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Abstract

Variational methods are widely used for ap-
proximate posterior inference. However,
their use is typically limited to families of
distributions that enjoy particular conjugacy
properties. To circumvent this limitation,
we propose a family of variational approx-
imations inspired by nonparametric kernel
density estimation. The locations of these
kernels and their bandwidth are treated as
variational parameters and optimized to im-
prove an approximate lower bound on the
marginal likelihood of the data. Unlike most
other variational approximations, using mul-
tiple kernels allows the approximation to cap-
ture multiple modes of the posterior. We
demonstrate the efficacy of the nonparamet-
ric approximation with a hierarchical logistic
regression model and a nonlinear matrix fac-
torization model. We obtain predictive per-
formance as good as or better than more spe-
cialized variational methods and MCMC ap-
proximations. The method is easy to apply
to graphical models for which standard vari-
ational methods are difficult to derive.

1. Introduction

Approximate posterior inference—estimating the con-
ditional distribution of hidden variables given some
observations—is an important problem in many set-
tings. In this paper, we develop a new variational
inference algorithm for complex probabilistic mod-
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els. Compared to traditional variational methods, our
method can capture more expressive distributions and
be applied to a wider class of models.

Variational inference methods define some restricted
family of distributions over the hidden variables θ and
try to find the member of that family that is closest to
the posterior. The family is chosen so that the problem
of finding the distribution q that best approximates the
posterior becomes a tractable optimization problem.

Variational methods are effective and widely used.
These methods usually find a unimodal approxima-
tion of the posterior, especially when the variational
family is the commonly chosen mean-field family (Jor-
dan et al., 1999; Beal, 2003). Such an approximation is
inadequate when the posterior is multimodal. Further-
more, variational inference algorithms are challenging
to derive for models that lack conditional distributions
in tractable exponential families (i.e., for models with-
out conditional conjugacy).

We develop a variational inference method for continu-
ous hidden variables that captures multimodality and
can be applied to many non-conjugate models. The
variational family is a mixture of Gaussians, where
the variational parameters are the locations and vari-
ances of each mixture component. This family of dis-
tributions resembles classical kernel density estimators
from nonparametric statistics (Silverman, 1986). To
approximate the variational objective function, we use
Taylor series approximations of the log joint distribu-
tion and a bound on the entropy. We call this method
nonparametric variational inference (NPV). In con-
trast to traditional unimodal variational distributions,
the multiple components of the mixture can capture
different aspects of the posterior.

While mixture approximations have been studied in
the variational inference literature (Bishop et al., 1998;
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Jaakola & Jordan, 1998), we develop this idea into
a more generally applicable framework. (We discuss
other approaches to mixture approximations in Sec-
tion 4.) NPV is “general” in the sense that it is not
tailored to a specific model, only requiring that the
first and second derivatives of the log joint probabil-
ity log p(θ, y) be computable. Thus, it can be used in
non-conjugate settings, i.e., where conditionals of the
the individual hidden variables cannot be computed,
such as in Bayesian models with non-conjugate pri-
ors. While previous methods for variational inference
in non-conjugate models rely on mathematics tailored
to the problem at hand, NPV is easily adapted to many
settings.

In the following sections, we describe the variational
objective function using this family and a general-
purpose algorithm to approximately optimize it. We
illustrate its performance on two models. First, we
show that it performs as well in Bayesian logistic re-
gression as the method of Jaakkola & Jordan (2000),
which is tailored to that specific model. Second, we
show that it outperforms several MCMC methods for
a non-conjugate matrix factorization model of brain
activity data (Gershman et al., 2011). Nonparametric
variational inference is a promising strategy for ap-
proximating posterior distributions in complex proba-
bilistic models.

2. Variational inference

We consider the problem of computing the posterior
distribution of hidden variables θ ∈ RD given observed
data y,

p(θ|y) =
p(y|θ)p(θ)
p(y)

. (1)

This computation is analytically intractable for many
models of interest because the denominator is difficult
to compute.

The idea behind variational methods is to approxi-
mate p(θ|y) with a distribution q(θ) that belongs to a
constrained family of distributions, indexed by a vari-
ational parameter (Jordan et al., 1999; Beal, 2003).
The goal is to choose a member of that family that
is ”closest” to the posterior. In variational inference,
closeness is measured by Kullback-Leibler (KL) diver-
gence,

KL[q(θ)||p(θ|y)] = Eq
[
log

q(θ)

p(θ|y)

]
. (2)

Thus, inference becomes an optimization problem: we
choose the variational parameter to minimize the KL

divergence. The family of distributions is chosen to
make this optimization tractable.

The KL divergence is difficult to optimize because it
requires knowing the distribution that we are trying to
approximate. In variational inference, we maximize an
objective that is equal to the negative KL divergence
plus a constant. Recall that KL[q(θ)||p(θ|y)] ≥ 0. We
define a lower bound on the log marginal likelihood
(evidence) log p(y) through the relation

log p(y) = F [q] + KL[q(θ)||p(θ|y)], (3)

where

F [q] = Eq
[
log

p(y, θ)

q(θ)

]
= H[q] + Eq [f(θ)] (4)

is the negative free energy, also known as the evidence
lower bound (ELBO). HereH[q] is the entropy of q and
f(θ) = log p(y, θ). The ELBO is equal to the negative
KL divergence plus the marginal distribution of the ob-
servations, which is constant with respect to the family
q. It therefore reaches a maximum when p(θ|y) = q(θ),
where the KL is zero. Note that this is only attainable
when the target posterior p(θ|y) is in the variational
family, which it usually is not. Typically, q will be con-
strained to a family of simpler distributions, and F [q]
is optimized to find the distribution in this family that
is closest (in KL) to the true posterior.

The most commonly used variational inference algo-
rithm is mean-field variational inference. Mean-field
methods find q from the family of factorized poste-
riors: q(θ) =

∏
i qi(θi), where it is often convenient

to choose qi(θi) to have the same functional form as
the conditional distribution p(θi|θ−i, y). When p(θi) is
chosen to be conjugate to p(y|θ), the calculus of vari-
ations leads to closed-form coordinate ascent updates
that converge to a local maximum of F [q] (Beal, 2003).

Despite the computational convenience of the mean-
field approximation, it can be overly restrictive if there
are strong dependencies between the hidden variables
in the posterior distribution. Moreover, the closed-
form updates are only available when using conjugate
priors; many likelihood models of interest, such as lo-
gistic regression and the multilayer perceptron, cannot
be paired with conjugate priors, making the applica-
tion of mean-field methods more difficult.

3. Nonparametric variational inference

We now consider a flexible family of variational ap-
proximations that admits an efficient inference algo-
rithm. Our algorithm is appropriate for models with
continuous-valued hidden random variables, and does
not require conjugacy between pairs of variables.
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We choose the distribution q(θ) to be a uniformly-
weighted Gaussian mixture with isotropic covariances,

q(θ) =
1

N

N∑
n=1

N (θ;µn, σ
2
nI), (5)

where µn is the mean of the nth Gaussian component
and σ2

n is its variance. We call this a “nonparamet-
ric” family: We are making a weak set of assumptions
about the shape of the posterior, since the Gaussian
mixture family can approximate arbitrarily complex
posteriors given a sufficient number of components.
Further, this family resembles kernel density estima-
tors used in classical nonparametric statistics (Silver-
man, 1986), with µn playing the role of a kernel center
and σ2

n playing the role of a bandwidth parameter.

3.1. The Evidence Lower Bound

If q is in the family defined by Eq. 5, we cannot com-
pute the ELBO F [q]; in general there is no closed-
form expression either for the expectation of a non-
linear function under a Gaussian distribution or for
the entropy of a mixture of Gaussians. However, we
can approximate the ELBO and optimize this approx-
imation (see Lawrence, 2000; Honkela et al., 2007, for
other approaches to this problem). First, we lower
bound the entropy term H[q]. Then, we approximate
the expected log joint Eq[log p(y, θ)].

We lower bound the entropy (the first term in Eq. 4)
using Jensen’s inequality (Huber et al., 2008),

H[q] = −
∫
θ

q(θ) log q(θ)dθ

= −
∫
θ

q(θ) log
1

N

N∑
n=1

N (θ;µn, σ
2
nI)dθ

≥ − 1

N

N∑
n=1

log

∫
θ

q(θ)N (θ;µn, σ
2
nI)dθ. (6)

Each integral in Eq. 6 is the sum of N convolved Gaus-
sians, each component convolved with the nth. We
obtain the final bound by using the fact that the con-
volution of two Gaussians is another Gaussian,

H[q] ≥ − 1

N

N∑
n=1

log qn, (7)

where qn = 1
N

∑N
j=1N (µn;µj , (σ

2
n + σ2

j )I).

We now turn to the expected log joint f(θ), which is
the second term in Eq. 4,

Eq[f(θ)] =
1

N

N∑
n=1

∫
θ

N (θ;µn, σ
2
nI)f(θ)dθ.

We approximate each term in this sum with a second-
order Taylor series expansion of f(θ) around µn,

f(θ) ≈ f̂n(θ) =f(µn) +∇f(µn)(θ − µn)+

1

2
(θ − µn)>Hn(θ − µn), (8)

where Hn = ∇2
θf(θ) is the Hessian matrix of second

derivatives. The approximate expectation is

Eq[f(θ)] ≈ 1

N

N∑
n=1

∫
θ

N (θ;µn, σ
2
nI)f̂n(θ)dθ

=
1

N

N∑
n=1

f(µn) +
σ2
n

2
Tr(Hn). (9)

This approximation is known as the multivariate delta
method for moments (Bickel & Doksum, 2007), and
is often used within variational inference schemes for
models that cannot exploit conjugacy (e.g., Braun &
McAuliffe, 2010).

Finally, we add the bound in Eq. 7 to the approxima-
tion in Eq. 9. This gives the approximate ELBO1

L2[q] =
1

N

N∑
n=1

f(µn) +
σ2
n

2
Tr(Hn)− log qn. (10)

Intuitively, the likelihood term, f(µn), encourages
placing samples in areas of high probability den-
sity, while the entropy term, log qn, penalizes “over-
crowded” locations (i.e., where many samples are near
each other). The Hessian term captures the local cur-
vature of the posterior, discouraging the algorithm
from placing samples in areas with high probability
density but low volume (and therefore low mass).

We note two attractive properties of the approximate
ELBO in Eq. 10. First, we have made no conjugacy
assumptions; our only requirement is that the log joint
f(θ) = log p(θ, y) is twice differentiable (or thrice dif-
ferentiable if one wishes to use gradient ascent; but
see below). Second, although the objective function
involves a Hessian term, it only requires the calcula-
tion of the diagonal components; the cost of computing
the diagonal of the Hessian is comparable to the cost
of computing the gradient.

3.2. Optimizing the ELBO

Eq. 10 is a tractable approximation of the ELBO in
Eq. 4. Our goal is now to maximize Eq. 10 with respect

1When some parameters are bounded, one can use non-
linear transformations to map an unbounded parameteri-
zation to a bounded range (e.g., the logistic function for
variables in [0, 1]). In this case, one should add log |J| to
the approximate ELBO, where J is the Jacobian matrix of
first derivatives of the transformation.
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Algorithm 1 Nonparametric variational inference

Input: data y, number of components N .
Initialize θ1:N randomly.
repeat

for n = 1 to N do
µn ← argmaxµn

L1[q].
end for
σ2
1:N ← argmaxσ2

1:N
L2[q].

until change of L2[q] is less than 0.0001.

to the variational parameters µn and σn. One option
is to use a gradient-based solver. However, there is a
serious computational problem with this approach—
computing the gradient of Eq. 10 requires computing
a matrix of third derivatives, since we must compute
the gradient of the Hessian trace Tr(Hn). This leads to
a cost that is quadratic in the number of parameters.

To avoid the calculation of third derivatives, we use
both first- and second-order approximations of the
ELBO. The first-order approximation is

L1[q] =
1

N

N∑
n=1

f(µn)− log qn. (11)

This is obtained in the same way as Eq. 10, but us-
ing a first-order approximation of f(θ), rather than
the second-order approximation in Eq. 8. We iterate
between optimizing the variances σ using the second-
order approximation in Eq. 10 and optimizing the
means µ using the Eq. 11. Each optimization is done
using L-BFGS. We found that it is more efficient to op-
timize L1[q] with respect to one mean at a time, hold-
ing the others fixed, and iterating over components.
This coordinate ascent procedure converges faster than
batch optimization of µ1:N , but coordinate and batch
optimization produce similar results. Our algorithm is
summarized in Algorithm 1.

Both L1[q] and L2[q] are approximations of F [q]. Split-
ting the optimization problem into these two steps al-
lows us to avoid the cost of calculating the gradient

of
σ2
n

2 Tr(Hn) with respect to the means µ. In our ex-
periments, 3 iterations typically proved sufficient to
achieve convergence. Although the first-order approx-
imation may appear drastic, it still achieves our main
goal: placing kernels in areas of high probability mass.
Further simulation work is needed to assess the trade-
offs involved in this approximation.

As an illustration, we constructed a synthetic multi-
modal “posterior” f(θ) using a mixture of skewed bi-
variate t-distributions. Figure 1 shows f(θ) alongside
the NPV approximation with several settings of N .

With N = 1, the approximation is only able to cap-
ture a single mode, but with N = 2 it is able to cap-
ture the two modes with high fidelity, though it can-
not capture the true covariance structure or the heavy
tails. With N = 10, the approximation better cap-
tures the skew by placing several low-variance com-
ponents along the diagonal. This illustration demon-
strates some strengths and weaknesses of the NPV ap-
proximation: it can capture multi-modality, but the
isotropic covariance of the components makes it diffi-
cult to capture skew in the posterior. This problem
can be ameliorated by using more components.

Note that the number of parameters that need to be
fit with NPV increases linearly with N (the number of
components in the mixture). This may pose challenges
for models with a large number of hidden variables.
On the other hand, it may only be necessary to use a
small number of components (e.g., less than 10) to cap-
ture the major aspects of the posterior (as suggested
by Figure 1). We note also that the KL divergence
between the mixture distribution q and the true pos-
terior decreases at best logarithmically in the number
of mixture components N , suggesting that there may
be diminishing returns to using very large values of N
(Jaakola & Jordan, 1998).

3.3. Relationship to other algorithms

The NPV objective relates to several other methods.
When there is one component N = 1, the entropy term
log q1 does not depend on the mean µ1, and when σ2

1

becomes sufficiently small, the Hessian term of Eq. 10
goes to 0. Consequently, the NPV objective when N =
1 and σ1 → 0 is

L[q] = log p(y, µ) + const. = log p(θ = µ|y) + const.

The maximum of this function is the maximum a pos-
teriori (MAP) solution.

When N = 1 and σ2
1 is allowed to vary, we obtain

a Gaussian approximation centered around the MAP
solution. This can be understood as a diagonalized
Laplace approximation (MacKay, 1995), i.e., where we
ignore correlations between the dimensions of θ. The
Laplace approximation has drawbacks: for example,
it is not invariant to reparameterization, it performs
badly when the mean and mode of the posterior are
far apart, and it cannot capture multiple modes (Beal,
2003).

When N > 1 and σ2
n → 0, we obtain a quasi-

Monte Carlo approximation of the posterior, q(θ) =
1
N

∑N
n=1 δµn

(θ), where δµn
(·) is a Dirac point mass

located at µn. Thus one way to look at the NPV al-
gorithm is as a deterministic sampling method.
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Figure 1. Illustration of the NPV approximation fit
to a multimodal posterior. The true posterior (top
left), constructed as a mixture of bivariate t-distributions,
alongside the NPV approximation fit with several settings
of N .

4. Related work

Approximate inference for non-conjugate models is
an active area of research. Some authors have used
numerical or Monte Carlo methods to approximate
intractable integrals. For example, Lawrence et al.
(2004) used importance sampling to approximate the
expectations required for inference in a Bayesian model
of microarray images. Ihler et al. (2009) general-
ized particle filtering for approximate inference in fac-
tor graphs with continuous variables. Honkela et al.
(2007) used numerical quadrature to approximate ex-
pectations in a nonlinear factor analysis model. These
techniques are useful, but may fail in high dimensions.

Several researchers use specialized approximations for
certain classes of models, such as those with logistic
nonlinearities (e.g., Jaakkola & Jordan, 2000; Khan
et al., 2010). In contrast, our goal is to develop an al-
gorithm for inference in general non-conjugate models
with continuous hidden variables.

Closely related to our method is the mixture mean-
field (MMF) method (Bishop et al., 1998; Jaakola &
Jordan, 1998; Lawrence, 2000), which models the pos-
terior as a mixture of mean-field approximations. Re-
cently, Bouchard & Zoeter (2009) revisited this ap-
proach using soft-binning functions. NPV can be
viewed as a special case of MMF because each com-
ponent factorizes into a collection of one-dimensional
Gaussian sub-components (due to the isotropic covari-
ances). Our innovation is that we exploited the func-
tional form of the Gaussian mixture to derive an effi-
cient approximate inference algorithm. NPV requires
no user input beyond specifying the joint likelihood
function, its gradient, optionally the diagonal of its
Hessian, and the number of components. These mod-
est requirements give NPV a practical advantage in
situations where it is difficult to derive the MMF up-

dates.

5. Applications

In this section, we apply the NPV algorithm to several
probabilistic models and compare its performance to
other widely-used methods.

5.1. Logistic regression

In this section, we ask whether NPV produces rea-
sonable approximations for models where closed-form
updates can be applied. We focus on a hierarchical
logistic regression model and compare its accuracy to
a standard variational treatment (Jaakkola & Jordan,
2000, henceforth “JJ”).

Generative model. The observed data y = {c,X}
consist of T binary class labels, ct ∈ {−1, 1}, and K
covariates for each datapoint, xt ∈ RK . The hidden
variables θ = {w, α} consist of K regression coeffi-
cients wk ∈ R, and a precision parameter α ∈ R+. We
assume the following model (MacKay, 1995):

p(α) = Gamma(α; a, b) (12)

p(wk|α) = N (wk; 0, α−1) (13)

p(ct = 1|xt,w) =
1

1 + exp(−w>xt)
. (14)

Here a and b are hyperparameters (shape and inverse
scale, respectively) that we assume to be fixed.

Results. We evaluated NPV and JJ on 13 binary
classification data sets compiled by Mika et al. (1999).2

The number of covariates in these data sets ranges
from 2 to 60, and the number of observations ranges
from 24 to 7400. We used split-half training/testing.
We used the following hyperparameter settings: a = 1,
b = 0.01, N = 5 (similar results were obtained with
N = 10).

The predictive distribution for NPV was approximated
using a Monte Carlo estimate. We drew 1000 samples
from the fitted variational mixture of Gaussians and
estimated the log-likelihood of the test data as an av-
erage of the log-likelihoods under each sample. Figure
2 (top) compares the log-likelihood of the test data
under the NPV and JJ approximations. NPV and JJ
achieve statistically indistinguishable accuracy. Figure
2 (bottom) shows the same comparison for the ELBO,
confirming that NPV closely mimics the JJ approxima-
tion. We emphasize that JJ exploits special properties
of the generative model (i.e., a clever lower bound on
the logistic sigmoid function), whereas NPV only uses

2http://theoval.cmp.uea.ac.uk/matlab/default.
html

http://theoval.cmp.uea.ac.uk/matlab/default.html
http://theoval.cmp.uea.ac.uk/matlab/default.html
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Figure 2. Accuracy of NPV for logistic regression.
(Top) Each axis represents the log-likelihood of predic-
tions for test data under NPV or the Jaakkola & Jordan
(2000) algorithm (JJ), conditional on the inputs X. Each
point represents one of 13 data sets compiled by Mika et al.
(1999). For NPV, N = 5 components were used (similar
results were obtained with N = 10). (Bottom) Same as
above for the ELBO.

the derivatives of the joint distribution.

We also fit the model using an MCMC algorithm,
Hamiltonian (or Hybrid) Monte Carlo algorithm
(HMC; Neal, 2011), which takes the same inputs as
NPV (the log joint probability and its gradient). HMC
uses the gradient of f(θ) to efficiently explore the pos-
terior, making it one of the most effective samplers for
models with continuous variables. With 1000 samples,
we found that this algorithm predicts held-out data
significantly worse (p < 0.00001, Wilcoxon signed-rank
test) compared to NPV and JJ. Presumably the infe-
rior performance of HMC could be improved by run-
ning the sampler for longer, but this would result in
greater computational overhead.

5.2. Topographic latent source analysis

We now study our method with a more complicated
model, for which standard variational algorithms are
inapplicable. We apply the NPV approximation to a
nonlinear latent variable model of functional magnetic
resonance imaging (fMRI) data. Data from fMRI ex-
periments contain measurements of brain activity that
are collected while a subject performs a task, such
as labeling images. The goal of these experiments is
to understand the relationship between cognitive pro-
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B 

Figure 3. Schematic of the topographic latent source
analysis model. (A) Matrix factorization view of the
data-generating process; (B) illustration of how latent
sources combine to produce neural data.

cesses and brain activity. One reason this problem is
complicated is that fMRI data is spatial. Brain activ-
ity is measured in 3D brain-space (a grid of “voxels”).
Measurements made on nearby voxels are dependent.

Gershman et al. (2011) developed a factorization
model of spatial patterns in fMRI data, topographic la-
tent source analysis (TLSA). TLSA decomposes voxel
activations into a set of spatial functions (topographic
latent sources). These functions are related to task
and cognitive variables (called “covariates”) through
a weight matrix that is also inferred from the data.
We can evaluate the quality of a fitted model by us-
ing it to predict held-out brain data, conditional on
covariates. Unlike traditional probabilistic matrix fac-
torization models, TLSA is not conditionally conju-
gate and closed-form mean-field inference is not avail-
able. Gershman et al. (2011) approximated the pos-
terior with MCMC, but their method was too slow to
analyze large data sets.

Generative model. Each datapoint t in an fMRI ex-
periment consists of a vector of V voxel activations,
ut ∈ RV , and a vector of C covariates, xt ∈ RC .
The intuition behind TLSA is that the spatial orga-
nization of voxel activations arises from a small num-
ber of anatomically localized brain regions involved in
processing the task. Formally, TLSA decomposes the
voxel activations into a covariate-dependent superpo-
sition of K latent sources:

utv =

C∑
c=1

xtc

K∑
k=1

wckgkv + εtv, (15)

where εtv ∼ N (0, τ−1) is a Gaussian noise term, wck
is a weight that specifies how covariate c influences
source k, and gkv is the activation of source k in voxel
v. This generative process (illustrated in Figure 3)
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Figure 4. Neural data and reconstructions. (A) Average test image. (B) MAP reconstruction. (C-G) Reconstructions
for each component of the NPV approximation. Notice that each component captures idiosyncrasies (corresponding to
different local optima of the objective function) missed by the MAP reconstruction.

can be viewed as a probabilistic matrix factorization
model where {gk} are basis images that are combined
to produce the observed neural activity.

Each basis image is constructed by evaluating a pa-
rameterized spatial basis function at each voxel loca-
tion. Following Gershman et al. (2011), we chose this
function to be a radial basis function with parameters
ωk = {r̄k, λk}:

gkv = exp
{
−λ−1k ||rv − r̄k||2

}
, (16)

where r̄k ∈ [0, 1]M is the source center (in normalized
coordinates), λk ∈ R+ is a width parameter, and rv ∈
[0, 1] is the location of voxel v. In the notation of
Section 2, the observed variables are y = {X,U,R}
and the hidden variables are θ = {W,G}.

To complete the generative model, we placed the fol-
lowing priors on the parameters:

wck ∼ N (0, σ2
w), r̄kd ∼ Beta(1, 1), λk ∼ Exp(ρ).

In all our analyses, we used the following hyperparam-
eter settings: τ = 1, σ2

w = 5, ρ = 1.

Results. We fit TLSA to data collected by Mason and
Just (unpublished), involving subjects viewing words.
Each word was either the name of a type of tool or
of a type of building (i.e., there were 2 classes), and
the subject’s task was to think about the word and its
properties. There were a total of 84 trials per subject
(see Gershman et al., 2011, for more details). We re-
stricted our analysis to a 1,323 voxels (a single slice of
the brain activity data) from a single subject.

We trained the model on one half and then generated
predictions of the neural data for the other half, con-
ditioning on the test covariates. For NPV, we approxi-
mated the predictive distribution using a Monte Carlo
estimate, as described in the previous section. As an il-
lustration of the model fits, Figure 4 shows the average
data and reconstructions derived from the MAP esti-
mate and the NPV approximation. While the MAP
estimate captures the global pattern of activity, each
component of the NPV approximation captures small
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Figure 5. The nonparametric variational approxima-
tion improves TLSA predictions of held-out data.
The Y-axis represents the negative log-likelihood of predic-
tions for held-out neural data, conditional on the covari-
ates. In all cases K = 20 sources were used. Standard
error bars are smaller than the markers.

idiosyncrasies that may be difficult to extract using a
single point estimate. In other words, the NPV ap-
proximation captures several local maxima of the pos-
terior; we next show that this translates into better
predictive accuracy.

We evaluated the quality of the reconstruction by
calculating the mean-squared reconstruction error of
held-out neural data, a quantity proportional to the
negative log-likelihood of the held-out data. We also fit
TLSA using HMC (see above); we collected 5000 sam-
ples, keeping the last 200 for the predictive distribu-
tion. We repeated this procedure for the Metropolis-
Hastings (MH) sampler used in the original TLSA pa-
per (Gershman et al., 2011). The results are shown in
Figure 5. NPV works well with a varying number of
components (though best when N > 3), substantially
outperforming the MAP and MCMC estimators.

We re-emphasize here that TLSA is non-conjugate,
and hence MMF cannot be applied without using
specially-tailored approximations (Lawrence, 2000).
Note that while both MH and HMC are asymptoti-
cally guaranteed to perfectly approximate the poste-
rior, these algorithms require tuning and are often slow
to converge. In our experiments, NPV was about 3
times faster than HMC.
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6. Discussion

We developed an approximate inference method for
posteriors that do not necessarily enjoy the conjugacy
properties that make common variational approxima-
tions (e.g., mean-field) possible. Our algorithm is easy
to apply to new probabilistic models; all that is re-
quired is the likelihood function and its gradient (a
requirement shared by many other algorithms, includ-
ing MAP estimation and HMC). When applied to a
hierarchical logistic regression model, we found that
NPV incurs little loss in accuracy compared to a more
specialized variational algorithm (Jaakkola & Jordan,
2000). We further showed, using a nonlinear latent
variable model of fMRI data, that NPV can find an
approximation of the posterior that improves predic-
tive performance over MAP estimation and MCMC.

NPV has limitations. First, it assumes a simple ap-
proximating family. This could be improved by in-
troducing a full covariance matrix into the component
distributions or by allowing the components to be non-
uniformly weighted. Further, NPV only applies to con-
tinuous variables. We plan to extend it to models with
discrete hidden variables.

In summary, NPV is a posterior inference algorithm
that is a step towards generically applicable variational
approximations. The need for such approximations is
increasing, as researchers begin to explore more and
more complicated probabilistic models to cope with
the increasing complexity of large data sets. Our hope
is that by employing generic inference algorithms, the
hard work of inference can proceed “invisibly,” and re-
searchers can devote more time to testing and refining
the assumptions of their models.
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