#### MEASUREMENTS OF INTERDEPENDENCE

#### RON BLEI

Our theme here is that interdependence can be calibrated by indices based, separately, on combinatorial measurements, p-variations, and tail-probability estimates. These notions – that each of the aforementioned is linked to interdependence – had naturally originated in a context of harmonic analysis ([1], [2]), and appeared later in stochastic settings (e.g., [12], [4], [6], [5]). Eventually this (and more) was detailed in [7] – too large a book (alas!), which at this point almost surely could use a revision... Meanwhile, I intend here to survey and explain these ideas, and (hopefully) also shed some new light on them. Because my audience appears fairly heterogenous, I will stick to genesis, and will discuss interdependence essentially in the same basic context where I first encountered it. No formal proofs will be given. I will speak heuristically, but will try to be precise.

# 1. Functional interdependence – basic notions

Let  $d \ge 2$  be an integer. Suppose F and  $E_i$ ,  $j \in [d]$ , are sets, and

$$f_j: F \to E_j, \ j \in [d],$$

are given functions, which we may as well assume to be *onto*. (As usual, [d] denotes  $\{1, \ldots, d\}$ .) Nothing is known, or assumed, about structures in F and  $E_j$ .

# **Question 1.1.** How interdependent are $f_1, \ldots, f_d$ ?

Of course we need to say what we mean by *interdependence* and how we measure it. We begin with the observation that the *interdependence* of  $f_1, \ldots, f_d$  is expressed, somehow, by the inclusions

$$\{(f_i(t))_{i \in T} : t \in \bigcap_{i \in S} \{f_i = y_i\}\} \subset \underset{j \in T}{\times} E_j,$$
 (1.1)

where  $S \subsetneq [d]$ ,  $(y_i : i \in S) \in \times_{i \in S} E_i$ , and  $T \subset [d] \backslash S$ . (As usual,  $\{f_i = y_i\}$  is the abbreviation for  $\{t \in F : f_i(t) = y_i\}$ .) To wit, *interdependence* is detected, somehow, by the "extent" that the left side of (1.1) differs from the full Cartesian product  $\times_{i \in T} E_j$  on the right side.

To illustrate this, and also suggest how to proceed, we consider two extremal instances. In the first, (1.1) is an equality for  $S = \{j\}$  for every  $j \in [d]$  and all  $y \in E_j$ . In this case,  $f_1, \ldots, f_d$  are viewed as *independent* functions: for, here the knowledge that  $f_j = y$ ,  $y \in E_j$ , implies no information about the values of  $f_i$  for  $i \neq j$ . In a second example, opposite to the first, there

Date: October 24, 2010.

exists  $j_0 \in [d]$  such that the left side of (1.1) is a singleton for every  $y \in E_{j_0}$ : here, evaluations of  $f_{j_0}$  uniquely determine the values of  $f_i$  for every  $i \in [d]$ .

**Definition 1.1.** For a positive integer  $d \ge 2$ , let  $f_1, \ldots, f_d$  be functions from a set F onto sets  $E_1, \ldots, E_d$ , respectively.

I.  $f_1, \ldots, f_d$  are functionally independent if for every

$$(y_1,\ldots,y_d)\in E_1\times\cdots\times E_d,$$

there exists  $t \in F$  such that

$$f_j(t) = y_j, \quad j \in [d].$$

II.  $f_1, \ldots, f_d$  are functionally dependent if there exists  $j_0 \in [d]$  such that for all  $y \in E_{j_0}$ ,

$$\#\{(f_i(t))_{i\neq j_0}: t\in \{f_{j_0}=y\}\}=1.$$

(# denotes cardinality.)

Given that  $f_1, \ldots, f_d$  could be neither functionally independent nor functionally dependent, our task will be to calibrate, somehow, the "gap" between these two extremes.

To motivate what we do, consider the function

$$\mathbf{f}_{[d]} = (f_1, \dots f_d) : F \to E_1 \times \dots \times E_d, \tag{1.2}$$

and its image,

$$\mathbf{f}_{[d]}(F) = \{ (f_1(t), \dots, f_d(t)) : t \in F \}. \tag{1.3}$$

Note that functional independence means simply that the image of  $\mathbf{f}_{[d]}$  is the full Cartesian product,

$$\mathbf{f}_{[d]}(F) = E_1 \times \cdots \times E_d,$$

which is d-dimensional. At the other end, functional dependence means that for some  $j_0 \in [d]$  there exist functions

$$\theta_i: E_{i_0} \to E_i, i \in [d],$$

such that

$$f_i = \theta_i \circ f_{i_0}$$
.

Assuming  $j_0 = 1$ , let

$$\Theta = (\theta_2, \dots, \theta_d) : E_1 \to E_2 \times \dots \times E_d, \tag{1.4}$$

and note that the image

$$\mathbf{f}_{[d]}(F) = \operatorname{graph} \Theta = \{(y, \Theta(y)) : y \in E_1\}$$

in this case is a *one-dimensional* "curve" (parameterized by  $E_1$ ) in  $E_1 \times \cdots \times E_d$ . (Here we still think of "dimension" intuitively, as the number of "degrees of freedom.")

To view instances of *interdependence* between the two respective extremes, take  $f_1, \ldots, f_d$  with functionally independent  $f_1, \ldots, f_k$  (1 < k < d), such that for all  $(y_1, \ldots, y_k) \in E_1 \times \cdots \times E_k$ ,

$$\#\{(f_i(t):i>k):t\in\bigcap_{i=1}^k\{f_i=y_i\}\}=1.$$
(1.5)

The "count" in (1.5) means that there are functions

$$\theta_i: E_1 \times \cdots \times E_k \to E_i, i \in [d],$$

such that

$$f_i = \theta_i \circ \mathbf{f}_{[k]}, \tag{1.6}$$

where

$$\mathbf{f}_{[k]} = (f_1, \dots, f_k) : F \to E_1 \times \dots \times E_k.$$

(Cf. (1.2).) (For  $i \in [k]$ ,  $\theta_i$  is the canonical projection  $\pi_i$  from  $E_1 \times \cdots \times E_k$  onto  $E_i$ :

$$\pi_i(\mathbf{y}) = y_i, \quad \mathbf{y} = (y_j)_{j \in [k]}.$$
 (1.7)

Let (cf. (1.4))

$$\Theta_k = (\theta_{k+1}, \dots, \theta_d) : E_1 \times \dots \times E_k \to E_{k+1} \times \dots \times E_d, \tag{1.8}$$

and then note (because  $f_1, \ldots, f_k$  are functionally independent) that the image

$$\mathbf{f}_{[d]}(F) = \operatorname{graph} \Theta_k = \{ (\mathbf{y}, \Theta_k(\mathbf{y})) : \mathbf{y} \in \bigotimes_{i=1}^k E_i \}$$
 (1.9)

is a k-dimensional "surface" (parameterized by  $E_1 \times \cdots \times E_k$ ) in  $E_1 \times \cdots \times E_d$ . This suggests that to mark the interdependence of arbitrary  $f_1, \ldots, f_d$ , we need an index associated with  $\mathbf{f}_{[d]}(F)$ , which – properly defined – will effectively be its dimension.

#### 2. Combinatorial dimension and fractional Cartesian products

2.1. **Definitions.** Given infinite sets  $E_1, \ldots, E_d$ , we consider an infinite subset

$$F \subset E_1 \times \cdots \times E_d$$

and proceed to define its dimension relative to its ambient d-fold product  $E_1 \times \cdots \times E_d$ . With no a priori knowledge about structures in  $E_1, \ldots, E_d$ , all we can do is "count," and that is what we do: for every positive integer s, let

$$\Psi_F(s) = \max\{\#(F \cap (A_1 \times \dots \times A_d)) : A_i \subset E_i, \ \#A_i = s, \ i \in [d]\}, \ (2.1)$$

whence

$$s \leqslant \Psi_F(s) \leqslant s^d. \tag{2.2}$$

For example, if  $F = \operatorname{graph} \Theta_k$ , where  $\Theta_k$  is given in (1.8), then

$$\Psi_F(s) = s^k, \quad s \in \mathbb{N}. \tag{2.3}$$

Now define

$$\dim F = \limsup_{s \to \infty} \frac{\log \Psi_F(s)}{\log s}.$$
 (2.4)

From (2.2) and (2.4),

$$1 \leqslant \dim F \leqslant d,\tag{2.5}$$

and

$$\Psi_F(s) \sim s^{\dim F},\tag{2.6}$$

by which we mean

$$\limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\eta}} = 0, \quad \eta > \dim F, \tag{2.7}$$

and

$$\liminf_{s \to \infty} \frac{\Psi_F(s)}{s^{\eta}} = \infty, \quad \eta < \dim F.$$
(2.8)

At the critical value, if

$$\limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\dim F}} > 0, \tag{2.9}$$

then  $\dim F$  is said to be *exact*. Otherwise, if

$$\limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\dim F}} = 0,$$
(2.10)

then dim F is said to be asymptotic. If dim  $F = \alpha$ , and

$$0 < \liminf_{s \to \infty} \frac{\Psi_F(s)}{s^{\alpha}} \leqslant \limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\alpha}} < \infty, \tag{2.11}$$

then F is said to be an  $\alpha$ -product.

The exponent dim F marks the interdependence of coordinates of elements in F. Specifically, dim F registers the interdependence of the restrictions to F of the projections  $\pi_i: F \to E_i, \ i \in [d]$ ,

$$\pi_i(\mathbf{y}) = y_i, \quad \mathbf{y} = (y_j)_{j \in [d]} \in F. \tag{2.12}$$

We refer to  $\dim F$  as the *combinatorial dimension* of F. Indeed, the *combinatorial dimension* index provides a calibration of a basic counting principle:

(i) For every  $\eta > \dim F$ , there exists  $K_{\eta} = K > 0$ , so that for every  $s \in \mathbb{N}$  and all s-sets  $A_1 \subset E_1, \ldots, A_d \subset E_d$ , if N is the number of samplings  $x_1 \in A_1, \ldots, x_d \in A_d$ , subject to the constraint that  $(x_1, \ldots, x_d) \in F$ , then

$$N \leqslant s^{\eta}. \tag{2.13}$$

(ii) For every  $\eta < \dim F$ , and all L > 0 (as large as we please), there exist s-sets  $A_1 \subset E_1, \ldots, A_d \subset E_d$ , such that if N is the number of samplings  $x_1 \in A_1, \ldots, x_d \in A_d$ , subject to the constraint that  $(x_1, \ldots, x_d) \in F$ , then

$$N > Ls^{\eta}. \tag{2.14}$$

2.2. Fractional Cartesian Products. Fix an integer n > 1, and let  $D_1, \ldots, D_n$  be infinite sets. For  $S \subset [n]$ , define the projection

$$\pi_S: \underset{j=1}{\overset{n}{\times}} D_j \to \underset{j \in S}{\overset{n}{\times}} D_j \tag{2.15}$$

by

$$\pi_S(\mathbf{x}) = (x_j : j \in S), \quad \mathbf{x} = (x_1, \dots, x_n) \in \sum_{j=1}^n D_j.$$
(2.16)

Let  $\mathcal{U} = \{S_1, \dots, S_d\}$  be a cover of [n]; that is,  $S_i \subset [n]$  for  $i \in [d]$ , and

$$\bigcup_{i=1}^{d} S_i = [n]. {(2.17)}$$

Denote (for notational convenience)

$$\mathbf{D} = D_1 \times \dots \times D_n, \tag{2.18}$$

and define the fractional Cartesian product

$$\mathbf{D}^{\mathcal{U}} := \left\{ \left( \pi_{S_1}(\mathbf{x}), \dots, \pi_{S_d}(\mathbf{x}) \right) : \mathbf{x} \in \mathbf{D} \right\}. \tag{2.19}$$

Specifically, in the setting of Section 1, we take

$$f_i = \pi_{S_i}, \quad i \in [d], \tag{2.20}$$

$$F = \mathbf{D},\tag{2.21}$$

$$E_i = \underset{j \in S_i}{\times} D_j, \quad i \in [d], \tag{2.22}$$

and (cf. (1.2) and (1.3)) take  $\mathbf{f}_{[d]}$  to be the function  $\Pi_{\mathcal{U}} = (\pi_{S_1}, \dots, \pi_{S_d})$ ,

$$\Pi_{\mathcal{U}}: \mathbf{D} \to \left( \underset{j \in S_1}{\times} D_j \right) \times \dots \times \left( \underset{j \in S_d}{\times} D_j \right).$$
 (2.23)

Then,

$$\mathbf{D}^{\mathcal{U}} := \Pi_{\mathcal{U}}(\mathbf{D}) \subset \left( \underset{j \in S_1}{\times} D_j \right) \times \cdots \times \left( \underset{j \in S_d}{\times} D_j \right). \tag{2.24}$$

We refer to  $(\times_{j \in S_1} D_j) \times \cdots \times (\times_{j \in S_d} D_j)$  as the ambient product of  $\mathbf{D}^{\mathcal{U}}$ . In this context, dim  $\mathbf{D}^{\mathcal{U}}$  marks the interdependence of the projections

$$\pi_S: D_1 \times \dots \times D_n \to \underset{i \in S}{\times} D_i, \quad S \in \mathcal{U}.$$
 (2.25)

Fractional Cartesian products provide natural examples of q-products for every rational  $q = \frac{n}{k} \ge 1$ . We state below two archetypal instances:

**Example 2.1.** (Cf. [1].) If  $\mathcal{U}$  is the cover of [n] comprising all k-subsets of [n], in which case

$$\#\mathcal{U} = \binom{n}{k} = d,\tag{2.26}$$

then, there exist constants  $\kappa_1 > 0$  and  $\kappa_2 > 0$  such that for all integers  $s \geqslant 1$ ,

$$\kappa_1 s^{\frac{n}{k}} \leqslant \Psi_{\mathbf{D}^{\mathcal{U}}}(s) \leqslant \kappa_2 s^{\frac{n}{k}}; \tag{2.27}$$

i.e.,  $\mathbf{D}^{\mathcal{U}}$  is a  $\frac{n}{k}$ -product, whose ambient product is  $\binom{n}{k}$ -dimensional.

**Example 2.2.** (See [3].) Let  $\mathcal{U}$  be a cover of [n] comprising k-subsets of [n], such that for every  $j \in [n]$ ,

$$\#\{S \in \mathcal{U} : j \in S\} = k,$$
 (2.28)

whence

$$\#\mathcal{U} = n = d. \tag{2.29}$$

Then, there exist constants  $\kappa_1 > 0$  and  $\kappa_2 > 0$  (different from the constants in (2.27)) such that for all integers  $s \ge 1$ ,

$$\kappa_1 s^{\frac{n}{k}} \leqslant \Psi_{\mathbf{D}} u(s) \leqslant \kappa_2 s^{\frac{n}{k}}; \tag{2.30}$$

i.e.,  $\mathbf{D}^{\mathcal{U}}$  is a  $\frac{n}{k}$ -product, whose ambient product is n-dimensional.

These two examples are instances – in fact, precursors – of a general result in [14], that the combinatorial dimension of a fractional Cartesian product is the solution to a linear programming problem:

**Theorem 2.1.** Let  $\mathcal{U}$  be a cover of [n], and let

$$\alpha = \alpha(\mathcal{U}) = \max \{v_1 + \dots + v_n : \sum_{j \in S} v_j \le 1, \ S \in \mathcal{U}; \ v_i \ge 0, \ i \in [n] \}.$$
 (2.31)

If  $D_1, \ldots, D_n$  are infinite sets, and  $\mathbf{D}^{\mathcal{U}}$  is the fractional Cartesian product defined in (2.19), then  $\mathbf{D}^{\mathcal{U}}$  is an  $\alpha$ -product. Moreover (cf. (2.11)),

$$\liminf_{s \to \infty} \frac{\Psi_{\mathbf{D}^{\mathcal{U}}}(s)}{s^{\alpha}} = \limsup_{s \to \infty} \frac{\Psi_{\mathbf{D}^{\mathcal{U}}}(s)}{s^{\alpha}} = 1.$$
(2.32)

2.3. Deterministic designs vs. random sets. Fractional Cartesian products provide explicit examples of q-dimensional sets for every rational  $q \ge 1$ . Notably, if  $q = \frac{n}{k}$ , where n and k are relatively prime, then the ambient product of an  $\frac{n}{k}$ -dimensional fractional Cartesian product must be at least n-dimensional. (In this sense, Example 2.2 is optimal.) Settling an obvious question, for all integers d > 1 and arbitrary  $\alpha \in [1, d]$ , there indeed exist  $\alpha$ -(combinatorial) dimensional subsets in ambient d-dimensional products. However, except for finitely many  $\alpha \in [1, d]$ , hitherto all such examples have been randomly produced; see [2], [13], [8]. An open question remains: how to construct deterministically in a given ambient d-fold Cartesian product  $\alpha$ - dimensional sets for arbitrary  $\alpha \in [1, d]$ .

#### 3. Interdependence of infinitely many functions

3.1. The setup. Taking up the infinite-dimensional case  $(d = \infty)$ , we now consider the interdependence of countably many functions

$$\chi_j: \Omega \to E_j, \quad j \in \mathbb{N}.$$

As before, we make no *a priori* assumptions about structures in  $\Omega$  and  $E_j$ , but assume this time that the respective ranges are finite. We consider the simplest case

$$\#E_i = 2, j \in \mathbb{N},$$

and may as well (for reasons that will soon become apparent) let

$$E_j = \{-1, +1\}, j \in \mathbb{N}.$$

(For example, think of a "walk" with countably many steps, to the right or to the left, with no  $a\ priori$  assumptions or knowledge about their interdependence.)

As in the case  $d < \infty$ , we agree (speaking heuristically) that interdependence here means a link between evaluations of  $\chi_i$  for  $i \in T$ ,  $T \subset \mathbb{N}$ , and evaluations of  $\chi_i$  for  $i \in S$ ,  $S \subset \mathbb{N} \backslash T$ . As in the case  $d < \infty$ , independence – absence of any links – simply means: for every choice of signs  $\epsilon_j = \pm 1, \ j \in \mathbb{N}$ , there exists  $t \in \Omega$ , such that  $\chi_j(t) = \epsilon_j, \ j \in \mathbb{N}$ . (Cf. functional independence, as per Definition 1.1.) To be sure, in this instance we obtain no information about evaluations of  $\chi_i$  for  $i \in T$  from evaluations of  $\chi_i$  for  $i \in S \subset \mathbb{N} \backslash T$ . As before, to gauge interdpendence, we consider the function (cf. (1.2), (1.3))

$$\mathbf{X} = (\chi_1, \dots, \chi_n, \dots) : \Omega \to \{-1, +1\}^{\mathbb{N}},$$
 (3.1)

its image in  $\{-1,1\}^{\mathbb{N}}$ 

$$\mathbf{X}(\Omega) = \left\{ \left( \chi_1(t), \dots, \chi_n(t), \dots \right) : \ t \in \Omega \right\} \subset \{-1, +1\}^{\mathbb{N}}, \tag{3.2}$$

and then posit that to gauge the interdependence of the  $\chi_j$ , we need to assess the extent to which  $\mathbf{X}(\Omega)$  differs from  $\{-1,1\}^{\mathbb{N}}$ .

3.2. A combinatorial measurement: the exponent  $\rho_X$ . To facilitate discussions (here, and later in the sequel), denote  $X = \{\chi_j : j \in \mathbb{N}\}$ . (We distinguish between the set of functions X, and the function  $\mathbf{X}$  defined in (3.1).) For  $S \subset X$ , define the function

$$\mathbf{X}_S: \Omega \to \{-1, +1\}^S$$

by

$$\mathbf{X}_S(t) = (\chi(t) : \chi \in S), \quad t \in \Omega,$$

and consider its image

$$\mathbf{X}_{S}(\Omega) := \left\{ \mathbf{X}_{S}(t) : t \in \Omega \right\} \subset \{-1, +1\}^{S}. \tag{3.3}$$

Let

$$\Phi_X(s) = \min\{\#\mathbf{X}_S(\Omega) : S \subset X, \ \#S = s\}. \tag{3.4}$$

We note

$$2 \leqslant \Phi_X(s) \leqslant 2^s, \quad s \in \mathbb{N},\tag{3.5}$$

and then, to make precise the notion that the "closer"  $\Phi_X(s)$  is to  $2^s$  the "lesser" the interdependence in X (cf. Sect. 1), we define

$$\rho_X = \liminf_{s \to \infty} \frac{\log \log \Phi_X(s)}{\log s}; \tag{3.6}$$

to wit, larger  $\rho_X$  conveys less interdependence. From (3.5) and (3.6),

$$0 \leqslant \rho_X \leqslant 1,\tag{3.7}$$

and

$$\Phi_X(s) \sim 2^{s^{\rho_X}},\tag{3.8}$$

which means

$$\liminf_{s \to \infty} \frac{\Phi_X(s)}{2^{s^{\eta}}} = \infty, \quad \eta < \rho_X, \tag{3.9}$$

and

$$\lim_{s \to \infty} \sup \frac{\Phi_X(s)}{2^{s^{\eta}}} = 0, \quad \eta > \rho_X. \tag{3.10}$$

3.3. A functional-analytic measurement: p-variation. First suppose that X is functionally independent (according to Definition 1.1, with  $d = \infty$ ). In this case, if S is a finite subset of X, then for every choice of signs  $\epsilon_X = \pm 1, \ \chi \in S$ ,

$$\|\sum_{\chi \in S} \epsilon_{\chi} \chi\|_{\infty} = \#S \tag{3.11}$$

 $(\|\cdot\|_{\infty} = \text{supremum-norm over }\Omega)$ . This is easy to verify: simply solve for  $t \in \Omega$  such that

$$\chi(t) = \epsilon_{\chi}, \ \chi \in S, \tag{3.12}$$

which is possible by functional independence. In general, however,

maximizing 
$$|\sum_{\chi \in S} \epsilon_{\chi} \chi(t)|$$
 over  $t \in \Omega$  (3.13)

(left side of (3.11)) is constrained by the interdependence of the  $\chi \in S$ , which impedes the simultaneous solution of *all* equations in (3.12). The idea then is to assess interdependence via its constraining effect on (3.13). To this end, we use the  $l^p$ -norm,  $p \ge 1$  (p-variation). Specifically, we use the notion that increasing interdependence – making a solution of (3.12) less feasible – decreases the maximum obtained in (3.13), and effectively increases the "smallest"  $p \in [1, \infty)$  such that

$$\|\sum_{\chi \in S} \epsilon_{\chi} \chi\|_{\infty} \geqslant \left(\sum_{\chi \in S} 1^p\right)^{\frac{1}{p}} = \left(\#S\right)^{\frac{1}{p}}, \text{ finite } S \subset X, \ (\epsilon_{\chi}) \in \{-1, 1\}^S. \ (3.14)$$

(These heuristics are supported by examples, and relations between the various calibrations; see Section 4.)

To make matters precise, define

$$\phi_X(s) = \min\{\|\sum_{\chi \in S} \epsilon_{\chi} \chi\|_{\infty} : S \subset X, \ |S| = s, \ (\epsilon_{\chi}) \in \{-1, 1\}^S\},$$
 (3.15)

and

$$\sigma_X = \limsup_{s \to \infty} \frac{\log s}{\log \phi_X(s)}.$$
 (3.16)

The exponent  $\sigma_X$  is the "smallest" p that "works" in (3.14). We write

$$\phi_X(s) \sim s^{\frac{1}{\sigma_X}},\tag{3.17}$$

by which we mean (as usual)

$$\liminf_{s \to \infty} \frac{\phi_X(s)}{s^{\frac{1}{\eta}}} = \infty, \quad \eta > \sigma_X, \tag{3.18}$$

and

$$\limsup_{s \to \infty} \frac{\phi_X(s)}{s^{\frac{1}{\eta}}} = 0, \quad \eta < \sigma_X. \tag{3.19}$$

(Cf. (2.7), (2.8), (3.9), (3.10).) The index  $\sigma_X$  is exact if

$$\liminf_{s \to \infty} \frac{\phi_X(s)}{s^{\frac{1}{\sigma_X}}} > 0, \tag{3.20}$$

and asymtotic if

$$\lim_{s \to \infty} \inf \frac{\phi_X(s)}{s^{\frac{1}{\sigma_X}}} = 0.$$
(3.21)

(Cf. (2.9) and (2.10).) Because

$$\|\sum_{\chi \in S} \epsilon_{\chi} \chi\|_{\infty} \leqslant \#S, \quad (\epsilon_{\chi}) \in \{-1, 1\}^{S}$$

for all finite  $S \subset X$  (obviously!), we have

$$\sigma_X \geqslant 1. \tag{3.22}$$

Moreover, if we suppose that any two functions in X are functionally independent, then we deduce (via an exercise)

$$1 \leqslant \sigma_X \leqslant 2. \tag{3.23}$$

Indeed, in a context of harmonic analysis, if X is an infinite spectral set, then  $\sigma_X$  is its *Sidon exponent*, and  $\sigma_X \in [1, 2]$ . (See Section 4, and Section 5.3.)

3.4. A statistical measurement: tail-probability estimates. Next we measure interdependence via a "statistical" notion, that with less interdependence in X, cancellations are more likely in

$$\sum_{\chi \in S} \chi, \text{ finite } S \subset X. \tag{3.24}$$

To make this precise, we let  $\mathbf{X}_S(\Omega)$  (finite  $S \subset X$ ) be a uniform probability space, and denote the uniform probability measure on it by  $\mathbb{P}_S$ ; i.e.,

$$\mathbb{P}_S(\{\mathbf{y}\}) = \frac{1}{\#\mathbf{X}_S(\Omega)}, \quad \mathbf{y} \in \mathbf{X}_S(\Omega). \tag{3.25}$$

Consider the functions in S as random variables on  $(\mathbf{X}_S(\Omega), \mathbb{P}_S)$ , where

$$\chi(\mathbf{y}) = \mathbf{y}(\chi), \quad \mathbf{y} \in \mathbf{X}_S(\Omega) \subset \{-1+1\}^S.$$
 (3.26)

(See (3.3).) We can now assess the likelihood of cancellations in (3.24) via estimates on tail-probabilities

$$\mathbb{P}_S(|\sum_{\chi \in S} \chi| \geqslant u), \text{ finite } S \subset X, u > 0,$$
 (3.27)

which we then use to calibrate interdependence in X.

We note that if the  $\chi \in X$  are functionally independent (as functions on  $\Omega$ ), then every finite  $S \subset X$  is statistically independent (as random variables on  $(\mathbf{X}_S(\Omega), \mathbb{P}_S)$ ), and therefore by the classical Khintchin inequalities (e.g., see [15]),

$$\mathbb{P}_S\left(\frac{1}{\sqrt{\#S}}\Big|\sum_{\chi\in S}\chi\Big|\geqslant u\right)\leqslant \exp(-u^2), \text{ finite } S\subset X, \ u>0.$$
 (3.28)

The "sub-Gaussian" estimates in (3.28) are indeed optimal in the case of independent X (e.g., cf. [11]), and will effectively mark the left-end point of a scale of interdependence.

Locating the right-end point of the scale is somewhat arbitrary, and is in fact tied to a long-standing open question known as the " $\Lambda(2)$ -set problem"; e.g., see Section 5.1. In our discussion here, we assume that X at the very least has the property that every finite  $S \subset X$  is orthogonal in  $L^2(\mathbf{X}_S(\Omega), \mathbb{P}_S)$ . (Ruling out "too high" a level of functional dependence in X, this assumption postulates a minimal amount of "randomness," and – as we see in the next section – still makes the mathematics here interesting...) With this assumption and Markov's inequality, we are guaranteed that always, for all finite  $S \subset X$ ,

$$\mathbb{P}_S\left(\frac{1}{\sqrt{\#S}}\Big|\sum_{\chi\in S}\chi\Big|\geqslant u\right)\leqslant \frac{1}{u^2}, \quad u>0.$$
(3.29)

We define for u > 0,

$$T_X(u) = \sup \left\{ \mathbb{P}_S \left( \frac{1}{\sqrt{\#S}} \Big| \sum_{\chi \in S} \chi \Big| \geqslant u \right) : \text{finite } S \subset X \right\}.$$
 (3.30)

From (3.29) and the optimality of (3.28), we obtain for some  $\kappa > 0$ 

$$\exp(-\kappa u^2) \leqslant T_X(u) \leqslant \frac{1}{u^2}, \quad u > 0. \tag{3.31}$$

We now posit that the "level" of interdependence in X corresponds to the "location" of  $T_X$  on the "interval," whose respective "end-points" are  $\exp(-\kappa u^2)$  and  $\frac{1}{u^2}$ . Two distinct scales are obtained, effectively marked by  $\exp(-\kappa u^{\alpha})$  ( $\alpha \in [0,2]$ ), and by  $\frac{1}{u^{\xi}}$  ( $\xi \in [2,\infty]$ ). To calibrate these scales, we define

$$\delta_X = \liminf_{u \to \infty} \frac{\log \log T_X(u)^{-1}}{\log u},\tag{3.32}$$

and

$$\lambda_X = \liminf_{u \to \infty} \frac{\log T_X(u)^{-1}}{\log u}.$$
 (3.33)

By (3.31),

$$\delta_X \in [0, 2], \tag{3.34}$$

and

$$\lambda_X \in [2, \infty], \tag{3.35}$$

where, on each scale, increasing index conveys decreasing interdependence. The two scales complement each other: the  $\lambda$ -scale is a resolution of the end-point  $\delta_X = 0$  on the  $\delta$ -scale, and the  $\delta$ -scale is a resolution of the right end-point  $\lambda_X = \infty$  on the  $\lambda$ -scale. If  $\delta_X \in (0,2]$  or  $\lambda_X \in [2,\infty)$ , then (respectively)

$$T_X(u) \sim \exp(-u^{\delta_X}),$$
 (3.36)

or

$$T_X(u) \sim \frac{1}{u^{-\lambda_X}},\tag{3.37}$$

each of which means (respectively)

$$\limsup_{u \to \infty} \frac{T_X(u)}{\exp(-u^{\eta})} = 0, \quad \eta < \delta_X, \tag{3.38}$$

$$\liminf_{u \to \infty} \frac{T_X(u)}{\exp(-u^{\eta})} = \infty, \quad \eta > \delta_X, \tag{3.39}$$

and

$$\limsup_{u \to \infty} \frac{T_X(u)}{u^{-\eta}} = 0, \quad \eta < \lambda_X, \tag{3.40}$$

$$\liminf_{u \to \infty} \frac{T_X(u)}{u^{-\eta}} = \infty, \quad \eta > \lambda_X.$$
(3.41)

If

$$\lim_{u \to \infty} \inf \frac{\log T_X(u)^{-1}}{u^{\delta_X}} > 0, \tag{3.42}$$

or

$$\limsup_{u \to \infty} \frac{T_X(u)}{u^{-\lambda_X}} < \infty, \tag{3.43}$$

then (respectively)  $\delta_X$  and  $\lambda_X$  are said to be exact. Otherwise, if either

$$\lim_{u \to \infty} \inf \frac{\log T_X(u)^{-1}}{u^{\delta_X}} = 0$$
(3.44)

or

$$\limsup_{u \to \infty} \frac{T_X(u)}{u^{-\lambda_X}} = \infty, \tag{3.45}$$

then the indices are said to be asymptotic.

### 4. Examples and conversion formulas

We have:

$$\dim F \in [1, \infty), \quad \rho_X \in [0, 1], \quad \sigma_X \in [1, \infty), \quad \delta_X \in [0, 2], \quad \lambda_X \in [2, \infty].$$

**Question 4.1.** Can every point on each scale be realized as an evaluation of the respective index?

We have already noted (in Section 2.3) an affirmative answer in the case of *combinatorial dimension*. But what about the other indices?

A second question concerns links between the indices. If indeed each index registers, separately, a degree of interdependence, then we should expect conversion formulas between them:

# Question 4.2. What relations exist between the indices?

4.1. The view through harmonic analysis. We take the compact Abelian group  $\Omega = \{-1,1\}^{\mathbb{N}}$ , with coordinate-wise multiplication, the product topology, and the Haar measure  $\mathbb{P}$  on it (infinite product of the uniform measure on  $\{-1,+1\}$ ). Let  $W = \widehat{\Omega}$  denote its group of characters (Walsh characters); let R denote the set of projections from  $\Omega$  onto its independent coordinates (Rademacher characters), and let  $W_k$  denote the set of Walsh characters of order k (products of k distinct Rademacher characters). The Rademacher characters form an algebraically independent "basis" for the Walsh characters. Specifically,

$$W = \bigcup_{k=0}^{\infty} W_k \; ; \tag{4.1}$$

 $W_0 = \{r_0\}$ , where  $r_0$  is the function that identically equals 1 on  $\Omega$ .

We consider first the "finite-dimensional" case. Fix an integer  $k \geq 2$ , and let  $X \subset W_k$  be infinite. The objective (as always) is to gauge the interdependence of elements in X.

I (Combinatorial dimension). By the algebraic independence of R, we naturally identify X with a subset  $\tilde{X}$  of  $R^k$ . Specifically, let

$$\tilde{X} = \{ (r_1, \dots, r_k) \in R^k : r_1 \cdots r_k \in X \},$$
 (4.2)

and then (unambiguously) define dim F to be dim  $\tilde{X}$ . In our present context, dim X registers the "amount of freedom" we have in choosing k distinct Rademacher characters such that their product is in X.

By results stated in Section 2.3, for every  $\alpha \in [1, k]$ , there exist  $X \subset W_k$  such that dim  $X = \alpha$  exactly, as well as  $X \subset W_k$  such that dim  $X = \alpha$  asymptotically.

II (The index  $\rho_X$ ). Following the connections between the combinatorial measurements applied to  $\mathbf{X}(\Omega)$  (as per Section 3.2) and the combinatorial measurements applied to  $\tilde{X}$  (as per Section 2.3), we obtain

$$\rho_X = \frac{1}{\dim X}.\tag{4.3}$$

III (The Sidon exponent  $\sigma_X$ ). Following results in [2], we have

$$\sigma_X = \frac{2}{1 + \frac{1}{\dim X}} \,, \tag{4.4}$$

and that  $\sigma_X$  is exact if and only if dim X is exact. This relation implies that for every  $\alpha \in [1, 2]$ , there exist  $X \subset W_k$  such that  $\sigma_X = \alpha$  (exactly, or asymptotically).

IV (The index  $\delta_X$ ). Following results in [2] (again), we have

$$\delta_X = \frac{2}{\dim X} \ , \tag{4.5}$$

and that  $\delta_X$  is exact if and only if dim X is exact. Therefore, for every  $\alpha \in [0,2]$  there exist  $X \subset W_k$  such that  $\delta_X = \alpha$  (exactly, or asymptotically).

V (The index  $\lambda_X$ ). Since  $\lambda_X = \infty$  for all  $X \subset W_k$ ,  $k = 2, \ldots$ , to answer Question 4.1 in the case of the  $\lambda$ -scale, one now considers  $X \subset W$ . The problem concerning a "continuous" realization of the  $\lambda$ -scale had been raised in [18] (using the terminology of  $\Lambda(p)$ -sets), and resisted solution for nearly three decades. It was solved in the affirmative in two landmark papers: in [16], and later by a different method in [19].

Regarding Question 4.2, I know of a link between combinatorial measurements and the  $\lambda$ -scale only for  $\lambda_X = 2j + 2$ ,  $j \in \mathbb{N}$ . (E.g., see [18].) A precise relation between the  $\lambda$ -scale and a tractable "combinatorial" scale is an open(-ended) problem.

#### 5. Some further questions

5.1. **Exact vs. Asymptotic?** If an index is asymptotic, then – at least in principle – it can be resolved on a finer scale. For example, there exist (random sets)  $F \subset E_1 \times \cdots \times E_d$  such that

$$\limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\dim F}} = 0$$
(5.1)

(i. e., dim F is asymptotic), while for some  $\beta > 0$ ,

$$0 < \limsup_{s \to \infty} \frac{\Psi_F(s)}{s^{\dim F} (\log s)^{\beta}} < \infty.$$
 (5.2)

Certainly in this particular case it is natural to compare  $\Psi_F(s)$  to  $s^{\eta}(\log s)^{\xi}$ . In the setting of the previous section, if  $X \subset W_k$ , then the challenge is to pick out the "exact" calibrations based on  $\Psi_{\tilde{X}}(s)$ ,  $\phi_X(s)$ , and  $T_X(u)$ , and derive relations between them. This problem was considered in [9] and [10], specifically vis a vis sharper resolutions of the dim-,  $\sigma$ -, and  $\delta$ -scales.

For every  $\lambda \in (2, \infty)$ , there exist spectral sets  $X \subset W$  (based on constructions in [16] and [19]) such that  $\lambda_X = \lambda$  exactly, as well as  $X \subset W$  such that  $\lambda_X = \lambda$  asymptotically. The left-end point of the  $\lambda$ -scale is still a mystery, and its "resolution" is an open(-ended) problem. To wit, whereas  $\lambda_W = 2$  exactly, the class of  $X \subset W$  for which  $\lambda_X = 2$  is not well understood. For example, the following question is open: are there  $X \subset W$  such that  $\lambda_X = 2$ , and

$$\inf \left\{ \mathbb{P}\left(\frac{1}{\sqrt{\#S}} \Big| \sum_{\chi \in S} \chi \Big| \geqslant 1 \right) : \text{finite } S \subset X \right\} > 0? \tag{5.3}$$

This question is closely related to an open problem of long standing, stated first (so far that I know) in [18], and widely known (among harmonic analysts) as the " $\Lambda(2)$ -set problem."

5.2. General relations between indices? An obvious question arises: do the conversion formulas in Section 4 hold in the framework of Section 3? In Section 3, if X is functionally independent, then we can view it as a system of Rademacher characters on  $\Omega = \{-1, +1\}^{\mathbb{N}}$ , in which instance all the relations are trivially verified. Generally, every countable collection X of  $\{-1, +1\}$ -valued functions can be naturally viewed as a countable collection of Borel measurable functions on the compact Abelian group  $\Omega$  of Section 4 (via the observation that every countably generated sigma-field can be generated by a countable collection of Boolean independent sets [17]). However, while the question concerning conversion formulas can be rephrased in the language of Section 4, I do not know the answer even in a special case, which is of interest to harmonic analysts: if  $X \subset W$  is infinite, then do the following relations hold (cf. (4.3), (4.4), and (4.5)):

$$\sigma_X = \frac{2}{1 + \rho_X} ? \tag{5.4}$$

$$\delta_X = 2\rho_X ? (5.5)$$

5.3. How "large" is the  $\sigma$ -scale? If any two elements of X are functionally independent, then  $\sigma_X \leq 2$ . (See (3.23).) For  $\sigma \in (2, \infty)$ , are there systems X of  $\{-1, +1\}$ -valued functions such that  $\sigma_X = \sigma$ ?

## References

- [1] R. Blei. Fractional cartesian products of sets. In *Annales de l'institut Fourier*, volume 29, pages 79–105, 1979.
- [2] R. Blei. Combinatorial dimension and certain norms in harmonic analysis. *American Journal of Mathematics*, 106(4):847–887, 1984.
- [3] R. Blei. Fractional dimensions and bounded fractional forms. Amer Mathematical Society, 1985.
- [4] R. Blei.  $\alpha$ -chaos. J. Func. Anal., 81(2):279–297, 1988.
- [5] R. Blei. Multi-linear measure theory and multiple stochastic integration. *Probability Theory and Related Fields*, 81(4):569–584, 1989.
- [6] R. Blei. Λ(q) Processes. Trans. Amer. Math. Soc, 319(2):777–786, 1990.
- [7] R. Blei. Analysis in Integer and Fractional Dimensions. Cambridge University Press, 2001.
- [8] R. Blei and F. Gao. Combinatorial dimension in fractional cartesian products. *Random Structures and Algorithms*, 26(1-2):146–159, 2005.
- [9] R. Blei and L. Ge. Relationships between combinatorial measurements and orlicz norms. *J. Func. Anal.*, 257(3):683–720, 2009.
- [10] R. Blei and L. Ge. Relationships between combinatorial measurements and orlicz norms (ii). *J. Func. Anal.*, 257(12):3949–3967, 2009.
- [11] R. Blei and S. Janson. Rademacher chaos: tail estimates versus limit theorems. *Arkiv för Matematik*, 42(1):13–29, 2004.
- [12] R. Blei and J.-P. Kahane. A computation of the Littlewood exponent of stochastic processes. *Math. Proc. Camb. Phil. Soc.*, (103):367–370, 1988.
- [13] R. Blei, Y. Peres, and J. Schmerl. Fractional products of sets. *Random Structures and Algorithms*, 6(1):113–119, 1995.
- [14] R. Blei and J. H. Schmerl. Combinatorial dimension of fractional cartesian products. *Proc. Amer. Math. Soc.*, 120:73–77, 1994.
- [15] A. Bonami. Etude des coefficients de Fourier des fonctions de  $L_p(G)$ . Ann. Inst. Fourier, 20(2):335–402, 1970.
- [16] J. Bourgain. Bounded orthogonal systems and the  $\Lambda(p)$ -set problem. Acta Mathematica, 162(3-4):227–245, 1989.
- [17] H.P. Rosenthal. A characterization of Banach spaces containing l<sup>1</sup>. Proceedings of the National Academy of Sciences of the United States of America, 71(6):2411, 1974.
- [18] W. Rudin. Trigonometric series with gaps. *Indiana Univ. Math. J*, 9:203–227, 1960.
- [19] M. Talagrand. Sections of smooth convex bodies via majorizing measures. *Acta Mathematica*, 175(2):273–300, 1995.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CT 06269