
Noisin: Unbiased Regularization for Recurrent Neural Networks

Adji B. Dieng 1 Rajesh Ranganath 2 Jaan Altosaar 3 David M. Blei 1

Abstract

Recurrent neural networks (RNNs) are power-
ful models of sequential data. They have been
successfully used in domains such as text and
speech. However, RNNs are susceptible to over-
fitting; regularization is important. In this paper
we develop Noisin, a new method for regulariz-
ing RNNs. Noisin injects random noise into the
hidden states of the RNN and then maximizes
the corresponding marginal likelihood of the data.
We show how Noisin applies to any RNN and we
study many different types of noise. Noisin is
unbiased—it preserves the underlying RNN on
average. We characterize how Noisin regular-
izes its RNN both theoretically and empirically.
On language modeling benchmarks, Noisin im-
proves over dropout by as much as 12.2% on
the Penn Treebank and 9.4% on the Wikitext-2
dataset. We also compared the state-of-the-art
language model of Yang et al. 2017, both with
and without Noisin. On the Penn Treebank, the
method with Noisin more quickly reaches state-
of-the-art performance.

1. Introduction
Recurrent neural networks (RNNs) are powerful models of
sequential data (Robinson & Fallside, 1987; Werbos, 1988;
Williams, 1989; Elman, 1990; Pearlmutter, 1995). RNNs
have achieved state-of-the-art results on many tasks, in-
cluding language modeling (Mikolov & Zweig, 2012; Yang
et al., 2017), text generation (Graves, 2013), image genera-
tion (Gregor et al., 2015), speech recognition (Graves et al.,
2013; Chiu et al., 2017), and machine translation (Sutskever
et al., 2014; Wu et al., 2016).

The main idea behind an RNN is to posit a sequence of recur-
sively defined hidden states, and then to model each obser-

1Columbia University 2New York University 3Princeton
University. Correspondence to: Adji B. Dieng
<abd2141@columbia.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

vation conditional on its state. The key element of an RNN
is its transition function. The transition function determines
how each hidden state is a function of the previous obser-
vation and previous hidden state; it defines the underlying
recursion. There are many flavors of RNNs—examples in-
clude the Elman Recurrent Neural Network (ERNN) (Elman,
1990), the Long-Short Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997), and the Gated Recurrent Unit (GRU)
(Cho et al., 2014). Each flavor amounts to a different way of
designing and parameterizing the transition function.

We fit an RNN by maximizing the likelihood of the obser-
vations with respect to its parameters, those of the transi-
tion function and of the observation likelihood. But RNNs
are very flexible and they overfit; regularization is crucial.
Researchers have explored many approaches to regulariz-
ing RNNs, such as Tikhonov regularization (Bishop, 1995),
dropout and its variants (Srivastava et al., 2014; Zaremba
et al., 2014; Gal & Ghahramani, 2016; Wan et al., 2013),
and zoneout (Krueger et al., 2016). (See the related work
section below for more discussion.)

In this paper, we develop Noisin, an effective new way
to regularize an RNN. The idea is to inject random noise
into its transition function and then to fit its parameters
to maximize the corresponding marginal likelihood of the
observations. We can easily apply Noisin to any flavor of
RNN and we can use many types of noise.

Figure 1 demonstrates how an RNN can overfit and how
Noisin can help. The plot involves a language modeling task
where the RNN models a sequence of words. The horizontal
axis is epochs of training; the vertical axis is perplexity,
which is an assessment of model fitness (lower numbers
are better). The figure shows how the model fits to both
the training set and the validation set. As training proceeds,
the vanilla RNN improves its fitness to the training set but
performance on the validation set degrades—it overfits. The
performance of the RNN with Noisin continues to improve
in both the training set and the validation set.

Noisin regularizes the RNN by smoothing its loss, averaging
over local neighborhoods of the transition function. Further,
Noisin requires that the noise-injected transition function
be unbiased. This means that, on average, it preserves the
transition function of the original RNN.

Noisin: Unbiased Regularization for Recurrent Neural Networks

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Epochs

50

100

150

200

250

300

Pe
rp

le
xit

y

RNN -- Train
RNN -- Validation
RNN + NOISIN -- Train
RNN + NOISIN -- Validation

Figure 1. Training and validation perplexity for the deterministic
RNN and the RNN regularized with Noisin. The settings were the
same for both. We used additive Gaussian noise on an ERNN
with sigmoid activations. We used one layer of 256 hidden units.
The RNN overfits after only five epochs, and its training loss still
decreases. This is not the case for the RNN regularized with
Noisin.

With this requirement, we show that Noisin provides ex-
plicit regularization, i.e., it is equivalent to fitting the usual
RNN loss plus a penalty function of its parameters. We can
characterize the penalty as a function of the variance of the
noise. Intuitively, it penalizes the components of the model
that are sensitive to noise; this induces robustness to how
future data may be different from the observations.

We examine Noisin with the LSTM and the LSTM with
dropout, which we call the dropout-LSTM, and we ex-
plore several types of distributions. We study performance
with two benchmark datasets on a language modeling task.
Noisin improves over the LSTM by as much as 37.3% on the
Penn Treebank dataset and 39.0% on the Wikitext-2 dataset;
it improves over the dropout-LSTM by as much as 12.2%
on the Penn Treebank and 9.4% on Wikitext-2.

Related work. Many techniques have been developed to
address overfitting in RNNs. The most traditional regular-
ization technique is weight decay (L1 and L2). However,
Pascanu et al. (2013) showed that such simple regulariz-
ers prevent the RNNs from learning long-range dependen-
cies.

Another technique for regularizing RNNs is to normalize the
hidden states or the observations (Ioffe & Szegedy, 2015;
Ba et al., 2016; Cooijmans et al., 2016). Though powerful,
this class of approaches can be expensive.

Other types of regularization, including what we study in
this paper, involve auxiliary noise variables. The most
successful noise-based regularizer for neural networks is
dropout (Srivastava et al., 2014; Wager et al., 2013; Noh

et al., 2017). Dropout has been adapted to RNNs by only
pruning their input and output matrices (Zaremba et al.,
2014) or by putting judiciously chosen priors on all the
weights and applying variational methods (Gal & Ghahra-
mani, 2016). Still other noise-based regularization prunes
the network by dropping updates to the hidden units of
the RNN (Krueger et al., 2016; Semeniuta et al., 2016).
More recently Merity et al. (2017) extended these tech-
niques.

Involving noise variables in RNNs has been used in contexts
other than regularization. For example Jim et al. (1996) ana-
lyze the impact of noise on convergence and long-term de-
pendencies. Other work introduces auxiliary latent variables
that enable RNNs to capture the high variability of complex
sequential data such as music, audio, and text (Bayer &
Osendorfer, 2014; Chung et al., 2015; Fraccaro et al., 2016;
Goyal et al., 2017).

2. Recurrent Neural Networks
Consider a sequence of observations, x1:T = (x1, ...,xT).
An RNN factorizes its joint distribution according to the
chain rule of probability,

p(x1:T) =

T∏
t=1

p(xt|x1:t−1). (1)

To capture dependencies, the RNN expresses each condi-
tional probability as a function of a low-dimensional recur-
rent hidden state,

ht = fW (xt−1,ht−1) and p(xt|x1:t−1) = p(xt|ht).

The likelihood p(xt|ht) can be of any form. We focus on
the exponential family

p(xt|ht) = ν(xt) exp
{
(V >ht)

>xt −A(V >ht)
}
, (2)

where ν(·) is the base measure, V >ht is the natural
parameter—a linear function of the hidden state ht—and
A(V >ht) is the log-normalizer. The matrix V is called the
prediction or output matrix of the RNN.

The hidden state ht at time t is a parametric function
fW (ht−1,xt−1) of the previous hidden state ht−1 and the
previous observation xt−1; the parameters W are shared
across all time steps. The function fW is the transition
function of the RNN, it defines a recurrence relation for
the hidden states and renders ht a function of all the past
observations x1:t−1; these properties match the chain rule
decomposition in Eq. 1.

The particular form of fW determines the RNN. Researchers
have designed many flavors, including the LSTM and the
GRU (Hochreiter & Schmidhuber, 1997; Cho et al., 2014).

Noisin: Unbiased Regularization for Recurrent Neural Networks

Table 1. Expression for the log normalizer A and its Hessian ∇2A for different likelihoods. Here σ2 is the observation variance in the
Gaussian case and η = exp(s) in the categorical case.

Likelihood A(s) ∇2A(s)

Bernoulli (Binary data) − log(1− σ(s)) σ(s) · (1− σ(s))
Gaussian (Real-Valued data) 1

2σ2 s
>s 1

σ2 I
Poisson (Count data) exp(s) exp(s)

Categorical (Categorical data) logsumexp(η) 1
1>ηdiag(η)− ηη>

(1>η)2

In this paper we will study the LSTM. However, the methods
we develop can be applied to all types of RNNs.

Long-Short Term Memory. We now describe the LSTM,
a variant of RNN that we study in Section 5. The LSTM is
built from the simpler ERNN (Elman, 1990). In an ERNN,
the transition function is

fW (xt−1,ht−1) = s(W>x xt−1 +W>h ht−1),

where we dropped an intercept term to avoid cluttered nota-
tion. Here,Wh is called the recurrent weight matrix andWx

is called the embedding matrix or input matrix. The function
s(·) is called an activation or squashing function, which
stabilizes the transition dynamics by bounding the hidden
state. Typical choices for the squashing function include the
sigmoid and the hyperbolic tangent.

The LSTM was designed to avoid optimization issues, such
as vanishing (or exploding) gradients. Its transition function
composes four ERNNs, three with sigmoid activations and
one with a tanh activation:

ft = σ(W>x1xt−1 +W>h1ht−1) (3)

it = σ(W>x2xt−1 +W>h2ht−1) (4)

ot = σ(W>x4xt−1 +W>h4ht−1) (5)

ct = ft � ct−1 + it � tanh(W>x3xt−1 +W>h3ht−1) (6)
ht = ot � tanh(ct). (7)

The idea is that the memory cell ct captures long-term de-
pendencies (Hochreiter & Schmidhuber, 1997).

However, LSTMs have a high model complexity and, con-
sequently, they easily memorize data. Regularization is
crucial. In the next section, we develop a new regularization
method for RNNs called Noisin.

3. Noise-Injected RNNs
Noisin is built from noise-injected recurrent neural network
(RNN)s. These are RNNs whose hidden states are computed
using auxiliary noise variables. There are several advantages
to injecting noise into the hidden states of RNNs. For ex-
ample it prevents the dimensions of the hidden states from

co-adapting and forces individual units to capture useful
features.

We define noise-injected RNNs as any RNN following the
generative process

ε1:T ∼ ϕ(·;µ, γ) (8)
zt = gW (xt−1, zt−1, εt) (9)

p(xt |x1:t−1) = p(xt | zt), (10)

where the likelihood p(xt | zt) is an exponential family as in
Eq. 2. The noise variables ε1:T are drawn from a distribution
ϕ(·;µ, γ) with mean µ and scale γ. For example, ϕ(·;µ, γ)
can be a zero-mean Gaussian with variance γ2. We will
study many types of noise distributions.

The noisy hidden state zt is a parametric function gW of
the previous observation xt−1, the previous noisy hidden
state zt−1, and the noise εt. Therefore conditional on the
noise ε1:T , the transition function gW defines a recurrence
relation on z1:T .

The function gW determines the noise-injected RNN. In
this paper, we propose functions gW that meet the criterion
described below.

Unbiased noise injection. Injecting noise at each time step
limits the amount of information carried by hidden states.
In limiting their capacity, noise injection is some form of
regularization. In Section 4 we show that noise injection
under exponential family likelihoods corresponds to explicit
regularization under some unbiasedness condition.

We define two flavors of unbiasedness: strong unbiasedness
and weak unbiasedness. Let zt(ε1:t) denote the unrolled
recurrence at time t; it is a random variable via the noise
ε1:t. Under the strong unbiasedness condition, the transition
function gW must satisfy the relationship

Ep(zt(ε1:t) | zt−1) [zt(ε1:t)] = ht (11)

where ht is the hidden state of the underlying RNN. This is
satisfied by injecting the noise at the last layer of the RNN.
Weak unbiasedness imposes a looser constraint. Under weak
unbiasedness, gW must satisfy

Ep(zt(ε1:t) | zt−1) [zt(ε1:t)] = fW (xt−1, zt−1) (12)

Noisin: Unbiased Regularization for Recurrent Neural Networks

where fW is the transition function of the underlying RNN.
What weak unbiasedness means is that the noise should be
injected in such a way that driving the noise to zero leads
to the original RNN. Two possible choices for gW that meet
this condition are the following

gW (xt−1, zt−1, εt) = fW (xt−1, zt−1) + εt (13)
gW (xt−1, zt−1, εt) = fW (xt−1, zt−1)� εt. (14)

In Eq. 13 the noise has mean zero whereas in Eq. 14 it
has mean one. These choices of gW correspond to additive
noise and multiplicative noise respectively. Note fW can be
any RNN including the RNN with dropout or the stochas-
tic RNNs (Bayer & Osendorfer, 2014; Chung et al., 2015;
Fraccaro et al., 2016; Goyal et al., 2017). For example to im-
plement unbiased noise injection with multiplicative noise
for the Long-Short Term Memory (LSTM) the only change
from the original LSTM is to replace Eq. 7 with

zt = ot � tanh(ct)� εt.

Such noise-injected hidden states can be stacked to build
a multi-layered noise-injected LSTM that meet the weak
unbiasedness condition.

Dropout. We now consider dropout from the perspec-
tive of unbiasedness. Consider the LSTM as described in
Section 2. Applying dropout to it corresponds to injecting
Bernoulli-distributed noise as follows

ft = σ(W>x1xt−1 � ε
xf
t +W>h1ht−1 � ε

hf
t)

it = σ(W>x2xt−1 � εxit +W>h2ht−1 � εhit)

ot = σ(W>x4xt−1 � εxot +W>h4ht−1 � εhot)

ct = ft � ct−1+
it � tanh(W>x3xt−1 � εxct +W>h3ht−1 � εhct)

zdropoutt = ot � tanh(ct).

This general form of dropout encapsulates existing
dropout variants. For example when the noise variables
εhft , εhit , ε

ho
t , ε

hc
t are set to one we recover the variant of

dropout in Zaremba et al. (2014).

Because of the nonlinearities dropout does not meet the un-
biasedness desideratum Eq. 12 where ht is the hidden state
of the LSTM as described in Section 2. Here at each time
step t, εt denotes the set of noise variables εxft , εxit , ε

xo
t , ε

xc
t

and εhft , εhit , ε
ho
t , ε

hc
t .

Dropout is therefore biased and does not preserve the under-
lying RNN. However, dropout has been widely successfully
used in practice and has many nice properties. For example
it regularizes by acting like an ensemble method (Goodfel-
low et al., 2016). We study the dropout-LSTM in Section 5
as a variant of RNN that can benefit from the method Noisin
proposed in this paper.

Algorithm 1 Noisin with multiplicative noise.

Input: Data x1:T , initial hidden state z0, noise distribu-
tion ϕ(·; 1, γ), and learning rate ρ.
Output: learned parameters W ∗ and V ∗.
Initialize parameters W and V
for iteration iter = 1, 2, . . . , do

for time step t = 1, . . . , T do
Sample noise εt ∼ ϕ(εt; 1, γ)
Compute state zt = fW (zt−1,xt−1)� εt

end for
Compute loss L̃ as in Eq. 17
Update W :←W − ρ · ∇W L̃
Update V :← V − ρ · ∇V L̃
Change learning rate ρ according to some schedule.

end for

Unbiased noise-injection with Noisin. Deterministic
RNNs are learned using truncated backpropagation through
time with the maximum likelihood objective—the log like-
lihood of the data. Backpropagation through time builds
gradients by unrolling the RNN into a feed-forward neu-
ral network and applies backpropagation (Rumelhart et al.,
1988). The RNN is then optimized using gradient de-
scent or stochastic gradient descent (Robbins & Monro,
1951).

Noisin applies the same procedure to the expected log-
likelihood under the injected noise,

L = Ep(ε1:T) [log p(x1:T |z1:T (ε1:T))] . (15)

In more detail this is

L =

T∑
t=1

Ep(ε1:t)

[
log p(xt|zt(ε1:t))

]
(16)

Notice this objective is a Jensen bound on the marginal
log-likelihood of the data,

L ≤ logEp(ε1:T) [p(x1:T |z1:T (ε1:T))] = log p(x1:T).

The expectations in the objective of Eq. 16 are intractable
due to the nonlinearities in the model and the form of
the noise distribution. We approximate the objective using
Monte Carlo;

L̂ =
1

K

K∑
k=1

T∑
t=1

[
log p(xt|zt(ε(k)1:t))

]
.

When using one sample (K = 1), the training procedure is
just as easy as for the underlying RNN. The loss in this case,
under the exponential family likelihood, becomes

L̃ = −
T∑
t=1

[
(V >zt(ε1:t))

>xt −A(V >zt(ε1:t))
]
+ c,

(17)

Noisin: Unbiased Regularization for Recurrent Neural Networks

where c = −
∑T
t=1 log ν(xt) is a constant that does not

depend on the parameters. Algorithm 1 summarizes the
procedure for multiplicative noise. The only change from
traditional RNN training is when updating the hidden state
in lines 4 and 5.

Controling the noise level. Noisin is amenable to any
RNN and any noise distribution. As with all regularization
techniques, Noisin comes with a free parameter that deter-
mines the amount of regularization: the spread γ of the
noise.

Certain noise distributions have bounded variance; for ex-
ample the Bernoulli and the Beta distributions. This limits
the amount of regularization one can afford. To circum-
vent this bounded variance issue, we rescale the noise to
have unbounded variance. Table 2 shows the expression of
the variance of the original noise and its scaled version for
several distributions. It is the scaled noise that is used in
Noisin.

4. Unbiased Regularization for RNNs
In Section 3, we introduced the concept of unbiasedness in
the context of RNNs as a desideratum for noise injection
to preserve the underlying RNN. In this section we prove
unbiasedness leads to an explicit regularizer that forces the
hidden states to be robust to noise.

4.1. Unbiased noise injection is explicit
regularization

A valid regularizer is one that adds a nonnegative term to
the risk. This section shows that unbiased noise injection
with exponential family likelihoods leads to valid regulariz-
ers.

Consider the loss in Eq. 17 for an exponential family likeli-
hood. The exponential family provides a general notation
for the types of data encountered in practice: binary, count,
real-valued, and categorical. Table 1 shows the expression
of A for these types of data. The log normalizer A(V >zt)
has many useful properties. For example it is convex and
infinitely differentiable.

Assume without loss of generality that we observe one se-
quence x1:T . Consider the empirical risk function for the
noise-injected RNN. It is defined as

R = −
T∑
t=1

Ep(ε1:t)
{
(V >zt)

>xt −A(V >zt)
}
+ c.

With little algebra we can decompose this risk into the sum
of two terms

R = R(det) +
T∑
t=1

Ep(ε1:t) {Et} (18)

whereR(det) is the empirical risk for the underlying RNN
and Et is

Et = A(V >zt)−A(V >ht)−
(
V >zt − V >ht

)>
xt.

Because the second term in Eq. 18 is not always guaranteed
to be non-negative, noise-injection is not explicit regular-
ization in general. However, under the strong unbiasedness
condition, this term corresponds to a valid regularization
term and simplifies to

Reg =
1

2

T∑
t=1

tr
{
Ep(ε1:t)Cov(B>zt | zt−1(ε1:t−1))

}
,

where the matrix B = V
√
∇2A(V >ht) is the prediction

matrix of the underlying RNN rescaled by the square root of
∇2A(V >ht)—the Hessian of the log-normalizer of the like-
lihood. This Hessian is also the Fisher information matrix of
the RNN. We provide a detailed proof in Section 7.

Noisin requires that we minimize the objective of the under-
lying RNN while also minimizing Reg. Minimizing Reg
induces robustness—it is equivalent to penalizing hidden
units that are too sensitive to noise.

4.2. Connections

In this section, we intuit that Noisin has ties to ensemble
methods and empirical Bayes.

The ensemble method perspective. Noisin can be inter-
preted as an ensemble method. The objective in Eq. 16
corresponds to averaging the predictions of infinitely many
RNNs at each time step in the sequence. This is known as
an ensemble method and has a regularization effect (Pog-
gio et al., 2002). However ensemble methods are costly
as they require training all the sub-models in the ensemble.
With Noisin, at each time step in the sequence, one of the
infinitely many RNNs is trained and because of parameter
sharing, the RNN being trained at the next time step will
use better settings of the weights. This makes training the
whole model efficient. (See Algorithm 1.)

The empirical Bayes perspective. Consider a noise-
injected RNN. We write its joint distribution as

p(x1:T , z1:T) =

T∏
t=1

p(xt|zt;V)p(zt|zt−1,xt−1;W)

Here p(xt|zt;V) denotes the likelihood and
p(zt|zt−1,xt−1;W) is the prior over the noisy hid-
den states; it is parameterized by the weights W . From the
perspective of Bayesian inference this is an unknown prior.
When we optimize the objective in Eq. 16, we are learning
the weights W . This is equivalent to learning the prior over
the noisy hidden states and is known as empirical Bayes

Noisin: Unbiased Regularization for Recurrent Neural Networks

Table 2. Expression for the noise distributions and their scaled version used in this paper. Here γ is the noise spread. It determines the
amount of regularization. For example it is the standard deviation for Gaussian noise and the scale parameter for Gamma noise. The
constant δ = 0.5772 is the Euler-Mascheroni constant

.

Standard Noise η E(η) V ar(η) Scaled Noise ε E(ε) V ar(ε)

N (0, γ) 0 γ2 η 0 γ2

Bernoulli(γ) γ γ(1− γ) η
γ 1 1−γ

γ

Gamma(α, γ) αγ αγ2 η−αγ√
α

0 γ2

Gumbel(0, γ) δγ π2γ2

6

√
6(η−δγ)
π 0 γ2

Laplace(0, γ) 0 2γ2 η√
2

0 γ2

Logistic(0, γ) 0 π2γ2

3

√
3η
π 0 γ2

Beta(α, γ) α
α+γ

αγ
(α+γ)2(α+γ+1) (α+ γ)

√
α+γ+1
α (η − α

α+γ) 0 γ

Chi-Square(γ) γ 2γ η−γ√
2

0 γ

(Robbins, 1964). It consists in getting point estimates of
prior parameters in a hierarchical model and using those
point estimates to define the prior.

5. Empirical Study
We presented Noisin, a method that relies on unbiased noise
injection to regularize any RNN. Noisin is simple and can
be integrated with any existing RNN-based model. In this
section, we focus on applying Noisin to the LSTM and the
dropout-LSTM. We use language modeling as a testbed.
Regularization is crucial in language modeling because the
input and prediction matrices scale linearly with the size
of the vocabulary. This results in networks with very high
capacity.

We used Noisin under two noise regimes: additive noise and
multiplicative noise. We found that additive noise uniformly
performs worse than multiplicative noise for the LSTM. We
therefore report results only on multiplicative noise.

We used Noisin with several noise distributions: Gaussian,
Logistic, Laplace, Gamma, Bernoulli, Gumbel, Beta, and
χ-Square. We found that overall the only property that
matters with these distributions is the variance. The variance
determines the amount of regularization for Noisin. It is the
parameter γ in Algorithm 1. We outlined in Section 4 how
to set the noise level for a given distribution so as to benefit
from unbounded variance.

We also found that these distributions, when used with
Noisin on the LSTM perform better than the dropout LSTM
on the Penn Treebank.

Another interesting finding is that Noisin when applied to
the dropout-LSTM performs better than the original dropout-
LSTM.

Next we describe the two benchmark datasets used: Penn
Treebank and Wikitext-2. We then provide details on the

experimental settings for reproducibility. We finally present
the results in Table 3 and Table 4.

Penn Treebank. The Penn Treebank portion of the Wall
Street Journal (Marcus et al., 1993) is a long standing bench-
mark dataset for language modeling. We use the standard
split, where sections 0 to 20 (930K tokens) are used for
training, sections 21 to 22 (74K tokens) for validation, and
sections 23 to 24 (82K tokens) for testing (Mikolov et al.,
2010). We use a vocabulary of size 10K that includes the
special token unk for rare words and the end of sentence
indicator eos.

Wikitext-2. The Wikitext-2 dataset (Merity et al., 2016) has
been recently introduced as an alternative to the Penn Tree-
bank dataset. It is sourced from Wikipedia articles and is ap-
proximately twice the size of the Penn Treebank dataset. We
use a vocabulary size of 30K and no further preprocessing
steps.

Experimental settings. To assess the capabilities of Noisin
as a regularizer on its own, we used the basic settings for
RNN training (Zaremba et al., 2014). We did not use weight
decay or pointers (Merity et al., 2016).

We considered two settings in our experiments: a medium-
sized network and a large network. The medium-sized
network has 2 layers with 650 hidden units each. This results
in a model complexity of 13 million parameters. The large
network has 2 layers with 1500 hidden units each. This leads
to a model complexity of 51 million parameters.

For each setting, we set the dimension of the word em-
beddings to match the number of hidden units in each
layer. Following initialization guidelines in the literature,
we initialize all embedding weights uniformly in the interval
[−0.1, 0.1]. All other weights were initialized uniformly be-
tween [− 1√

H
, 1√

H
] where H is the number of hidden units

in a layer. All the biases were initialized to 0. We fixed the
seed to 1111 for reproducibility.

Noisin: Unbiased Regularization for Recurrent Neural Networks

Table 3. Noisin improves the performance of the LSTM and the dropout-LSTM by as much as 12% on the Penn Treebank dataset. This
table shows word-level perplexity scores on the medium and large settings for both the validation (or dev) and the test set.

Medium Large

Method γ Dev Test γ Dev Test

None −− 115 109 −− 123 123
Gaussian 1.10 76.2 71.8 1.37 73.2 69.1
Logistic 1.06 76.4 72.3 1.39 73.6 69.3
Laplace 1.06 76.6 72.4 1.39 73.7 69.4
Gamma 1.06 78.2 74.5 1.39 73.6 69.5
Bernoulli 0.41 75.7 71.4 0.33 72.8 68.3
Gumbel 1.06 76.2 72.7 1.39 73.5 69.5
Beta 1.07 76.0 71.4 1.50 74.4 70.2
Chi 1.50 84.5 80.7 1.20 79.2 75.5

Medium Large

Method γ Dev Test γ Dev Test

Dropout (D) −− 80.2 77.0 −− 78.6 75.3
D + Gaussian 0.53 73.4 70.4 0.92 70.0 66.1
D + Logistic 0.53 73.0 69.9 0.84 69.8 66.4
D + Laplace 0.53 73.1 70.0 0.92 69.9 66.6
D + Gamma 0.38 73.5 70.3 0.92 71.1 68.2
D + Bernoulli 0.80 73.3 70.1 0.50 70.0 66.1
D + Gumbel 0.46 74.5 71.2 0.92 70.2 67.1
D + Beta 0.20 73.0 69.2 0.70 70.0 66.2
D + Chi 0.29 76.1 72.8 0.82 73.0 70.0

Table 4. Noisin improves the performance of the LSTM and the dropout-LSTM by as much as 9% on the Wikitext-2 dataset. This table
shows word-level perplexity scores on the medium and large settings for both the validation (or dev) and the test set. D is short for dropout.
D + Distribution refers to Noisin applied to the dropout-LSTM with the specified distribution.

Medium Large

Method γ Dev Test γ Dev Test

None −− 141 136 −− 176 140
Gaussian 1.00 92.7 87.8 1.37 87.7 83.4
Logistic 1.00 93.2 88.4 1.28 88.1 83.5
Laplace 1.00 95.3 89.8 1.28 88.0 83.4
Gamma 0.72 97.6 92.9 1.39 89.2 84.5
Bernoulli 0.54 91.2 86.6 0.41 86.9 83.0
Gumbel 1.00 95.4 90.9 1.28 88.7 84.0
Beta 0.80 91.1 87.2 1.50 86.9 82.9
Chi 0.20 111 105 1.50 99.0 92.9

Medium Large

Method γ Dev Test γ Dev Test

Dropout (D) −− 88.7 84.8 −− 95.0 91.0
D + Gaussian 0.50 86.3 82.3 0.69 81.4 77.7
D + Logistic 0.40 86.4 82.5 0.77 81.6 78.1
D + Laplace 0.40 85.6 82.1 0.61 83.2 79.1
D + Gamma 0.30 86.5 82.4 0.61 85.5 81.3
D + Bernoulli 0.50 100.6 94.4 0.64 80.8 76.8
D + Gumbel 0.30 86.4 82.4 0.53 83.7 80.1
D + Beta 0.10 86.2 82.3 0.60 81.5 77.9
D + Chi 0.20 92.0 87.4 0.29 87.1 82.8

Table 5. When applied to the model in (Yang et al., 2017), Noisin achieves the same state-of-the-art perplexity on the Penn Treebank after
only 400 epochs (vs 1000 epochs). ∗Multiplicative gamma-distributed noise with shape 2 and scale 0.4.

Model # Parameters Dev Test

(Zaremba et al., 2014) - LSTM 20 M 86.2 82.7
(Gal & Ghahramani, 2016) - Variational LSTM (MC) 20 M − 78.6
(Merity et al., 2016) - Pointer Sentinel-LSTM 21 M 72.4 70.9
(Grave et al., 2016) - LSTM + continuous cache pointer − − 72.1
(Inan et al., 2016) - Tied Variational LSTM + augmented loss 24 M 75.7 73.2
(Zilly et al., 2016)- Variational RHN 23 M 67.9 65.4
(Melis et al., 2017) - 2-layer skip connection LSTM 24 M 60.9 58.3

(Merity et al., 2017) - AWD-LSTM + continuous cache pointer 24 M 53.9 52.8
(Krause et al., 2017) - AWD-LSTM + dynamic evaluation 24 M 51.6 51.1
(Yang et al., 2017) - AWD-LSTM-MoS + dynamic evaluation 22 M 48.3 47.7
(This paper) - AWD-LSTM-MoS + Noisin∗ + dynamic evaluation 22 M 48.4 47.6

We train the models using truncated backpropagation
through time with average stochastic gradient descent

(Polyak & Juditsky, 1992) for a maximum of 200 epochs.
The LSTM was unrolled for 35 steps. We used a batch size

Noisin: Unbiased Regularization for Recurrent Neural Networks

of 80 for both datasets. To avoid the problem of exploding
gradients we clip the gradients to a maximum norm of 0.25.
We used an initial learning rate of 30 for all experiments.
This is divided by a factor of 1.2 if the perplexity on the
validation set deteriorates.

For the dropout-LSTM, the values used for dropout on the
input, recurrent, and output layers were 0.5, 0.4, 0.5 respec-
tively.

The models were implemented in PyTorch. The source code
is available upon request.

Results on the Penn Treebank. The results on the Penn
Treebank are illustrated in Table 3. The best results for the
non-regularized LSTM correspond to a small network. This
is because larger networks overfit and require regulariza-
tion. In general Noisin improves any given RNN including
dropout-LSTM. For example Noisin with multiplicative
Bernoulli noise performs better than dropout RNN for both
medium and large settings. Noisin improves the perfor-
mance of the dropout-LSTM by as much as 12.2% on this
dataset.

Results on the Wikitext-2 dataset. Results on the Wikitext-
2 dataset are presented in Table 4. We observe the same
trend as for the Penn Treebank dataset: Noisin improves
the underlying LSTM and dropout-LSTM. For the dropout-
LSTM, it improves its generalization capabilities by as much
as 9% on this dataset.

6. Discussion
We proposed Noisin, a simple method for regularizing
RNNs. Noisin injects noise into the hidden states such
that the underlying RNN is preserved. Noisin maximizes
a lower bound of the log marginal likelihood of the data—
the expected log-likelihood under the injected noise. We
showed that Noisin is an explicit regularizer that imposes
a robustness constraint on the hidden units of the RNN. On
a language modeling benchmark Noisin improves the gen-
eralization capabilities of both the LSTM and the dropout-
LSTM.

7. Detailed Derivations
We derive in full detail the risk of Noisin and show that it
can be written as the sum of the risk of the original RNN
and a regularization term.

Assume without loss of generality that we observe one se-
quence x1:T . The risk of a noise-injected RNN is

R = −
T∑
t=1

Ep(ε1:t) log p(xt|zt(ε1:t)).

Expand this in more detail and write zt in lieu of zt(ε1:t) to

avoid cluttering of notation. Then

R = −
T∑
t=1

{
log ν(xt)− Ep(ε1:t)

[
z>t V xt −A(V >zt)

]}
.

The risk for the underlying RNN—R(det)—is similar when
we replace zt with ht,

R(det) = −
T∑
t=1

{
log ν(xt)−

[
h>t V xt −A(V >ht)

]}
.

Therefore we can express the risk of Noisin as a function of
the risk of the underlying RNN,

R = R(det) +
T∑
t=1

Ep(ε1:t−1)

[
Ep(εt | ε1:t−1) (E1)

]
E1 = A(V >zt)−A(V >ht)−

(
V >zt − V >ht

)>
xt.

Under the strong unbiasedness condition,

Ep(εt | ε1:t−1) [E1) = Ep(εt | ε1:t−1)

[
A(V >zt)−A(V >ht)

]
.

Using the convexity property of the log-normalizer of expo-
nential families and Jensen’s inequality,

Ep(εt | ε1:t−1) (E1) ≥ A(V
>Ep(εt | ε1:t−1)(zt))−A(V

>ht).

Using the strong unbiasedness condition a second time we
conclude Ep(εt | ε1:t−1) (E1) ≥ 0. Therefore

Reg =

T∑
t=1

Ep(ε1:t−1)

[
Ep(εt | ε1:t−1) (E1)

]
≥ 0

is a valid regularizer. A second-order Taylor expansion of
A(V >zt) around A(V >ht) and the strong unbiasedness
condition yield

Reg =
1

2

T∑
t=1

tr
{
Ep(ε1:t−1)

[
Cov(B>zt | zt−1(ε1:t−1))

]}
,

where the matrix B = V
√
∇2A(V >ht) is the original pre-

diction matrix V rescaled by the square root of the Hessian
of the log-normalizer, the inverse Fisher information matrix
of the underlying RNN. This regularization term forces the
hidden units to be robust to noise. Under weak unbiased-
ness, the proof holds under the assumption that the true data
generating distribution is an RNN.

Acknowledgements
We thank Francisco Ruiz for presenting our paper at ICML,
2018. We thank the Princeton Institute for Computational
Science and Engineering (PICSciE), the Office of Infor-
mation Technology’s High Performance Computing Center

Noisin: Unbiased Regularization for Recurrent Neural Networks

and Visualization Laboratory at Princeton University for the
computational resources. This work was supported by ONR
N00014-15-1-2209, ONR 133691-5102004, NIH 5100481-
5500001084, NSF CCF-1740833, the Alfred P. Sloan Foun-
dation, the John Simon Guggenheim Foundation, Facebook,
Amazon, and IBM.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Bayer, J. and Osendorfer, C. Learning stochastic recurrent
networks. arXiv preprint arXiv:1411.7610, 2014.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural Computation, 7(1):108–116, 1995.

Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R.,
Nguyen, P., Chen, Z., Kannan, A., Weiss, R. J., Rao,
K., Gonina, K., et al. State-of-the-art speech recogni-
tion with sequence-to-sequence models. arXiv preprint
arXiv:1712.01769, 2017.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C.,
and Bengio, Y. A recurrent latent variable model for
sequential data. In Advances in Neural Information Pro-
cessing Systems, pp. 2980–2988, 2015.

Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., and
Courville, A. Recurrent batch normalization. arXiv
preprint arXiv:1603.09025, 2016.

Elman, J. L. Finding structure in time. Cognitive Science,
14(2):179–211, 1990.

Fraccaro, M., Sønderby, S. K., Paquet, U., and Winther,
O. Sequential neural models with stochastic layers. In
Advances in Neural Information Processing Systems, pp.
2199–2207, 2016.

Gal, Y. and Ghahramani, Z. A theoretically grounded ap-
plication of dropout in recurrent neural networks. In
Advances in Neural Information Processing Systems, pp.
1019–1027, 2016.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Goyal, A., Sordoni, A., Côté, M.-A., Ke, N., and Bengio,
Y. Z-forcing: Training stochastic recurrent networks. In
Advances in Neural Information Processing Systems, pp.
6716–6726, 2017.

Grave, E., Joulin, A., and Usunier, N. Improving neural
language models with a continuous cache. arXiv preprint
arXiv:1612.04426, 2016.

Graves, A. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-
nition with deep recurrent neural networks. In IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, pp. 6645–6649. IEEE, 2013.

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and
Wierstra, D. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Inan, H., Khosravi, K., and Socher, R. Tying word vectors
and word classifiers: A loss framework for language
modeling. arXiv preprint arXiv:1611.01462, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, pp.
448–456, 2015.

Jim, K.-C., Giles, C. L., and Horne, B. G. An analysis
of noise in recurrent neural networks: convergence and
generalization. IEEE Transactions on Neural Networks,
7(6):1424–1438, 1996.

Krause, B., Kahembwe, E., Murray, I., and Renals, S.
Dynamic evaluation of neural sequence models. arXiv
preprint arXiv:1709.07432, 2017.

Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Bal-
las, N., Ke, N. R., Goyal, A., Bengio, Y., Larochelle,
H., Courville, A., et al. Zoneout: Regularizing rnns by
randomly preserving hidden activations. arXiv preprint
arXiv:1606.01305, 2016.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Computational Linguistics, 19(2):313–330,
1993.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art
of evaluation in neural language models. arXiv preprint
arXiv:1707.05589, 2017.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Merity, S., Keskar, N. S., and Socher, R. Regularizing
and optimizing lstm language models. arXiv preprint
arXiv:1708.02182, 2017.

Noisin: Unbiased Regularization for Recurrent Neural Networks

Mikolov, T. and Zweig, G. Context dependent recurrent
neural network language model. SLT, 12:234–239, 2012.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and
Khudanpur, S. Recurrent neural network based language
model. In Interspeech, volume 2, pp. 3, 2010.

Noh, H., You, T., Mun, J., and Han, B. Regularizing deep
neural networks by noise: Its interpretation and opti-
mization. In Advances in Neural Information Processing
Systems, pp. 5113–5122, 2017.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. International Con-
ference on Machine Learning, 28:1310–1318, 2013.

Pearlmutter, B. A. Gradient calculations for dynamic recur-
rent neural networks: A survey. IEEE Transactions on
Neural Networks, 6(5):1212–1228, 1995.

Poggio, T., Rifkin, R., Mukherjee, S., and Rakhlin, A. Bag-
ging regularizes. Technical report, Massachusetts Insti-
tute of Technology, 2002.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30(4):838–855, 1992.

Robbins, H. The empirical bayes approach to statistical
decision problems. The Annals of Mathematical Statistics,
35(1):1–20, 1964.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp. 400–
407, 1951.

Robinson, A. and Fallside, F. The utility driven dynamic
error propagation network. University of Cambridge
Department of Engineering, 1987.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learn-
ing representations by back-propagating errors. Cognitive
Modeling, 5(3):1, 1988.

Semeniuta, S., Severyn, A., and Barth, E. Recurrent dropout
without memory loss. arXiv preprint arXiv:1603.05118,
2016.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
Neural Information Processing Systems, pp. 3104–3112,
2014.

Wager, S., Wang, S., and Liang, P. S. Dropout training as
adaptive regularization. In Advances in Neural Informa-
tion Processing Systems, pp. 351–359, 2013.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus,
R. Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pp. 1058–1066, 2013.

Werbos, P. J. Generalization of backpropagation with appli-
cation to a recurrent gas market model. Neural Networks,
1(4):339–356, 1988.

Williams, R. J. Complexity of exact gradient computation
algorithms for recurrent neural networks. Technical re-
port, Technical Report Technical Report NU-CCS-89-27,
Boston: Northeastern University, College of Computer
Science, 1989.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W.
Breaking the softmax bottleneck: A high-rank RNN lan-
guage model. arXiv preprint arXiv:1711.03953, 2017.

Zaremba, W., Sutskever, I., and Vinyals, O. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329,
2014.

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmid-
huber, J. Recurrent highway networks. arXiv preprint
arXiv:1607.03474, 2016.

