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Abstract
We study the problem of simultaneously estimat-
ing several densities where the datasets are or-
ganized into overlapping groups, such as a hi-
erarchy. For this problem, we propose a maxi-
mum entropy formulation, which systematically
incorporates the groups and allows us to share the
strength of prediction across similar datasets. We
derive general performance guarantees, and show
how some previous approaches, such as hierar-
chical shrinkage and hierarchical priors, can be
derived as special cases. We demonstrate the pro-
posed technique on synthetic data and in a real-
world application to modeling the geographic
distributions of species hierarchically grouped in
a taxonomy. Specifically, we model the geo-
graphic distributions of species in the Australian
wet tropics and Northeast New South Wales.
In these regions, small numbers of samples per
species significantly hinder effective prediction.
Substantial benefits are obtained by combining
information across taxonomic groups.

1. Introduction
Many real-world applications require solving multiple re-
lated learning problems. In this paper, we study the prob-
lem of simultaneously estimating several densities, whose
datasets are organized into overlapping groups such as a
hierarchy.

In problems of multiple estimation, we can typically
either pool our data or treat each estimation problem indi-
vidually. In pooling data, we obtain a confident estimate
from a large sample but ignore the important differences
between datasets. On the other hand, individual estimates
address the separate nature of each dataset but may lead to
poor generalization because of small sample sizes.

Here, we develop hierarchical maximum entropy den-
sity estimation (HME), a procedure that lies in the power-
ful middle-ground between these choices. The datasets are
grouped, and the individual estimates are adjusted to reflect
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that grouping. With this approach, estimates from small
sample sizes are influenced by the estimates for which we
have more confidence; estimates from large sample sizes
are less influenced by others. In statistics, this is known as
hierarchical/multi-level modeling (Gelman & Hill, 2007)
or shrinkage, introduced in the celebrated work of Stein
(1956) and James and Stein (1961). In machine learning,
hierarchical models have been used, for example, by Mc-
Callum et al. (1998) and Teh et al. (2004). These methods
are also related to multitask or transfer learning (Caruana,
1993; Baxter, 2000; Raina et al., 2006)

As a running example, we consider the problem of es-
timating the distributions of a set of biological species in
a region. We are given a set of locations, features describ-
ing them, and samples of where different species were ob-
served. Our goal is to estimate the distribution of locations
favored by each species based on the features of the kinds
of places in which they are found. For example, we will
consider species sampled from the Australian wet tropics
(AWT), such as the golden bowerbird, the tooth-billed cat-
bird, or the black treefern. All locations in the AWT are
described by environmental variables such as annual mean
temperature, annual precipitation, and annual mean radia-
tion. This dataset is described in more detail in Section 6.

In recent solutions, each species distribution is modeled
individually (Elith et al., 2006), even though some methods
use combined data to aid variable selection (Ferrier et al.,
2002; Leathwick et al., 2005). However, when modeling
distributions of rare or endangered species, the number of
occurrence records of a species is typically fewer than ten,
and the resulting estimates are poor. With our approach, the
information from several species is combined to produce
better estimates for each individual species. Moreover, we
can take advantage of the natural taxonomy of species. A
bird’s distribution is likely to be more similar to other bird
distributions than it is to plant distributions. The results
in Section 6 show significant improvements in predictive
performance on real species data.

As a starting point, HME uses the maximum entropy
approach where the equality constraints on the moments
are relaxed to inequalities (Kazama & Tsujii, 2003; Dudı́k
et al., 2004). This approach is formally equivalent to `1-
regularized maximum likelihood and maximum a posteri-
ori with a Laplace prior, but its alternative interpretation as
a maximum entropy problem provides guidance in setting
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hyperparameters and admits analysis of the generalization
performance.

In HME, we assume that we are given a fixed class hi-
erarchy. We fit the joint distribution of all classes, placing
constraints on individual class distributions as well as on
groups of classes defined by the hierarchy. We show that
our approach is closely related to maximum a posteriori es-
timation with a hierarchical prior, or maximum likelihood
estimation with hierarchical regularization (shrinkage). We
apply the theory of maximum entropy with relaxed con-
straints and demonstrate how to choose hyperparameters in
this setting. We prove strong generalization guarantees.

In Section 2, we introduce the objective function for
HME. In Section 3, we derive an equivalent regularized
maximum likelihood problem. Generalization guarantees
are proved in Section 4. In Section 5, we discuss the rela-
tionship with hierarchical priors. Finally, in Section 6, we
report the utility of HME on a small synthetic dataset and
two large-scale real-world datasets.

2. Hierarchical Maximum Entropy
Our goal is to model multiple densities1 over an identical
sample space.2 Density estimation problems are referred
to as classes which are organized into groups; note that we
are not performing classification. The set of classes will be
denoted Y, the shared sample space X. Groups, jointly de-
noted K, are formed as subsets k ⊆ Y. Space X is described
by real-valued functions f : X → R, called features, jointly
denoted as a set F.

In our example, X is the set of pixels on the map of
Australian wet tropics and features are equal to the envi-
ronmental variables and their squares (linear and quadratic
features). Classes Y correspond to 10 plant and 10 bird
species. We introduce three groups: plants with 10 ele-
ments, birds with 10 elements, and all species with 20 ele-
ments. Note that we make no requirements on the compo-
sition of groups. In particular, groups can arbitrarily over-
lap. For example, we may have groups rainforest plants
and trees, which will intersect in the set of rainforest trees.

Input consists of pairs (X1, Y1), . . . , (Xm, Ym) ∈ X×
Y, representing a pooled sample across all classes. In the
AWT example, Y1 may be the golden bowerbird, and X1

geographic coordinates where it was observed. We as-
sume that samples (Xi, Yi) come from an unknown joint
distribution π and use the maximum entropy principle to
approximate π. Our interest, however, lies in approxi-
mating conditional distributions of locations given species,
πy(x) = π(x | y). Therefore, the Yi’s do not need to be
random. This is in contrast to logistic regression, where the
goal is to approximate π(y | x) for classification.

The maximum entropy principle (maxent) (Jaynes,
1957) tells us to approximate π by the distribution of maxi-

1In this paper, we are concerned with densities relative to the
counting measure on a discrete set. These correspond to probabil-
ity mass functions.

2The restriction that the densities are over the same sample
space simplifies the exposition, but it could be omitted.

mum entropy that satisfies a set of constraints expressed in
terms of features. Ignoring group information, constraints
are specified for each class separately, and typically require
that feature expectations match their empirical averages. In
the AWT example, this means that the model of the golden
bowerbird should match the average altitude and the av-
erage squared altitude in which the golden bowerbird was
observed. This is equivalent to matching the sample mean
and sample variance.

When the number of samples is too small or the num-
ber of features too large, maxent overfits, because the true
distribution does not match empirical averages exactly. We
alleviate overfitting by relaxing the constraints so that fea-
ture expectations are required to be only close to sample
averages.

In HME, we use the group information to leverage in-
formation across species. In addition to requiring that fea-
ture expectations of each individual class are close to their
empirical averages, we also require that feature expecta-
tions for each group are close to the group empirical av-
erages. Thus, in AWT, we require that the expectation of
the altitude across all birds is not too far from the average
altitude across all samples from the group birds. Since the
total number of samples in the group birds is larger than,
for example, the number of samples of the golden bower-
bird, we can be more confident about our estimates of the
means. This amounts to sharing information across all bird
species.

Let π̃ denote the empirical distribution. We express
both class and group constraints in terms of conditional ex-
pectations on the joint distribution:

P : max
p∈∆

H(p)

s.t. p(y) = π̃(y) for all y ∈ Y∣∣Eπ̃[f(X) | Y = y]−Ep[f(X) | Y = y]
∣∣ ≤ βy,f

for all y ∈ Y, f ∈ F∣∣Eπ̃[f(X) | Y ∈ k]−Ep[f(X) | Y ∈ k]
∣∣ ≤ βk,f

for all k ∈ K, f ∈ F.

Here, ∆ is the simplex of probability distributions over
X × Y, H(p) = −∑

x,y p(x, y) ln p(x, y) is the entropy,
p(y) denotes the probability of Y = y, Ep denotes the ex-
pectation under distribution p, and βk,f ≥ 0 are errors that
we allow in matching individual expectations.

Note that if K = ∅, HME reduces to a series of max-
ent problems for each class: the joint entropy is maximized
when all class entropies are maximized because class prob-
abilities are fixed. When K is non-empty, the set of con-
straints in HME is more restrictive than a series of single-
class maxent problems, so the resulting solutions differ.

Similar to single-class maxent, we will see that HME
is equivalent to a regularized maximum likelihood prob-
lem. Specifically, the entropy is maximized by a distribu-
tion which takes the form p(x, y) = π̃(y)qλy (x), where
qλy stands for a Gibbs distribution specified by a vector
λy ∈ RF. For an arbitrary λ ∈ RF, the Gibbs distribution
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qλ is defined as

qλ(x) = exp
{∑

f∈F λff(x)
}

/Zλ,

where Zλ =
∑

x∈X exp{∑f∈F λff(x)} is the normaliza-
tion constant. We will see that the problem P is equivalent
to the following regularized maximum likelihood problem:

Q : max
λ∈RY×F

η∈RK×F

{
1
m

m∑

i=1

(
ln qλYi

(Xi)
)

−
∑

y∈Y,f∈F

(
π̃(y)βy,f

∣∣∣λy,f −
∑

k:y∈k

ηk,f

∣∣∣
)

−
∑

k∈K,f∈F

(
π̃(k)βk,f

∣∣ηk,f

∣∣
)}

.

We use π̃(k) for the probability that Y ∈ k under the dis-
tribution π̃. Vectors λy describe class distributions qλy

,
vectors ηk account for effects of membership in different
groups. The dual objective is to optimize log likelihood of
the data (the first term) under an `1-style penalty for deviat-
ing from group effects (the second term), which are them-
selves regularized by an `1-style penalty (the third term).

In Section 3, we show that solutions of Q correspond to
solutions of P; thus, we only need to optimize Q to solve
the HME problem. In Section 4, we address the question
how well the HME solutions perform on test data from the
unknown distributions πy. We show that the HME solu-
tions converge to the best approximations of the πy’s by
Gibbs distributions. The bounds will also indicate how the
use of group information improves generalization.

3. HME Duality
In this section we show that Q is indeed a dual of P, i.e., we
establish the correspondence between maximum entropy
and regularized maximum likelihood when estimating sev-
eral distributions simultaneously.

Our setup will be slightly more general than the one
discussed in Section 2. In particular, we make it possible
to specify the importance of individual classes. The vector
listing importance of individual classes will be denoted as
c ∈ RY, with components referred to as c(y). We assume
that importance is scaled so that

∑
y∈Y c(y) = 1; thus, c is

a distribution over Y.
To incorporate the importance c in the optimization, we

modify our target distribution. We still assume that sam-
ples (Xi, Yi) come from an unknown distribution π, but
our goal is now to perform well relative to the distribution
µ, which weights individual classes according to their im-
portance:

µ(x, y) = c(y)π(x | y) .

Equivalently, µ(y) = c(y) and µ(x | y) = π(x | y).
To simplify the exposition, we assume that constraint

widths βy,f , βk,f are feature independent, i.e., they de-
pend only on the class y or group k. The duality results
and performance guarantees generalize to feature depen-
dent widths.

We will now modify the constraints of HME from Sec-
tion 2 to reflect reweighting of the classes.

P′ : max
p∈∆

H(p)

s.t. p(y) = c(y) for all y ∈ Y (1)∣∣Eπ̃[f(X) | y]−Ep[f(X) | y]
∣∣ ≤ βy

for all y ∈ Y, f ∈ F (2)
∣∣Eπ̃[f(X) | k]−

∑

y∈k

π̃(y | k)Ep[f(X) | y]
∣∣ ≤ βk

for all k ∈ K, f ∈ F. (3)

In conditional expectations, we abbreviated events Y ∈ y
and Y ∈ k as y and k. Eq. (1) reflects our assumption
µ(y) = c(y). Eq. (2) reflects our assumption µ(x | y) =
π(x | y), and captures the approximation

Eπ̃[f(X) | y] ≈ Eπ[f(X) | y] = Eµ[f(X) | y] .

In Eq. (3), we express the approximation

Eπ[f(X) | k] ≈ ∑
y∈k π̃(y | k)Eπ[f(X) | y]

=
∑

y∈k π̃(y | k)Eµ[f(X) | y] .

Note that if we set c(y) = π̃(y), i.e., we set the importance
of each class according to its empirical probability, then we
obtain the primal P.

Next we show that the maximum entropy solution to
P′ can be obtained from a regularized max log likelihood
problem:

Theorem 1. Let λ̂ ∈ RY×F optimize

Q′ : sup
λ∈RY×F

η∈RK×F

{
1
m

m∑

i=1

(
c(Yi)
π̃(Yi)

ln qλYi
(Xi)

)

−
∑

y∈Y

c(y)βy

∥∥∥λy −
∑

k:y∈k

π̃(y | k)
c(y | k)

ηk

∥∥∥
1

−
∑

k∈K

c(k)βk‖ηk‖1
}

.

Then p(x, y) = c(y)qλ̂y
(x) solves the primal P′, with

terms qλ̂y
possibly replaced by their limit distributions.

Sketch of proof. The claim of the theorem follows from
generalized maxent duality (Dudı́k & Schapire, 2006). To
apply maxent duality, however, we need to express P′ in
terms of convex constraints of unconditional feature expec-
tations. To remove conditional expectations, we observe
that p(y) = c(y) at the solution. Thus, conditioning on
Y = y can be replaced by the division by c(y). To obtain
a set of constraints equivalent to Eqs. (1–3), we introduce
a new set of features, defined on X × Y, and indexed by y
and (y, f) respectively:

hy(x′, y′) = δ(y, y′)

gy,f (x′, y′) = δ(y, y′)f(x, y)/c(y) ,
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where δ(y, y′) equals 1 if y = y′ and equals 0 otherwise.
Maximizing entropy under the constraints (1–3) is thus
equivalent to maximizing entropy under the constraints

Ep[hy(X, Y )] = c(y) for all y∣∣Eπ̃[f(X) | y]−Ep[gy,f (X,Y )]
∣∣ ≤ βy for all y, f

∣∣Eπ̃[f(X) | k]−
∑

y∈k

π̃(y | k)Ep[gy,f (X, Y )]
∣∣ ≤ βk

for all k, f .

The objective of Q′ is now derived by taking the convex
conjugate of the indicator function of the constraint set
(see, e.g., Boyd & Vandenberghe, 2004). An alternative
proof, which only proves the non-limit case, is obtained by
applying the method of Lagrange multipliers.

4. Performance Guarantees
In Section 3, we have seen that class distributions under
HME take the form of Gibbs distributions. However, these
distributions need not accurately represent true class den-
sities πy = π(· | y). In fact, if the feature set is poorly
chosen, it is possible that no Gibbs distributions are good
approximations of πy . Therefore, it only makes sense to
compare performance of the HME solutions against the
best performance among all Gibbs distributions.

In this section, we derive guarantees on HME perfor-
mance relative to arbitrary Gibbs distributions. We will see
that the performance depends directly on the regularization
and this will help us choose the appropriate widths βy and
βk.

As a measure of performance, we use relative entropy.
For distributions p1, p2 over a set X, relative entropy mea-
sures their information-theoretic distance, and is defined as

RE(p1 ‖ p2) =
∑

x∈X p1(x) ln[p1(x)/p2(x)] .

It differs from the negative of test log likelihood

−Ep1 [ln p2(X)]

only by the constant H(p1). Thus, minimizing
RE(p1 ‖ p2) corresponds to maximizing the log likelihood
Ep1 [ln p2(X)].

In our guarantees, we compare RE(πy ‖ qλ̂y
), where

qλ̂y
are HME solutions, with RE(πy ‖ qλOPT

y
), where qλOPT

y

are arbitrary Gibbs distributions; in particular, these can be
Gibbs distributions which best approximate πy . The per-
formance across classes is weighted according to c(y).

Before proving specific performance guarantees, we
derive a general lemma. It relates the set of constraints
in HME primal with the regularization in the dual. In
particular, it states that if true feature means satisfy HME
constraints then the gap in performance between the max-
ent solution and an arbitrary Gibbs distribution is at most
twice the value of regularization of that Gibbs distribution.
Thus, the guarantee reflects the notion that the regulariza-
tion quantifies the complexity of the Gibbs distribution.

Lemma 2. Let λ̂ ∈ RY×F solve the regularized log like-
lihood problem Q′. Assume that feature expectations with

respect to true class densities πy satisfy
∣∣Eπ̃[f(X) | y]−Eπy

[f(X)]
∣∣ ≤ βy for all y ∈ Y, f ∈ F∣∣∣Eπ̃[f(X) | k]−∑

y∈k π̃(y | k)Eπy [f(X)]
∣∣∣ ≤ βk

for all k ∈ K, f ∈ F.

Then for all λOPT ∈ RY×F, ηOPT ∈ RK×F

∑

y∈Y

c(y)RE
(
πy

∥∥ qλ̂y

) ≤
∑

y∈Y

c(y)RE
(
πy

∥∥ qλOPT
y

)

+ 2
∑

y∈Y

c(y)βy

∥∥∥λOPT
y −

∑

k:y∈k

π̃(y | k)
c(y | k)

ηOPT
k

∥∥∥
1

+ 2
∑

k∈K

c(k)βk‖ηOPT
k ‖1 .

Lemma 2 can be derived from the corresponding lemma
for generalized maxent by the same transformation as in the
proof of Theorem 1. It is also possible to prove Lemma 2
without an explicit use of convex conjugacy, similar to the
single-class case (Dudı́k et al., 2004). The complete proof
of Lemma 2 will appear in an extended version of the paper
(it is omitted here for the sake of brevity).

Lemma 2 guides the choice of βy, βk. In particular, βy

and βk should be chosen as small as possible, so that true
class densities satisfy HME constraints with high probabil-
ity. As in the single-class case, this amounts to bounding
deviations of empirical averages from their means. There
are many statistical techniques available for this (see, e.g.,
Devroye et al., 1996).

We now derive a specific bound for the case when F is
a finite set of bounded features. We let my and mk denote
the number of examples with Yi = y and Yi ∈ k. Without
loss of generality, we assume that features are scaled, so
their values lie within the interval [0, 1]. This case covers
linear and quadratic features in the AWT example.

Theorem 3. Assume that f : X×Y → [0, 1] for all f ∈ F,
and F is finite. Let δ > 0 and let λ̂ maximize regularized
likelihood Q′ with βy = β0/

√
my, βk = β0/

√
mk where

β0 =
√

ln (2|Y||F|+ 2|K||F|) /2. Then with probability
at least 1− δ, for all λOPT ∈ RY×F, ηOPT ∈ RK×F,

∑

y∈Y

c(y)RE
(
πy

∥∥ qλ̂y

) ≤
∑

y∈Y

c(y)RE
(
πy

∥∥ qλOPT
y

)

+ 2β0

∑

y∈Y

c(y)√
my

∥∥∥λOPT
y −

∑

k:y∈k

π̃(y | k)
c(y | k)

ηOPT
k

∥∥∥
1

+ 2β0

∑

k∈K

c(k)√
mk

∥∥ηOPT
k

∥∥
1

.

Proof. Instead of drawing pairs (Xi, Yi) independently
from π, we first draw Yi’s independently from π and then
draw each Xi from πYi . It suffices to show that for any
choice of Yi’s, the statement of the theorem is true with
probability at least 1 − δ over the draw of Xi’s. We first
consider the constraints conditioned on Y ∈ k. If the
Yi’s are fixed then for an arbitrary f and k, the empirical
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mean Eπ̃[f(X) | k] is an average of mk independent (but
not identically distributed!) random variables bounded in
[0, 1]. Expectation of this empirical mean, conditioned on
the Yi’s, is

∑
y∈k π̃(y | k)Eπ[f(X) | y] .

Thus, by Hoeffding’s inequality, the probability that the de-
viation

∣∣∣Eπ̃[f(X) | k]−∑
y∈k π̃(y | k)Eπ[f(X) | y]

∣∣∣

exceeds βk is at most δ/(|Y||F| + |K||F|). Similarly, the
probability that any particular constraint conditioned on
Y = y is not satisfied is at most δ/(|Y||F|+|K||F|). Hence,
by the union bound, the probability that this will happen for
any k ∈ K, f ∈ F or y ∈ Y, f ∈ F is at most δ.

Theorem 3 provides an insight how the group informa-
tion improves learning. For instance, consider a simple sce-
nario of estimating distributions of birds, all of which have
an equal number of occurrences and equal importance, i.e.,
my = m/|Y| and c(y) = 1/|Y| for all y. Further, as-
sume that distributions of these birds are similarly influ-
enced by about half the features, and distinctly influenced
by the other half. For example, the birds are influenced
in the same way by precipitation and vegetation, but dif-
ferent birds respond differently to temperature. Denote the
first subset of features as shared and the second subset of
features as distinct. We compare how our generalization
guarantees change if we introduce the group birds.

First, fix parameters λOPT
y of the optimal Gibbs distri-

butions. Since species depend similarly on shared, we as-
sume that the slices of parameters λOPT

y,shared corresponding
to shared are roughly equal; denote the shared parameter
values as λOPT

shared. For an empty hierarchy, the gap between
the maxent solutions and the best Gibbs distributions is

2β0

∑

y∈Y

c(y)√
my

‖λOPT
y ‖1 =

2β0√
m|Y|

∑

y∈Y

‖λOPT
y ‖1

=
2β0√
m|Y|

∑

y∈Y

‖λOPT
y,distinct‖1 + 2β0

√
|Y|
m
‖λOPT

shared‖1 . (4)

Now, add the group birds, and set ηOPT
birds,shared = λOPT

shared
and ηOPT

birds,distinct = 0. The first term of Eq. (4) remains
unchanged except for β0, which slightly increases to reflect
|K| = 1. The second term, however, becomes zero, and an
additional term appears accounting for the group birds:

2β0
c(birds)√

mbirds
‖ηOPT

birds‖ =
2β0√

m
‖λOPT

shared‖1 .

Thus, when the group birds is introduced, the second term
of Eq. (4) is effectively divided by the square root of the
number of species. Already for a moderate number of
species, for example, 10 or 20, this may constitute a sig-
nificant decrease. Assuming that the relevance of distinct
is similar to the relevance of shared, i.e., ‖λy,distinct‖1 ≈
‖λy,shared‖1, the gap in performance between the maxent

all species of AWT (1437)

plants (246)birds (1191)

10 species
(med. 90)

10 species
(med. 19)

Figure 1. The hierarchy of species in the Australian wet tropics
dataset. Numbers in parentheses indicate the number of training
records. At the lowest level, we list only the number of species
and report the median number of training records.

distributions and the best Gibbs distributions is reduced al-
most twofold.

Note that the guarantee of Theorem 3 grows very mod-
erately with the number of features. In particular, the bound
is meaningful as long as the number of features grows
subexponentially with the number of training examples.

5. HME as MAP with a hierarchical prior
So far, we have considered two interpretations of the HME
problem. The first interpretation is the maximization of
entropy subject to constraints on conditional expectations.
The second interpretation is the maximization of regular-
ized log likelihood. Here, we introduce a third interpre-
tation. We show that when K describes a tree hierarchy,
HME can be viewed as maximum a posteriori under a hi-
erarchical Laplace prior. The HME interpretation is more
general since it allows arbitrary groups. In addition, it
guides the process of choosing hyperparameters and pro-
vides insights into generalization properties.

In this section, we limit our attention to tree hierarchies,
such as the AWT hierarchy in Fig. 1. In this case it is nat-
ural to set up a hierarchical model, in which we associate a
vector of Gibbs distribution parameters λn with each node
n. Let N denote the set of all nodes in the hierarchy, in-
cluding leaves y corresponding to our individual classes. A
hierarchical Laplace prior, conditioned on Y1, . . . , Ym, can
then be specified as

λroot ∼ e−αroot‖λroot‖1 (5)

λn ∼ e−αn‖λn−λparent(n)‖1 for all n 6= root (6)
Xi | λYi ∼ qλYi

for all i. (7)

This corresponds to the directed graphical model with the
structure identical to the hierarchy, with a different λn vari-
able assigned to each node. The root is distributed ac-
cording to Eq. (5), the remaining nodes depend on their
parents according to Eq. (6), and observations, described
by Eq. (7), are attached at the bottom.

For example, in AWT, the process of drawing samples
X1, . . . , Xm given Y1, . . . , Ym can be described as first
drawing the parameter λall species according to its prior, then
choosing λbirds and λplants conditioned on λall species, then
drawing λy conditioned on the respective groups, such as
λgolden bowerbird conditioned on λbirds, and finally choosing
observations Xi in which Yi = golden bowerbird, condi-
tioned on λgolden bowerbird.
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nocturnal
birds (96)

diurnal
birds (505)

open−forest
trees (117)

rainforest
understorey
plants (50)

open−forest
understorey
plants (52)

3 species
(med. 35)

4 species
(med. 107)

1 species 
(96)

rainforest
trees (26)

4 species
(med. 43)

4 species
(med. 5)

4 species
(med. 24)

3 species
(med. 13)

4 species
(med. 11)

plants (245)

trees
(143)

understorey
plants (102)

rainforest
plants (76)

open−forest
plants (169)

birds (601) bats (79) small reptiles (182)

all species of NE NSW (1107)

Figure 2. The hierarchy of species in the North-east New South Wales dataset. Numbers in parentheses indicate the number of training
records. At the lowest level, we list only the number of species and report the median number of training records. Note that the children
of plants correspond to overlapping groups. This hierarchy, therefore, cannot be represented as a tree.

To derive the equivalence of Q′ with a hierarchical
Laplace prior, we set class importance equal to empirical
probabilities and multiply the objective of Q′ by m:

m∑

i=1

(
ln qλYi

(Xi)
)−

∑

y∈Y

(
myβy

∥∥∥λy −
∑

k:y∈k

ηk

∥∥∥
1

)

−
∑

k∈K

(
mkβk

∥∥ηk

∥∥
1

)
.

(8)

The first term is the log likelihood. The second and third
terms, corresponding to regularization, can be viewed as
the log of a prior, and the entire expression as the log of a
posterior. Thus, maximizing the regularized log likelihood
corresponds to maximizing the posterior.

To show that the regularization in Eq. (8) corresponds
to the hierarchical prior described above, we identify each
inner node n with the set k(n) ⊆ Y containing all classes
y which are descendants of n. We set K = {k(n) :
n is an inner node} and establish the correspondence by
setting λn, for each inner node n, equal to the sum of con-
tributions ηk(n′) over n′ on the path from the root to the
node n. The second and third terms in Eq. (8) then become

−
∑

y∈Y

(
myβy‖λy − λparent(y)‖1

)−mrootβroot‖λroot‖1

−
∑

n∈N\Y\{root}

(
mnβn‖λn − λparent(n)‖1

)

where mn and βn are shorthand for mk(n) and βk(n). The
equivalence with the hierarchical Laplace prior is now ob-
tained by setting αn = mnβn.

6. Experiments
We evaluate HME on synthetic and real-world data. In both
cases, we use the sequential update algorithm of Dudı́k
and Schapire (2006). Class importance in all of our exper-
iments equals empirical probabilities. For regularization
widths, we use a tighter setting than discussed in Section 4.
Instead of using an identical βy and βk across all feature
expectations conditioned on Y = y and Y ∈ k, we use

feature specific settings. Specifically, since βk,f and βy,f

correspond to deviations of empirical averages from true
means, we use central limit approximations and set

βy,f = β0

√
Vπ̃[f(X) | y]/my

βk,f = β0

√
Vπ̃[f(X) | k]/mk ,

where β0 is a single tuning parameter and Vπ̃ is the empir-
ical variance.

Synthetic data. We first study a synthetic toy-example.
Our map consists of 100 pixels described by two features:
precipitation (prec) and temperature (temp). Values of prec
are equally spaced in [0, 1] and temp is defined as temp =
(2 ·prec−1)2 (we make no claims about physical plausibil-
ity of this model). We study two synthetic species: icebird
and sunbird. Both prefer low precipitation, but they dif-
fer in their temperature requirements: icebird prefers low
temperatures while sunbird prefers high temperatures. We
assume that true distributions of icebird and sunbird are
Gibbs distributions with parameters λicebird = (−5,−2),
λsunbird = (−3, 1).

We have 100 observations of sunbird and vary the num-
ber of observations of icebird between 3 and 10,000. For
each number of occurrences, we estimate the distribution
of icebird using both single-class maxent, and HME with
a single group birds = {icebird, sunbird}. The tuning pa-
rameter β0 is set to 0.5.

In Figure 3, we present our results. For each HME
run, we report values of the HME parameters of icebird,
sunbird, and the group birds. For temp, the HME parame-
ters of icebird agree with its single-class parameters. This
matches the intuition behind the bound of Section 4: the
temperature requirements of icebird and sunbird are differ-
ent, so pooled estimates provide no advantage; the best set-
ting of the birds parameter is zero and the best setting of the
icebird parameter matches the single-class case. For prec,
the situation is rather different. The parameter ηbirds,prec
shows that birds prefer low precipitation. This informa-
tion is used with small sample sizes of icebird: λicebird,prec
matches ηbirds,prec. As the number of samples increases,
single-class estimates for icebird become more accurate
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Figure 3. Synthetic experiments. The precipitation and temper-
ature parameters of classes icebird and sunbird, and the group
birds, are fitted by HME as the number of occurrences of icebird
increases (the number of occurrences of sunbird is fixed at 100).
Performance of the icebird models is reported in terms of relative
entropy to the truth. Both the HME models and the single-species
models of icebird converge to the truth, but HME performs better
for small sample sizes, taking advantage of the group estimate of
the precipitation parameter.

than group estimates, which is reflected in the HME pa-
rameters. In the top plot of Fig. 3, we see that the HME
model performs better than the single-class model. As ex-
pected, the improvement is especially dramatic for small
sample sizes. For moderate sample sizes, the HME esti-
mates match single-class estimates exactly. This is quali-
tatively different from the James-Stein estimator, which al-
ways shrinks towards the pooled estimates.

Real-world data. Next, we demonstrate the performance
of HME on a real-world dataset of species from the Aus-
tralian wet tropics (AWT) and Northeast New South Wales
(NSW). Species sample locations and environmental vari-
ables were all produced and used as part of the work-
ing group “Testing alternative methodologies for model-
ing species’ ecological niches and predicting geographic
distributions” at the National Center for Ecological Anal-
ysis and Synthesis (NCEAS). The working group com-
pared modeling methods across a variety of species and re-
gions. The training set contained presence-only data from
unplanned surveys and incidental records. The test set con-
tained presence-absence data from rigorously planned in-
dependent surveys. Single-class maxent was among the top
methods in the NCEAS comparison (Elith et al., 2006).

In our experiments, we use only the training portion
of the NCEAS dataset (to avoid problems with sample-
selection bias). Specifically, we use a randomly chosen half
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Figure 4. Performance of hierarchies with different depth over a
range of smoothing parameters β0. In AWT, the hierarchies h1
and h2 perform significantly better and are more robust to changes
in β0 than the empty hierarchy h0; no hierarchy beyond the depth
two is available. In NSW, h1, h2, and h4 perform significantly
better than h0. The average performance of h1 and h0 appears
similar, but h1 improves the log likelihood of 18 out of 27 species,
a significant departure from random improvements.

of species in both AWT and NSW (we withhold the other
half for future experiments). We use linear and quadratic
features derived from 13 environmental variables in AWT
and 12 environmental variables in NSW. We evaluate the
performance of HME using five-fold cross-validation. The
complete hierarchies, with the average number of training
occurrences across all folds, are given in Figs. 1 and 2.

We run HME with three types of hierarchy for AWT
and four types of hierarchy for NSW. In both regions we
consider empty hierarchies, hierarchies of depth one, with
the single group all species, and hierarchies of depth two.
In AWT, the hierarchy of depth two is the complete hier-
archy, in NSW, the hierarchy of depth two includes the
groups all species, birds, bats, small reptiles, and plants. In
NSW, we also consider a hierarchy of depth four (the com-
plete hierarchy). Note that this hierarchy contains overlap-
ping groups, so it cannot be expressed as a tree; however,
this is not a problem for our setup. The hierarchies are re-
ferred to as h0, h1, h2, and h4, according to their depth.

As a metric of evaluation we use log likelihood and the
area under the ROC curve (AUC). AUC is typically de-
fined as a probability of ranking a randomly chosen pos-
itive above a randomly chosen negative. Since there are no
negatives in our dataset, we treat all points in the region as
negatives. Thus AUC corresponds to the probability that
maxent prediction will rank a randomly chosen test sample
above a sample chosen uniformly from the entire region.
Thus, AUC is always below 1.0 and prediction by the uni-
form distribution receives the AUC of 0.5.
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Figure 5. Improvement in performance using HME. We report the
difference in test log likelihood between HME and single-class
maxent for every species. The depth of the hierarchy is two. The
improvement is the most dramatic for small sample sizes. The
performance is significantly worse only in one case: a NE New
South Wales species with only four training occurrence records.

In Figure 4, we report results for a range of smoothing
parameters β0. In each region, we show the average across
all species. In AWT, performance of HME improves, both
in terms of log likelihood and AUC, as the hierarchy gets
more specific. The results are highly significant for log loss
across all values of β0: h1 improves over h0 on 19 species
out of 20, and h2 improves over h1 on 15 species out of 20.

In NSW, we still observe that larger hierarchies tend to
perform better than the smaller ones. Even though the dif-
ferences appear rather small, it turns out that all three non-
empty hierarchies are significantly better than h0. Specifi-
cally, h1, h2, and h4 improve the log loss compared with h0
over 18, 19, and 17 species out of 27, respectively, across
all values β0.

We use the word “significant” loosely to evoke the com-
parison with a random change. This null hypothesis is
not entirely justified, because in non-empty hierarchies the
models for different species influence one another. Note
that we do not analyze the choice of the smoothing param-
eter β0. We assume that in a concrete application, β0 is set
to a fixed value or determined by model selection.

The main benefit of HME should be observed on
species with small numbers of samples. In Fig. 5, we show
how the improvement due to the use of the group informa-
tion varies across sample sizes. We use h2, with β0 = 0.3
for AWT and β0 = 0.4 for NSW. In AWT, the improve-
ment is extremely consistent, and it appears to agree with
the difference in relative entropy that we observed in syn-
thetic experiments (Fig. 3). In NSW, we see the same trend
on the vast majority of species. However, the performance
is significantly worse in one case. It is the species with the
smallest number of training occurrences — four.

7. Conclusion
We have applied the maximum entropy formalism to hier-
archical models, where we simultaneously solve related es-
timation problems to improve each individual solution. We
note that this method is not restricted to `1 regularization

(or Laplace priors). It can be immediately generalized to
arbitrary convex constraints (or log concave priors) along
the same lines as the single-class maxent. This includes
many widely used priors, such as those in the exponential
family. The maximum entropy interpretation enhances our
understanding of their generalization properties.
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