
MEASUREMENTS OF INTERDEPENDENCE

RON BLEI

Our theme here is that interdependence can be calibrated by indices
based, separately, on combinatorial measurements, p-variations, and tail-
probability estimates. These notions – that each of the aforementioned is
linked to interdependence – had naturally originated in a context of har-
monic analysis ([1], [2]), and appeared later in stochastic settings (e.g., [12],
[4], [6], [5]). Eventually this (and more) was detailed in [7] – too large a book
(alas!), which at this point almost surely could use a revision... Meanwhile,
I intend here to survey and explain these ideas, and (hopefully) also shed
some new light on them. Because my audience appears fairly heterogenous,
I will stick to genesis, and will discuss interdependence essentially in the
same basic context where I first encountered it. No formal proofs will be
given. I will speak heuristically, but will try to be precise.

1. Functional interdependence – basic notions

Let d ¥ 2 be an integer. Suppose F and Ej , j P rds, are sets, and

fj : F Ñ Ej , j P rds,
are given functions, which we may as well assume to be onto. (As usual, rds
denotes t1, . . . , du.) Nothing is known, or assumed, about structures in F
and Ej .

Question 1.1. How interdependent are f1, . . . , fd?

Of course we need to say what we mean by interdependence and how we
measure it. We begin with the observation that the interdependence of
f1, . . . , fd is expressed, somehow, by the inclusions �

fiptq
�
iPT

: t P
£
iPS

tfi � yiu
( �¡

jPT

Ej , (1.1)

where S � rds, pyi : i P Sq P �
iPS Ei, and T � rdszS. (As usual, tfi � yiu

is the abbreviation for tt P F : fiptq � yiu.) To wit, interdependence is
detected, somehow, by the ”extent” that the left side of (1.1) differs from
the full Cartesian product

�
jPT Ej on the right side.

To illustrate this, and also suggest how to proceed, we consider two ex-
tremal instances. In the first, (1.1) is an equality for S � tju for every j P rds
and all y P Ej . In this case, f1, . . . , fd are viewed as independent functions:
for, here the knowledge that fj � y, y P Ej , implies no information about
the values of fi for i � j. In a second example, opposite to the first, there
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exists j0 P rds such that the left side of (1.1) is a singleton for every y P Ej0 :
here, evaluations of fj0 uniquely determine the values of fi for every i P rds.
Definition 1.1. For a positive integer d ¥ 2, let f1, . . . , fd be functions
from a set F onto sets E1, . . . , Ed, respectively.

I. f1, . . . , fd are functionally independent if for every

py1, . . . , ydq P E1 � � � � � Ed,

there exists t P F such that

fjptq � yj , j P rds.
II. f1, . . . , fd are functionally dependent if there exists j0 P rds such that

for all y P Ej0,
#
 �
fiptq

�
i�j0

: t P tfj0 � yu( � 1.

(# denotes cardinality.)

Given that f1, . . . , fd could be neither functionally independent nor function-
ally dependent, our task will be to calibrate, somehow, the ”gap” between
these two extremes.

To motivate what we do, consider the function

frds � pf1, . . . fdq : F Ñ E1 � � � � � Ed, (1.2)

and its image,

frdspF q �
 �
f1ptq, . . . , fdptq

�
: t P F(. (1.3)

Note that functional independence means simply that the image of frds is
the full Cartesian product,

frdspF q � E1 � � � � � Ed,

which is d�dimensional. At the other end, functional dependence means
that for some j0 P rds there exist functions

θi : Ej0 Ñ Ei, i P rds,
such that

fi � θi � fj0 .
Assuming j0 � 1, let

Θ � pθ2, . . . , θdq : E1 Ñ E2 � � � � � Ed, (1.4)

and note that the image

frdspF q � graph Θ �  �
y,Θpyq� : y P E1u

in this case is a one-dimensional ”curve” (parameterized by E1) in E1 �
� � � � Ed. (Here we still think of ”dimension” intuitively, as the number of
”degrees of freedom.”)
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To view instances of interdependence between the two respective extremes,
take f1, . . . , fd with functionally independent f1, . . . , fk (1   k   d), such
that for all py1, . . . , ykq P E1 � � � � � Ek,

#
 �
fiptq : i ¡ k

�
: t P

k£
i�1

tfi � yiu
( � 1. (1.5)

The ”count” in (1.5) means that there are functions

θi : E1 � � � � � Ek Ñ Ei, i P rds,
such that

fi � θi � frks, (1.6)

where
frks � pf1, . . . , fkq : F Ñ E1 � � � � � Ek.

(Cf. (1.2).) (For i P rks, θi is the canonical projection πi from E1� � � � �Ek
onto Ei:

πipyq � yi, y � pyjqjPrks.q (1.7)

Let (cf. (1.4))

Θk � pθk�1, . . . , θdq : E1 � � � � � Ek Ñ Ek�1 � � � � � Ed, (1.8)

and then note (because f1, . . . , fk are functionally independent) that the
image

frdspF q � graph Θk �
 �

y,Θkpyq
�

: y P
k¡
i�1

Eiu (1.9)

is a k-dimensional ”surface” (parameterized by E1�� � ��Ek) in E1�� � ��Ed.
This suggests that to mark the interdependence of arbitrary f1, . . . , fd,

we need an index associated with frdspF q, which – properly defined – will
effectively be its dimension.

2. Combinatorial dimension and fractional Cartesian products

2.1. Definitions. Given infinite sets E1, . . . , Ed, we consider an infinite
subset

F � E1 � � � � � Ed,

and proceed to define its dimension relative to its ambient d-fold product
E1�� � ��Ed. With no a priori knowledge about structures in E1, . . . , Ed, all
we can do is ”count,” and that is what we do: for every positive integer s, let

ΨF psq � maxt#�
F X pA1 � � � � �Adq

�
: Ai � Ei, #Ai � s, i P rdsu, (2.1)

whence
s ¤ ΨF psq ¤ sd. (2.2)

For example, if F � graph Θk, where Θk is given in (1.8), then

ΨF psq � sk, s P N. (2.3)
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Now define
dimF � lim sup

sÑ8

log ΨF psq
log s

. (2.4)

From (2.2) and (2.4),
1 ¤ dimF ¤ d, (2.5)

and
ΨF psq � sdimF , (2.6)

by which we mean

lim sup
sÑ8

ΨF psq
sη

� 0, η ¡ dimF, (2.7)

and
lim inf
sÑ8

ΨF psq
sη

� 8, η   dimF. (2.8)

At the critical value, if

lim sup
sÑ8

ΨF psq
sdimF

¡ 0, (2.9)

then dimF is said to be exact. Otherwise, if

lim sup
sÑ8

ΨF psq
sdimF

� 0, (2.10)

then dimF is said to be asymptotic. If dimF � α, and

0   lim inf
sÑ8

ΨF psq
sα

¤ lim sup
sÑ8

ΨF psq
sα

  8, (2.11)

then F is said to be an α-product.
The exponent dimF marks the interdependence of coordinates of elements

in F . Specifically, dimF registers the interdependence of the restrictions to
F of the projections πi : F Ñ Ei, i P rds,

πipyq � yi, y � pyjqjPrds P F. (2.12)

We refer to dimF as the combinatorial dimension of F . Indeed, the combi-
natorial dimension index provides a calibration of a basic counting principle:

(i) For every η ¡ dimF , there exists Kη � K ¡ 0, so that for every
s P N and all s-sets A1 � E1, . . . , Ad � Ed, if N is the number of samplings
x1 P A1, . . . , xd P Ad, subject to the constraint that px1, . . . , xdq P F, then

N ¤ sη. (2.13)

(ii) For every η   dimF , and all L ¡ 0 (as large as we please), there exist
s-sets A1 � E1, . . . , Ad � Ed, such that if N is the number of samplings
x1 P A1, . . . , xd P Ad, subject to the constraint that px1, . . . , xdq P F , then

N ¡ Lsη. (2.14)
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2.2. Fractional Cartesian Products. Fix an integer n ¡ 1, and let
D1, . . . , Dn be infinite sets. For S � rns, define the projection

πS :
n¡
j�1

Dj Ñ
¡
jPS

Dj (2.15)

by

πSpxq � pxj : j P Sq, x � px1, . . . , xnq P
n¡
j�1

Dj . (2.16)

Let U � tS1, . . . , Sdu be a cover of rns; that is, Si � rns for i P rds, and
d¤
i�1

Si � rns. (2.17)

Denote (for notational convenience)

D � D1 � � � � �Dn, (2.18)

and define the fractional Cartesian product

DU :�  �
πS1pxq, . . . , πSdpxq

�
: x P D

(
. (2.19)

Specifically, in the setting of Section 1, we take

fi � πSi , i P rds, (2.20)

F � D, (2.21)

Ei �
¡
jPSi

Dj , i P rds, (2.22)

and (cf. (1.2) and (1.3)) take frds to be the function ΠU �
�
πS1 , . . . , πSd

�
,

ΠU : D Ñ �¡
jPS1

Dj

�� � � � � �¡
jPSd

Dj

�
. (2.23)

Then,
DU :� ΠU pDq � �¡

jPS1

Dj

�� � � � � �¡
jPSd

Dj

�
. (2.24)

We refer to
��

jPS1
Dj

�� � � � � ��
jPSd

Dj

�
as the ambient product of DU .

In this context, dim DU marks the interdependence of the projections

πS : D1 � � � � �Dn Ñ
¡
iPS

Di, S P U . (2.25)

Fractional Cartesian products provide natural examples of q-products for
every rational q � n

k ¥ 1. We state below two archetypal instances:

Example 2.1. (Cf. [1].) If U is the cover of rns comprising all k-subsets
of rns, in which case

#U �
�
n

k



� d, (2.26)

then, there exist constants κ1 ¡ 0 and κ2 ¡ 0 such that for all integers s ¥ 1,

κ1s
n
k ¤ ΨDU psq ¤ κ2s

n
k ; (2.27)
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i.e., DU is a n
k -product, whose ambient product is

�
n
k

�
-dimensional.

Example 2.2. (See [3].) Let U be a cover of rns comprising k-subsets of
rns, such that for every j P rns,

#tS P U : j P Su � k, (2.28)

whence

#U � n � d. (2.29)

Then, there exist constants κ1 ¡ 0 and κ2 ¡ 0 (different from the constants
in (2.27)) such that for all integers s ¥ 1,

κ1s
n
k ¤ ΨDU psq ¤ κ2s

n
k ; (2.30)

i.e., DU is a n
k -product, whose ambient product is n-dimensional.

These two examples are instances – in fact, precursors – of a general result
in [14], that the combinatorial dimension of a fractional Cartesian product
is the solution to a linear programming problem:

Theorem 2.1. Let U be a cover of rns, and let

α � αpUq � max
 
v1� � � � � vn :

¸
jPS

vj ¤ 1, S P U ; vi ¥ 0, i P rns(. (2.31)

If D1, . . . , Dn are infinite sets, and DU is the fractional Cartesian product
defined in (2.19), then DU is an α-product. Moreover (cf. (2.11)),

lim inf
sÑ8

ΨDU psq
sα

� lim sup
sÑ8

ΨDU psq
sα

� 1. (2.32)

2.3. Deterministic designs vs. random sets. Fractional Cartesian prod-
ucts provide explicit examples of q�dimensional sets for every rational q ¥ 1.
Notably, if q � n

k , where n and k are relatively prime, then the ambient
product of an n

k -dimensional fractional Cartesian product must be at least
n-dimensional. (In this sense, Example 2.2 is optimal.) Settling an obvious
question, for all integers d ¡ 1 and arbitrary α P r1, ds, there indeed exist
α-(combinatorial) dimensional subsets in ambient d-dimensional products.
However, except for finitely many α P r1, ds, hitherto all such examples have
been randomly produced; see [2], [13], [8]. An open question remains: how
to construct deterministically in a given ambient d-fold Cartesian product
α� dimensional sets for arbitrary α P r1, ds.
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3. Interdependence of infinitely many functions

3.1. The setup. Taking up the infinite-dimensional case (d � 8), we now
consider the interdependence of countably many functions

χj : Ω Ñ Ej , j P N.

As before, we make no a priori assumptions about structures in Ω and Ej ,
but assume this time that the respective ranges are finite. We consider the
simplest case

#Ej � 2, j P N,
and may as well (for reasons that will soon become apparent) let

Ej � t�1,�1u, j P N.

(For example, think of a ”walk” with countably many steps, to the right or
to the left, with no a priori assumptions or knowledge about their interde-
pendence.)

As in the case d   8, we agree (speaking heuristically) that interdepen-
dence here means a link between evaluations of χi for i P T , T � N,
and evaluations of χi for i P S, S � NzT . As in the case d   8, inde-
pendence – absence of any links – simply means: for every choice of signs
εj � �1, j P N, there exists t P Ω, such that χjptq � εj , j P N. (Cf.
functional independence, as per Definition 1.1.) To be sure, in this instance
we obtain no information about evaluations of χi for i P T from evaluations
of χi for i P S � NzT . As before, to gauge interdpendence, we consider the
function (cf. (1.2), (1.3))

X � pχ1, . . . , χn, . . . q : Ω Ñ t�1,�1uN, (3.1)

its image in t�1, 1uN

XpΩq �  �
χ1ptq, . . . , χnptq, . . .

�
: t P Ω

( � t�1,�1uN, (3.2)

and then posit that to gauge the interdependence of the χj , we need to
assess the extent to which XpΩq differs from t�1, 1uN.

3.2. A combinatorial measurement: the exponent ρX . To facilitate
discussions (here, and later in the sequel), denote X � tχj : j P Nu. (We
distinguish between the set of functions X, and the function X defined in
(3.1).) For S � X, define the function

XS : Ω Ñ t�1,�1uS

by
XSptq �

�
χptq : χ P S�, t P Ω,

and consider its image

XSpΩq :�  
XSptq : t P Ω

( � t�1,�1uS . (3.3)

Let

ΦXpsq � mint#XSpΩq : S � X, #S � su. (3.4)
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We note
2 ¤ ΦXpsq ¤ 2s, s P N, (3.5)

and then, to make precise the notion that the ”closer” ΦXpsq is to 2s the
”lesser” the interdependence in X (cf. Sect. 1), we define

ρX � lim inf
sÑ8

log log ΦXpsq
log s

; (3.6)

to wit, larger ρX conveys less interdependence. From (3.5) and (3.6),

0 ¤ ρX ¤ 1, (3.7)
and

ΦXpsq � 2s
ρX , (3.8)

which means

lim inf
sÑ8

ΦXpsq
2sη

� 8, η   ρX , (3.9)

and

lim sup
sÑ8

ΦXpsq
2sη

� 0, η ¡ ρX . (3.10)

3.3. A functional-analytic measurement: p-variation. First suppose
thatX is functionally independent (according to Definition 1.1, with d � 8).
In this case, if S is a finite subset of X, then for every choice of signs
εχ � �1, χ P S,

}
¸
χPS

εχχ}8 � #S (3.11)

(} � }8 = supremum-norm over Ω). This is easy to verify: simply solve for
t P Ω such that

χptq � εχ, χ P S, (3.12)
which is possible by functional independence. In general, however,

maximizing |
¸
χPS

εχχptq| over t P Ω (3.13)

(left side of (3.11)) is constrained by the interdependence of the χ P S, which
impedes the simultaneous solution of all equations in (3.12). The idea then
is to assess interdependence via its constraining effect on (3.13). To this
end, we use the lp-norm, p ¥ 1 (p-variation). Specifically, we use the notion
that increasing interdependence – making a solution of (3.12) less feasible
– decreases the maximum obtained in (3.13), and effectively increases the
”smallest” p P r1,8q such that

}
¸
χPS

εχχ}8 ¥ � ¸
χPS

1p
� 1
p � �

#S
� 1
p , finite S � X, pεχq P t�1, 1uS . (3.14)
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(These heuristics are supported by examples, and relations between the
various calibrations; see Section 4.)

To make matters precise, define

φXpsq � mint}
¸
χPS

εχχ}8 : S � X, |S| � s, pεχq P t�1, 1uSu, (3.15)

and

σX � lim sup
sÑ8

log s
log φXpsq . (3.16)

The exponent σX is the ”smallest” p that ”works” in (3.14). We write

φXpsq � s
1
σX , (3.17)

by which we mean (as usual)

lim inf
sÑ8

φXpsq
s

1
η

� 8, η ¡ σX , (3.18)

and

lim sup
sÑ8

φXpsq
s

1
η

� 0, η   σX . (3.19)

(Cf. (2.7), (2.8), (3.9), (3.10).) The index σX is exact if

lim inf
sÑ8

φXpsq
s

1
σX

¡ 0, (3.20)

and asymtotic if

lim inf
sÑ8

φXpsq
s

1
σX

� 0. (3.21)

(Cf. (2.9) and (2.10).) Because

}
¸
χPS

εχχ}8 ¤ #S, pεχq P t�1, 1uS

for all finite S � X (obviously!), we have

σX ¥ 1. (3.22)

Moreover, if we suppose that any two functions in X are functionally inde-
pendent, then we deduce (via an exercise)

1 ¤ σX ¤ 2. (3.23)

Indeed, in a context of harmonic analysis, if X is an infinite spectral set,
then σX is its Sidon exponent, and σX P r1, 2s. (See Section 4, and Section
5.3.)
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3.4. A statistical measurement: tail-probability estimates. Next we
measure interdependence via a ”statistical” notion, that with less interde-
pendence in X, cancellations are more likely in¸

χPS

χ, finite S � X. (3.24)

To make this precise, we let XSpΩq (finite S � X) be a uniform probability
space, and denote the uniform probability measure on it by PS ; i.e., ,

PSptyuq � 1
#XSpΩq , y P XSpΩq. (3.25)

Consider the functions in S as random variables on pXSpΩq,PSq, where

χpyq � ypχq, y P XSpΩq � t�1� 1uS . (3.26)

(See (3.3).) We can now assess the likelihood of cancellations in (3.24) via
estimates on tail-probabilities

PS
��� ¸
χPS

χ
�� ¥ u

�
, finite S � X, u ¡ 0, (3.27)

which we then use to calibrate interdependence in X.
We note that if the χ P X are functionally independent (as functions on

Ω), then every finite S � X is statistically independent (as random variables
on pXSpΩq,PSq), and therefore by the classical Khintchin inequalities (e.g.,
see [15]),

PS
� 1?

#S

�� ¸
χPS

χ
�� ¥ u

� ¤ expp�u2q, finite S � X, u ¡ 0. (3.28)

The ”sub-Gaussian” estimates in (3.28) are indeed optimal in the case of
independent X (e.g., cf. [11]), and will effectively mark the left-end point of
a scale of interdependence.

Locating the right-end point of the scale is somewhat arbitrary, and is
in fact tied to a long-standing open question known as the ”Λp2q-set prob-
lem”; e.g., see Section 5.1. In our discussion here, we assume that X at
the very least has the property that every finite S � X is orthogonal in
L2

�
XSpΩq,PS

�
. (Ruling out ”too high” a level of functional dependence in

X, this assumption postulates a minimal amount of ”randomness,” and –
as we see in the next section – still makes the mathematics here interest-
ing...) With this assumption and Markov’s inequality, we are guaranteed
that always, for all finite S � X,

PS
� 1?

#S

�� ¸
χPS

χ
�� ¥ u

� ¤ 1
u2
, u ¡ 0. (3.29)

We define for u ¡ 0,

TXpuq � sup
 
PS

� 1?
#S

�� ¸
χPS

χ
�� ¥ u

�
: finite S � X

(
. (3.30)
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From (3.29) and the optimality of (3.28), we obtain for some κ ¡ 0

expp�κu2q ¤ TXpuq ¤ 1
u2
, u ¡ 0. (3.31)

We now posit that the ”level” of interdependence in X corresponds to
the ”location” of TX on the ”interval,” whose respective ”end-points” are
expp�κu2q and 1

u2 . Two distinct scales are obtained, effectively marked by
expp�κuαq (α P r0, 2s), and by 1

uξ
(ξ P r2,8s). To calibrate these scales, we

define

δX � lim inf
uÑ8

log log TXpuq�1

log u
, (3.32)

and

λX � lim inf
uÑ8

log TXpuq�1

log u
. (3.33)

By (3.31),
δX P r0, 2s, (3.34)

and
λX P r2,8s, (3.35)

where, on each scale, increasing index conveys decreasing interdependence.
The two scales complement each other: the λ-scale is a resolution of the
end-point δX � 0 on the δ-scale, and the δ-scale is a resolution of the right
end-point λX � 8 on the λ-scale. If δX P p0, 2s or λX P r2,8q, then (re-
spectively)

TXpuq � expp�uδX q, (3.36)

or
TXpuq � 1

u�λX
, (3.37)

each of which means (respectively)

lim sup
uÑ8

TXpuq
expp�uηq � 0, η   δX , (3.38)

lim inf
uÑ8

TXpuq
expp�uηq � 8, η ¡ δX , (3.39)

and

lim sup
uÑ8

TXpuq
u�η

� 0, η   λX , (3.40)

lim inf
uÑ8

TXpuq
u�η

� 8, η ¡ λX . (3.41)



12 RON BLEI

If

lim inf
uÑ8

log TXpuq�1

uδX
¡ 0, (3.42)

or

lim sup
uÑ8

TXpuq
u�λX

  8, (3.43)

then (respectively) δX and λX are said to be exact. Otherwise, if either

lim inf
uÑ8

log TXpuq�1

uδX
� 0 (3.44)

or
lim sup
uÑ8

TXpuq
u�λX

� 8, (3.45)

then the indices are said to be asymptotic.

4. Examples and conversion formulas

We have:

dimF P r1,8q, ρX P r0, 1s, σX P r1,8q, δX P r0, 2s, λX P r2,8s.
Question 4.1. Can every point on each scale be realized as an evaluation
of the respective index?

We have already noted (in Section 2.3) an affirmative answer in the case of
combinatorial dimension. But what about the other indices?

A second question concerns links between the indices. If indeed each index
registers, separately, a degree of interdependence, then we should expect
conversion formulas between them:

Question 4.2. What relations exist between the indices?

4.1. The view through harmonic analysis. We take the compact Abelian
group Ω � t�1, 1uN, with coordinate-wise multiplication, the product topol-
ogy, and the Haar measure P on it (infinite product of the uniform measure
on t�1,�1u). Let W � pΩ denote its group of characters (Walsh characters);
let R denote the set of projections from Ω onto its independent coordinates
(Rademacher characters), and let Wk denote the set of Walsh characters of
order k (products of k distinct Rademacher characters). The Rademacher
characters form an algebraically independent ”basis” for the Walsh charac-
ters. Specifically,

W �
8¤
k�0

Wk ; (4.1)

W0 � tr0u, where r0 is the function that identically equals 1 on Ω.
We consider first the ”finite-dimensional” case. Fix an integer k ¥ 2, and

let X � Wk be infinite. The objective (as always) is to gauge the interde-
pendence of elements in X.
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I (Combinatorial dimension). By the algebraic independence of R, we nat-
urally identify X with a subset X̃ of Rk. Specifically, let

X̃ �  pr1, . . . , rkq P Rk : r1 � � � rk P X
(
, (4.2)

and then (unambiguously) define dimF to be dim X̃. In our present context,
dimX registers the ”amount of freedom” we have in choosing k distinct
Rademacher characters such that their product is in X.

By results stated in Section 2.3, for every α P r1, ks, there exist X � Wk

such that dimX � α exactly, as well as X � Wk such that dimX � α
asymptotically.

II (The index ρX). Following the connections between the combinatorial
measurements applied to XpΩq (as per Section 3.2) and the combinatorial
measurements applied to X̃ (as per Section 2.3), we obtain

ρX � 1
dimX

. (4.3)

III (The Sidon exponent σX). Following results in [2], we have

σX � 2
1� 1

dimX

, (4.4)

and that σX is exact if and only if dimX is exact. This relation implies
that for every α P r1, 2s, there exist X � Wk such that σX � α (exactly, or
asymptotically).

IV (The index δX). Following results in [2] (again), we have

δX � 2
dimX

, (4.5)

and that δX is exact if and only if dimX is exact. Therefore, for every
α P r0, 2s there exist X �Wk such that δX � α (exactly, or asymptotically).

V (The index λX). Since λX � 8 for all X � Wk, k � 2, . . . , to answer
Question 4.1 in the case of the λ-scale, one now considers X � W . The
problem concerning a ”continuous” realization of the λ-scale had been raised
in [18] (using the terminology of Λppq-sets), and resisted solution for nearly
three decades. It was solved in the affirmative in two landmark papers: in
[16], and later by a different method in [19].

Regarding Question 4.2, I know of a link between combinatorial measure-
ments and the λ-scale only for λX � 2j � 2, j P N. (E.g., see [18].) A
precise relation between the λ-scale and a tractable ”combinatorial” scale is
an open(-ended) problem.



14 RON BLEI

5. Some further questions

5.1. Exact vs. Asymptotic? If an index is asymptotic, then – at least
in principle – it can be resolved on a finer scale. For example, there exist
(random sets) F � E1 � � � � � Ed such that

lim sup
sÑ8

ΨF psq
sdimF

� 0 (5.1)

(i. e., dimF is asymptotic), while for some β ¡ 0,

0   lim sup
sÑ8

ΨF psq
sdimF plog sqβ   8. (5.2)

Certainly in this particular case it is natural to compare ΨF psq to sηplog sqξ.
In the setting of the previous section, if X � Wk, then the challenge is to
pick out the ”exact” calibrations based on ΨX̃psq, φXpsq, and TXpuq, and
derive relations between them. This problem was considered in [9] and [10],
specifically vis a vis sharper resolutions of the dim-, σ-, and δ-scales.

For every λ P p2,8q, there exist spectral sets X �W (based on construc-
tions in [16] and [19]) such that λX � λ exactly, as well as X �W such that
λX � λ asymptotically. The left-end point of the λ-scale is still a mystery,
and its ”resolution” is an open(-ended) problem. To wit, whereas λW � 2
exactly, the class of X � W for which λX � 2 is not well understood. For
example, the following question is open: are there X �W such that λX � 2,
and

inf
 
P
� 1?

#S

�� ¸
χPS

χ
�� ¥ 1

�
: finite S � X

( ¡ 0? (5.3)

This question is closely related to an open problem of long standing, stated
first (so far that I know) in [18], and widely known (among harmonic ana-
lysts) as the ”Λp2q-set problem.”

5.2. General relations between indices? An obvious question arises: do
the conversion formulas in Section 4 hold in the framework of Section 3? In
Section 3, if X is functionally independent, then we can view it as a system of
Rademacher characters on Ω � t�1,�1uN, in which instance all the relations
are trivially verified. Generally, every countable collection X of t�1,�1u-
valued functions can be naturally viewed as a countable collection of Borel
measurable functions on the compact Abelian group Ω of Section 4 (via the
observation that every countably generated sigma-field can be generated by
a countable collection of Boolean independent sets [17]). However, while the
question concerning conversion formulas can be rephrased in the language
of Section 4, I do not know the answer even in a special case, which is of
interest to harmonic analysts: if X � W is infinite, then do the following
relations hold (cf. (4.3), (4.4), and (4.5)):

σX � 2
1� ρX

? (5.4)

δX � 2ρX ? (5.5)
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5.3. How ”large” is the σ-scale? If any two elements of X are function-
ally independent, then σX ¤ 2. (See (3.23).) For σ P p2,8q, are there
systems X of t�1,�1u-valued functions such that σX � σ?
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