MEASUREMENTS OF INTERDEPENDENCE

RON BLEI

Our theme here is that interdependence can be calibrated by indices
based, separately, on combinatorial measurements, p-variations, and tail-
probability estimates. These notions — that each of the aforementioned is
linked to interdependence — had naturally originated in a context of har-
monic analysis ([1], [2]), and appeared later in stochastic settings (e.g., [12],
[4], [6], [5]). Eventually this (and more) was detailed in [7] — too large a book
(alas!), which at this point almost surely could use a revision... Meanwhile,
I intend here to survey and explain these ideas, and (hopefully) also shed
some new light on them. Because my audience appears fairly heterogenous,
I will stick to genesis, and will discuss interdependence essentially in the
same basic context where I first encountered it. No formal proofs will be
given. I will speak heuristically, but will try to be precise.

1. FUNCTIONAL INTERDEPENDENCE — BASIC NOTIONS
Let d > 2 be an integer. Suppose F' and Ej, j € [d], are sets, and
fjiF—>Ej, jE[d],

are given functions, which we may as well assume to be onto. (As usual, [d]

denotes {1,...,d}.) Nothing is known, or assumed, about structures in F’
and Ej.
Question 1.1. How interdependent are fi,..., fq?

Of course we need to say what we mean by interdependence and how we
measure it. We begin with the observation that the interdependence of

f1,- .., fq is expressed, somehow, by the inclusions
‘{(fi(t))ieT:te ﬂ{fl :yi}}c >< Ej7 (11)
€S JeT

where S C [d], (y; 11 € S) € X,eq Ei, and T < [d\S. (As usual, {f; = v;}
is the abbreviation for {t € F : fi(t) = y;}.) To wit, interdependence is
detected, somehow, by the ”extent” that the left side of (1.1) differs from
the full Cartesian product X jer Ej on the right side.

To illustrate this, and also suggest how to proceed, we consider two ex-
tremal instances. In the first, (1.1) is an equality for S = {j} for every j € [d]
and all y € E;. In this case, fi,..., fq are viewed as independent functions:
for, here the knowledge that f; = y, y € E;, implies no information about
the values of f; for ¢ # j. In a second example, opposite to the first, there
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exists jo € [d] such that the left side of (1.1) is a singleton for every y € Ejq:
here, evaluations of f;, uniquely determine the values of f; for every i € [d].

Definition 1.1. For a positive integer d = 2, let f1,..., fq be functions
from a set F' onto sets En, ..., Ey, respectively.
1. fi,..., fq are functionally independent if for every

(yla"'ayd)eEl X oo XEd?
there exists t € I' such that
fi(t) =y;, jeld]

II. f1,..., fq are functionally dependent if there exists jo € [d] such that
for all y € Ej,,

#{(fi(t))#jo cte{fj, = y}} -1
(# denotes cardinality.)

Given that f1,..., fg could be neither functionally independent nor function-
ally dependent, our task will be to calibrate, somehow, the ”gap” between
these two extremes.

To motivate what we do, consider the function

flg) = (f1,-- - fa): F— By x - x Ey, (1.2)
and its image,
fiq(F) = {(fl(t), . .,fd(t)) ‘te F} (1.3)

Note that functional independence means simply that the image of fig) is
the full Cartesian product,

f[d](F) =E1 Xowee XEd,

which is d—dimensional. At the other end, functional dependence means
that for some jo € [d] there exist functions

0;: Ej, = E;, i€ld],
such that
fi =00 fj.
Assuming jg = 1, let
O =(02,...,04) : E1 > Ey x -+ x E, (1.4)
and note that the image
fi(F) = graph © = {(y,0(y)) : y € En}

in this case is a one-dimensional ”curve” (parameterized by Ep) in Fj x
- x E4. (Here we still think of ”dimension” intuitively, as the number of
”degrees of freedom.”)
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To view instances of interdependence between the two respective extremes,
take f1,..., fg with functionally independent fi,..., fr (1 < k < d), such
that for all (y1,...,yx) € E1 X «+- x Ej,

k
#{(fiW)i>k)te(V{fi=wi}} =1 (1.5)
=1

The ”count” in (1.5) means that there are functions
0; : By x -+ x B, > E;, i€ld],
such that
fi=0; 01y, (1.6)
where
fry=(f1, s fo) 1 F > By x oo x By

(Cf. (1.2).) (For i € [k], 6; is the canonical projection m; from Ej x --- x Ej,
onto FE;:

mi(y) = yis ¥ = (Yj) jer]-) (1.7)
Let (cf. (1.4))

@k = (9k+1,...,9d) : El X o+ X Ek —>Ek+1 X oo X E]d7 (18)
and then note (because fi,..., fr are functionally independent) that the
image

k
fiy(F) = graph © = {(y,Ox(y)) : y € X Ei} (1.9)
i=1

is a k-dimensional "surface” (parameterized by Eq x---x Ey) in Eq x---x Ey.

This suggests that to mark the interdependence of arbitrary fi,..., f4,
we need an index associated with f[4(F"), which — properly defined — will
effectively be its dimension.

2. COMBINATORIAL DIMENSION AND FRACTIONAL CARTESIAN PRODUCTS

2.1. Definitions. Given infinite sets F1,...,FE;, we consider an infinite
subset

FcFE x---x Ey,

and proceed to define its dimension relative to its ambient d-fold product
Fy x---x Ey. With no a priori knowledge about structures in Fy, ..., E4, all
we can do is "count,” and that is what we do: for every positive integer s, let

‘I/F(S) = max{#(F N (A1 X e X Ad)) A E;, #Al =85, 1€ [d]}, (21)

whence
s < Wp(s) < s, (2.2)
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Now define oo
dim F' = lim sup LF(S). (2.4)
500 log s
From (2.2) and (2.4),
1 <dimF < d, (2.5)
and A
Up(s) ~ stimt (2.6)
by which we mean
1\
lim sup £(s) =0, n>dimF, (2.7)
5—00 s"
and v
timinf Y2 _ oy < dim B (2.8)
S—00 S
At the critical value, if
: Yr(s)
llISILS;gp iyl 0, (2.9)
then dim F' is said to be exact. Otherwise, if
. Ur(s)
hzri)solép dmE = 0, (2.10)
then dim F is said to be asymptotic. If dim F' = «, and
1\ v
0 < liminf 225 < fimsup ZEE) o, (2.11)
§—00 s« S—>00 s«

then F'is said to be an a-product.

The exponent dim F' marks the interdependence of coordinates of elements
in F. Specifically, dim F' registers the interdependence of the restrictions to
F of the projections m; : F' — E;, i€ [d],

mi(Y) =Y, ¥ = (Yj)jeq € I (2.12)

We refer to dim F' as the combinatorial dimension of F. Indeed, the combi-
natorial dimension index provides a calibration of a basic counting principle:

(i) For every n > dimF, there exists K, = K > 0, so that for every
s€ Nand all s-sets A; < Eq,...,Aq € Ey, if N is the number of samplings
x1 € Aq,...,xq € Ag, subject to the constraint that (z1,...,zq) € F, then

N < §". (2.13)
(ii) For every n < dim F, and all L > 0 (as large as we please), there exist

s-sets Ay < E1,...,Aq < Eg4, such that if N is the number of samplings
x1 € Aq,...,xq € Ay, subject to the constraint that (z1,...,z4) € F, then

N > Ls". (2.14)



MEASUREMENTS OF INTERDEPENDENCE 5

2.2. Fractional Cartesian Products. Fix an integer n > 1, and let
Dy, ..., D, be infinite sets. For S c [n], define the projection

75t X Dj - X D (2.15)
j=1 JjeSs
by
ms(x) =(zj:j€8), x=(z1,...,2p) € X Dj. (2.16)
j=1

Let U = {S1,...,54} be a cover of [n]; that is, S; < [n] for i € [d], and

d
| si=nl (2.17)
i=1
Denote (for notational convenience)
D =D x---x Dy, (2.18)
and define the fractional Cartesian product
DY = {(rs,(x),...,ms,(x)) : x € D}. (2.19)
Specifically, in the setting of Section 1, we take
fi =TS 1€ [d]a (220)
F =D, (2.21)
E; = >< Dj, 1€ [d], (222)
JES:
and (cf. (1.2) and (1.3)) take fi4 to be the function Il = (7815178,
Iy : D — ( X Dj) x--x (X Dj). (2.23)
jeS] JE€S4
Then,
DY :=Iy(D) = ( X D;) x -+ x ( X Dj). (2.24)
JE€ST JESq

We refer to ( X jes, Dj) X oo X ( X jes, Dj) as the ambient product of DY.
In this context, dim DY marks the interdependence of the projections

7T5'ZD1><---><DTL—>><D1‘, Sel. (225)
€S

Fractional Cartesian products provide natural examples of g-products for
every rational ¢ = 7 > 1. We state below two archetypal instances:

Example 2.1. (Cf. [1].) If U is the cover of [n] comprising all k-subsets
of [n], in which case

k
then, there exist constants k1 > 0 and ke > 0 such that for all integers s = 1,

Kisk < Uhu(s) < KoSk; (2.27)

U = (") = d, (2.26)
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i.e., DY is a ¥-product, whose ambient product is (Z)—dimensional.

Example 2.2. (See [3].) Let U be a cover of [n] comprising k-subsets of
[n], such that for every j € [n],

#{SelU:je S} =k, (2.28)

whence
H#U =n =d. (2.29)

Then, there exist constants k1 > 0 and kg > 0 (different from the constants
in (2.27)) such that for all integers s > 1,

K1sk < Uhu(s) < Kosk; (2.30)

i.e., DY is a ¥-product, whose ambient product is n-dimensional.

These two examples are instances — in fact, precursors — of a general result
n [14], that the combinatorial dimension of a fractional Cartesian product
is the solution to a linear programming problem:

Theorem 2.1. Let U be a cover of [n], and let

a = a(l) zmax{v1+---+vn22vj§1, Sel; v; 20, i€ [n]}. (2.31)
JES

If Dy, ...,D, are infinite sets, and DY is the fractional Cartesian product
defined in (2.19), then DY is an a-product. Moreover (cf. (2.11)),
L u(S)

. . Uou(s
lim inf —2—"2 = lim sup Di()
5—00 s« S—00 S

=1. (2.32)

2.3. Deterministic designs vs. random sets. Fractional Cartesian prod-
ucts provide explicit examples of g—dimensional sets for every rational ¢ > 1.
Notably, if ¢ = 7, where n and k are relatively prime, then the ambient
product of an z-dimensional fractional Cartesian product must be at least
n-dimensional. (In this sense, Example 2.2 is optimal.) Settling an obvious
question, for all integers d > 1 and arbitrary a € [1,d], there indeed exist
a-(combinatorial) dimensional subsets in ambient d-dimensional products.
However, except for finitely many « € [1, d], hitherto all such examples have
been randomly produced; see [2], [13], [8]. An open question remains: how
to construct deterministically in a given ambient d-fold Cartesian product
a— dimensional sets for arbitrary « € [1,d].
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3. INTERDEPENDENCE OF INFINITELY MANY FUNCTIONS

3.1. The setup. Taking up the infinite-dimensional case (d = o), we now
consider the interdependence of countably many functions

X;:Q—FE;, jeN
As before, we make no a priori assumptions about structures in €2 and Ej,
but assume this time that the respective ranges are finite. We consider the
simplest case
#E; =2, jeN,
and may as well (for reasons that will soon become apparent) let
E; ={-1,+1}, jeN.

(For example, think of a ”"walk” with countably many steps, to the right or
to the left, with no a priori assumptions or knowledge about their interde-
pendence.)

As in the case d < o0, we agree (speaking heuristically) that interdepen-
dence here means a link between evaluations of x; for i e T, T < N,
and evaluations of x; for i e S, S < N\T. As in the case d < o, inde-
pendence — absence of any links — simply means: for every choice of signs
€; = £1, j € N, there exists t € €2, such that x;(t) = ¢, j € N. (Cf.
functional independence, as per Definition 1.1.) To be sure, in this instance
we obtain no information about evaluations of x; for ¢ € T from evaluations
of x; forie S c N\T. As before, to gauge interdpendence, we consider the
function (cf. (1.2), (1.3))

X = (X1, s Xns---) s Q= {=1, +1}, (3.1)
its image in {—1,1}"
X(Q) ={(a®),-- . xn(t),...) s teQ} {1, +1}1, (3.2)

and then posit that to gauge the interdependence of the x;, we need to
assess the extent to which X (Q) differs from {—1, 1},

3.2. A combinatorial measurement: the exponent pyx. To facilitate
discussions (here, and later in the sequel), denote X = {x; : j € N}. (We
distinguish between the set of functions X, and the function X defined in
(3.1).) For S c X, define the function

Xg: Q- {—1,+1}°

by
Xs(t) = (x(t) : x€ S), teQ,

and consider its image
Xs(Q) := {Xs(t) : t € Q} < {~1,+1}". (3.3)
Let

Dx(s) = min{#Xg(Q) : S c X, #S = s}. (3.4)



8 RON BLEI

We note
2< Px(s) <2° seN, (3.5)

and then, to make precise the notion that the ”closer” ®x(s) is to 2° the
"lesser” the interdependence in X (cf. Sect. 1), we define

.. loglog®x(s)
to wit, larger px conveys less interdependence. From (3.5) and (3.6),
0<px <1, (3.7)
and
Dx(s) ~ 2", (3.8)
which means
. Px(s)
hgr_l)g)lf e = @ N <PX, (3.9)
and
lim sup ng) =0, n>px. (3.10)
§—00 28

3.3. A functional-analytic measurement: p-variation. First suppose
that X is functionally independent (according to Definition 1.1, with d = o0).
In this case, if S is a finite subset of X, then for every choice of signs
ey =*1, x €S,

| D) exxllo = #5 (3.11)

X€S

(| - oo = supremum-norm over ). This is easy to verify: simply solve for
t € 2 such that

X(t) =€y, XES, (3.12)
which is possible by functional independence. In general, however,
mazimizing | Z exx(t)| over te (3.13)
XES

(left side of (3.11)) is constrained by the interdependence of the x € S, which
impedes the simultaneous solution of all equations in (3.12). The idea then
is to assess interdependence via its constraining effect on (3.13). To this
end, we use the [P-norm, p > 1 (p-variation). Specifically, we use the notion
that increasing interdependence — making a solution of (3.12) less feasible
— decreases the maximum obtained in (3.13), and effectively increases the
"smallest” p € [1,00) such that

IS el = (D1 17)7 = (#5)

XES XES

3 =

, finite S < X, (e,) € {~1,1}°. (3.14)
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(These heuristics are supported by examples, and relations between the
various calibrations; see Section 4.)
To make matters precise, define

¢x(s) = min{| Y exxlo: S X, [S] =5, (¢,) € {~1,1}°},  (3.15)
XES
and

log s

ox = limsup (3.16)

soo0 10g ox(s)
The exponent ox is the "smallest” p that "works” in (3.14). We write

1

dx(s) ~ s7x, (3.17)
by which we mean (as usual)
liminf 22X _ o ps oy (3.18)
5§—00 SE
and
lim sup ngfs) =0, n<ox. (3.19)
$—00 sn

(Cf. (2.7), (2.8), (3.9), (3.10).) The index ox is ezact if

liminf 2X) < o (3.20)
S§—00 sa
and asymtotic if
liminf 258 _ g (3.21)
§—00 Sa

(Cf. (2.9) and (2.10).) Because
| 25 exxlleo S #S, () € {~1,1}°
XES

for all finite S < X (obviously!), we have
ox = 1. (3.22)

Moreover, if we suppose that any two functions in X are functionally inde-
pendent, then we deduce (via an exercise)

1<ox <2 (3.23)

Indeed, in a context of harmonic analysis, if X is an infinite spectral set,
then oy is its Sidon exponent, and ox € [1,2]. (See Section 4, and Section
5.3.)
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3.4. A statistical measurement: tail-probability estimates. Next we
measure interdependence via a ”statistical” notion, that with less interde-
pendence in X, cancellations are more likely in

2 X, finite S < X. (3.24)
XES

To make this precise, we let Xg(€2) (finite S < X) be a uniform probability
space, and denote the uniform probability measure on it by Pg; i.e., ,

Ps({y}) = #xé«z)’ y € Xs(9). (3.25)

Consider the functions in S as random variables on (Xg(€2),Pg), where

X(¥) =y, yeXs(®)c{-1+1)". (3.26)
(See (3.3).) We can now assess the likelihood of cancellations in (3.24) via
estimates on tail-probabilities

Ps(| > x| = u), finite S X, u>0, (3.27)
XES

which we then use to calibrate interdependence in X.

We note that if the x € X are functionally independent (as functions on
), then every finite S < X is statistically independent (as random variables
on (X5(2),Pg)), and therefore by the classical Khintchin inequalities (e.g.,
see [15]),

1
Po(— > u) < ex —u2, finite S < X, u > 0. 2
s( \/%| >;SX| ) p(—u”) S 0 (3.28)
The ”sub-Gaussian” estimates in (3.28) are indeed optimal in the case of
independent X (e.g., cf. [11]), and will effectively mark the left-end point of
a scale of interdependence.

Locating the right-end point of the scale is somewhat arbitrary, and is
in fact tied to a long-standing open question known as the ”A(2)-set prob-
lem”; e.g., see Section 5.1. In our discussion here, we assume that X at
the very least has the property that every finite S < X is orthogonal in
L? (XS(Q),IPS). (Ruling out "too high” a level of functional dependence in
X, this assumption postulates a minimal amount of "randomness,” and —
as we see in the next section — still makes the mathematics here interest-
ing...) With this assumption and Markov’s inequality, we are guaranteed
that always, for all finite S < X,

1 1
Ps(m‘Zx\Zu)Sﬁ, u> 0. (3.29)

XES

We define for u > 0,

! ‘ Z x| = u) : finite S © X}. (3.30)

Tx(u) = sup {Ps (s
XES
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From (3.29) and the optimality of (3.28), we obtain for some x > 0

1

exp(—ru?) < Tx(u) < —, u>0. (3.31)
u

We now posit that the ”level” of interdependence in X corresponds to
the ”location” of T'x on the ”interval,” whose respective ”end-points” are
exp(—ku?) and % Two distinct scales are obtained, effectively marked by
exp(—ru®) (a €0,2]), and by u—lg (€ € [2,0]). To calibrate these scales, we
define

log log T'x (u)~*

dx = liminf , (3.32)
U—00 log u
and .
Ax = liminf 08T (3.33)
U—0 log u
By (3.31),
ox €10,2], (3.34)
and
Ax € [2, 0], (3.35)

where, on each scale, increasing index conveys decreasing interdependence.
The two scales complement each other: the A-scale is a resolution of the
end-point dx = 0 on the d-scale, and the d-scale is a resolution of the right
end-point Ay = o0 on the A-scale. If 0x € (0,2] or Ax € [2,00), then (re-
spectively)

Tx (u) ~ exp(—u’*), (3.36)

or

1

TX(“) ~ U=

, (3.37)

each of which means (respectively)

T'x(u)

li ——— =0 1) 3.
1gf£p exp(—um) 110X, (3.38)
o Tx(u)
and -
lim sup Xfu) =0, n<A\x, (3.40)
uU—0
T
iminf 2 _ o0 sy (3.41)

uU—0
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It
—1
lim inf w >0, (3.42)
uU—>0 ulx
or
(u)
hglj;p x <% (3.43)

then (respectively) dx and Ax are said to be exact. Otherwise, if either

log Tx (u) ™t
lim inf M =0 (3.44)
uU—>00 ulx
or T ( )
. x\u
| = 3.45
imsup - T30 : (3.45)

then the indices are said to be asymptotic.

4. EXAMPLES AND CONVERSION FORMULAS

We have:
dim F e [1,0), px €[0,1], ox €[1l,0), dx €[0,2], Ax €[2,0].

Question 4.1. Can every point on each scale be realized as an evaluation
of the respective index?

We have already noted (in Section 2.3) an affirmative answer in the case of
combinatorial dimension. But what about the other indices?

A second question concerns links between the indices. If indeed each index
registers, separately, a degree of interdependence, then we should expect
conversion formulas between them:

Question 4.2. What relations exist between the indices?

4.1. The view through harmonic analysis. We take the compact Abelian
group 2 = {—1, 1}N, with coordinate-wise multiplication, the product topol-

ogy, and the Haar measure P on it (infinite product of the uniform measure

on {—1,+1}). Let W = Q denote its group of characters (Walsh characters);

let R denote the set of projections from ) onto its independent coordinates

(Rademacher characters), and let W denote the set of Walsh characters of

order k (products of k distinct Rademacher characters). The Rademacher

characters form an algebraically independent ”basis” for the Walsh charac-

ters. Specifically,

e}
W= W; (4.1)
k=0
Wy = {ro}, where ry is the function that identically equals 1 on .
We consider first the ”finite-dimensional” case. Fix an integer k > 2, and
let X c Wy be infinite. The objective (as always) is to gauge the interde-
pendence of elements in X.
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I (Combinatorial dimension). BX the algebraic independence of R, we nat-
urally identify X with a subset X of R*. Specifically, let

XZ{(T’l,...,Tk)ERkZTl---TkEX}, (42)

and then (unambiguously) define dim F' to be dim X. In our present context,
dim X registers the ”amount of freedom” we have in choosing k distinct
Rademacher characters such that their product is in X.

By results stated in Section 2.3, for every a € [1, k], there exist X < Wy
such that dim X = « exactly, as well as X < Wy such that dim X = «
asymptotically.

IT (The index px). Following the connections between the combinatorial
measurements applied to X(€2) (as per Section 3.2) and the combinatorial
measurements applied to X (as per Section 2.3), we obtain

1
= . 4.3
PXZ dim X (43)
III (The Sidon exponent ox ). Following results in [2], we have
2
= —-— 5 4.4
T T X 4

and that ox is exact if and only if dim X is exact. This relation implies
that for every « € [1,2], there exist X < W}, such that ox = « (exactly, or
asymptotically).

IV (The index 0x). Following results in [2] (again), we have

2

Sv = — 2
X7 dimx

(4.5)

and that dx is exact if and only if dim X is exact. Therefore, for every
a € |0, 2] there exist X < Wy, such that 0x = a (exactly, or asymptotically).

V (The index \x). Since Ax = oo for all X < Wy, k = 2,..., to answer
Question 4.1 in the case of the A-scale, one now considers X < W. The
problem concerning a ”continuous” realization of the A-scale had been raised
in [18] (using the terminology of A(p)-sets), and resisted solution for nearly
three decades. It was solved in the affirmative in two landmark papers: in
[16], and later by a different method in [19].

Regarding Question 4.2, I know of a link between combinatorial measure-
ments and the A-scale only for Ax = 25 +2, j € N. (E.g., see [18].) A
precise relation between the A-scale and a tractable ”combinatorial” scale is
an open(-ended) problem.
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5. SOME FURTHER QUESTIONS

5.1. Exact vs. Asymptotic? If an index is asymptotic, then — at least
in principle — it can be resolved on a finer scale. For example, there exist
(random sets) F' c Ey x -+ x Eg such that

Ur(s)

lim sup A 7

§—0

=0 (5.1)

(i. e., dim F' is asymptotic), while for some 3 > 0,

0 <limsup ———%——"—5 < . (5.2)

Certainly in this particular case it is natural to compare ¥ (s) to s”(log s)¢.
In the setting of the previous section, if X < W}, then the challenge is to
pick out the "exact” calibrations based on W ;(s), ¢x(s), and Tx(u), and
derive relations between them. This problem was considered in [9] and [10],
specifically vis a vis sharper resolutions of the dim-, o-, and J-scales.

For every A € (2, 00), there exist spectral sets X < W (based on construc-
tions in [16] and [19]) such that Ax = A ezactly, as well as X < W such that
Ax = A asymptotically. The left-end point of the A-scale is still a mystery,
and its "resolution” is an open(-ended) problem. To wit, whereas Ay = 2
exactly, the class of X ¢ W for which Ax = 2 is not well understood. For
example, the following question is open: are there X < W such that A\x = 2,
and

inf {P(——= Z x| = 1) : finite S « X} > 07 (5.3)
xGS
This question is closely related to an open problem of long standing, stated
first (so far that I know) in [18], and widely known (among harmonic ana-
lysts) as the ”A(2)-set problem.”

5.2. General relations between indices? An obvious question arises: do
the conversion formulas in Section 4 hold in the framework of Section 3?7 In
Section 3, if X is functionally independent, then we can view it as a system of
Rademacher characters on Q = {—1, +1}", in which instance all the relations
are trivially verified. Generally, every countable collection X of {—1,+1}-
valued functions can be naturally viewed as a countable collection of Borel
measurable functions on the compact Abelian group 2 of Section 4 (via the
observation that every countably generated sigma-field can be generated by
a countable collection of Boolean independent sets [17]). However, while the
question concerning conversion formulas can be rephrased in the language
of Section 4, I do not know the answer even in a special case, which is of
interest to harmonic analysts: if X < W is infinite, then do the following
relations hold (cf. (4.3), (4.4), and (4.5)):

2
I+ px

ox = ? (5.4)

(SX = 2pX ? (55)
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5.3. How ”large” is the o-scale? If any two elements of X are function-
ally independent, then ox < 2. (See (3.23).) For o € (2,00), are there
systems X of {—1, +1}-valued functions such that ox = o?
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