. (16)

Similarly to the derivation by Kurihara et al.
(2006), we are left with computing a normalizer
that is an infinite sum. The summation up to the
truncation level T is straightforward, and thus we
focus on computing

∑∞
k=T+1 exp{Rui,k}. It is also

a convergent geometric series, which can be com-
puted as

∞∑
k=T+1

exp{Rui,k} =
exp{Rui,T+1}

1− exp
{
E
[
log(1− vu(T+1))

]} .
(17)

We have described our batch variational inference al-
gorithm for the BNPPF. We emphasize that the algo-
rithm needs to only iterate over the nonzero elements.
For a dataset with N users, M items and r ratings,
the algorithm in Figure 1 has a computational com-
plexity of O(T 2N +TM +Tr)). The dominant cost is
the iteration over ratings captured by the O(Tr) term,
which equals the cost for the finite PF model with a
fixed number of components K = T (Gopalan et al.,
2013). This allows us, in the next section, to analyze
very large user/item data sets.

4 Empirical Study

In this section, we compare the nonparametric Poisson
Factorization model (BNPPF) and the finite Poisson
factorization model (Gopalan et al., 2013) on three
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Figure 2: Rows 1-3: Generalization performance on the MovieLens and the Netflix data sets. The data sets
vary in size from 1 million ratings to 100 million ratings. Points indicate the finite model predictive performance
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model demonstrates better predictive log likelihood for the two largest data sets and is at least as good as the
finite models in terms of mean precision and recall. Row 4: Predictive log likelihood as a function of run-time
for all the considered models. The BNPPF model is as fast as a single run of the finite model with K = T .
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different data sets. Our goal is to demonstrate that
the BNPPF variational inference algorithm can avoid
model selection, while yielding better or similar per-
formance than the variational inference algorithm for
its finite counterpart. On large data sets, model selec-
tion involves fitting the finite model on a wide range of
the latent dimensionality K, making it computation-
ally intractable. We also show that our inference algo-
rithm scales, and that it runs in roughly the same time
needed for a single run of the finite model. We do not
compare to Gaussian BNP matrix factorization algo-
rithms which require iteration over all elements of the
user/item matrix. We note that the finite algorithm
outperforms Gaussian MF (Gopalan et al., 2013).

We implemented the algorithm of Figure 1 in 4, 000
lines of C++ code. The input to this algorithm is the
user/item matrix. The output are the parameters for
the approximate posterior distribution over the user
and item weights.2

Data sets. We study the predictive performance
and runtime of the BNPPF model on these data sets:

–MovieLens dataset (Herlocker et al., 1999), which
contains 1 million (MovieLens1M) ratings of movies
provided by users, with 6, 040 users and 3, 980 movies.
The ratings range from 0 (no rating) to 5 stars.

–MovieLens dataset with 10 million (MovieLens10M)
ratings of movies, 71, 567 users and 10, 681 movies.
Ratings are made on a 5-star scale, with half-star in-
crements. We multiply times 2 to get a scale from 0
to 10 “half stars”.

–Netflix dataset (Koren et al., 2009), which is similar
to MovieLens1M dataset but significantly larger. It
contains 100 million ratings, with 480, 000 users and
17, 770 movies. Unlike MovieLens, the Netflix data
is highly skewed: some users rate more than 10, 000
movies, while others rate less than 5.

Metrics. As figures of merit, we use the quantities
below, measured over a held-out test set which is not
observed during training. For each dataset, the test
set consists of randomly selected ratings which make
up 20% of the total number of ratings. This test set
consists of items that the users have consumed. Dur-
ing training, these test set observations are treated as
zeros.

–Predictive log likelihood (or mean held-out log like-
lihood). We approximate the probability that a user
consumed an item using the variational approxima-
tions to the posterior expectations of the hidden vari-
ables. For the BNPPF model, we compute the ex-

2Our software is available at
https://github.com/premgopalan/bnprec.

pectation E [
∑∞
k=1 θukβik] exactly using a convergent

geometric series as in the updates in Eq. 11. We use
these expectations to compute the average predictive
log likelihood of the held-out ratings.

–Mean precision and recall. Once the posterior is fit,
we use the BNPPF to recommend items to users by
predicting which of the unconsumed items each user
will like. We rank each user’s unconsumed items by
their posterior expected Poisson parameters,

scoreui = E

[ ∞∑
k=1

θukβik

]
, (18)

where E [·] denotes expectation with respect to the
distribution q. During testing, we generate the top
M recommendations for each user as those items with
the highest predictive score under each method. For
each user, we compute the precision-at-M , which mea-
sures the fraction of relevant items in the user’s top-M
recommendations. Likewise, we compute recall-at-M ,
which is the fraction of items in the test set present in
the top M recommendations. We set M to 100 in our
experiments. We computed the mean precision and
mean recall over 10, 000 randomly chosen users (for
MovieLens1M, we compute the mean over all users).

Hyperparameter selection. In order to set the
hyperparameters, we first notice that both the finite
and infinite models share the same prior on the item
weights and, therefore, we use the same hyperparam-
eter values for a fair comparison (specifically, we set
a = b = 0.3 for both models). Due to the stick break-
ing construction, the prior on the user weights differs
between the finite and the infinite models. For the
BNPPF model, we set the user scaling hyperparame-
ter c = 1 and α = 1.1 (recall from Section 3 that we
require α > 1). For the finite model, we explored the
values in the set {0.1, 1, 10} for both the shape and
scale in Eq. 2, and choose unit shape and unit scale
because these values provided the best performance on
the test set in terms of predictive log likelihood (see
Supplementary Material for a comparison). We use
these values in all our experiments.

Convergence. We terminate the training process
when the algorithm converges. We measure conver-
gence by computing the prediction accuracy on a vali-
dation set, composed of 1% randomly selected ratings,
which are treated as zeros during training and are not
considered to measure performance. The algorithm
stops either when the change in log likelihood on this
validation set is less than 0.0001%, or if the log likeli-
hood decreases for consecutive iterations.

Results. In Figure 2, we show the results for the two
MovieLens data sets with 1 million and 10 million rat-
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ings, and the Netflix dataset with 100 million ratings.
The top row corresponds to mean held-out log like-
lihood, while the second and third rows correspond,
respectively, to mean precision and recall. We set the
truncation level for the BNPPF to T = 200 across all
data sets. As seen in Figure 2, the BNPPF model has
better held-out log likelihood with a fixed truncation
level than the corresponding finite models, as we vary
K from 10 to 200 (with the exception of the small
MovieLens1M dataset). Further, the BNPPF model
performs at least as well as the finite models in the
mean precision and mean recall metrics.

For the BNPPF model, we computed the effective di-
mensionality K∗ of the latent weights. In order to
identify K∗, for each user, we identify the top latent
components k ≤ T , that contribute to at least 95%
of the user’s expected budget under the approximate

posterior, i.e., E
[∑∞

k=1 θuk
∑M
i=1 βuk

]
. We rank the

latent components by their contribution to the ex-
pected budget. Across all users, it gives us the ef-
fective dimensionality of the latent weights. For the
MovieLens1M dataset, we found K∗ = 92, and for
MovieLens10M and Netflix data sets, we found that
all latent components were used with T = 200.

The last row of Figure 2 shows that the BNPPF model
runs as fast as the inference algorithm for the finite
model with K set to the truncation level of 200. As
discussed in Section 3, the dominant computational
cost is the same for these algorithms.

The use of degenerate variational distributions over
the stick proportions results in a fast algorithm with
closed-form solutions for the variational parameters.
However, there are two limitations. First, as discussed
in Section 3, the choice of degenerate variational dis-
tributions constrains α to be greater than 1. We fo-
cussed on movie data sets in this work. In future work,
we plan on extending our algorithm to other types of
data sets, such as users reading scientific articles. Un-
like movie data sets, each user is likely to be interested
in articles belonging to particular research areas, e.g.,
machine learning. This suggests increased sparsity in
the latent user weights, which can be captured as prior
knowledge by setting α ≤ 1. Second, the use of point
estimates for the stick proportions may result in over-
fitting. Both limitations can be overcome by placing a
non-degenerate variational distribution over the stick
proportions, which may come at an increased compu-
tational cost due to numerical optimization.

5 Conclusion

We develop Bayesian nonparametric Poisson factor-
ization for recommendation systems. Given user/item

data, our model captures patterns of preferences and
how many components are needed to represent the
data. Our efficient variational inference algorithm
scales to large data sets with high data sparsity as
are frequently encountered in real-world recommenda-
tion problems. We present one of the first studies of
an infinite model on large-scale user-movie preference
data sets. Our model avoids the computationally in-
efficient method of searching for the number of latent
components and gives better predictive performance
than its parametric counterpart.

There are several directions for future work. First, we
plan to use variational Beta distributions to capture
the posterior of the stick proportions. This will remove
constraints on settings for hyperparameter α. How-
ever, using Beta distributions complicates the varia-
tional inference algorithm. Second, some data sets are
too large to be handled with batch optimization, even
when we only need to process the non-zero entries. We
plan to develop stochastic variational inference algo-
rithms (Hoffman et al., 2013) to scale to massive data
sets. Finally, in some settings we may want hierarchi-
cal structure (Broderick et al., 2013).
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