
EOS User�s Guide
Release ���

For UNIX�based Systems

Alexandros Biliris Euthimios Panagos
��� Mountain Avenue

AT�T Bell Laboratories

Murray Hill� NJ �����
fbiliris� thimiosg�research�att�com

Abstract

EOS is a storage manager providing key facilities for the fast development of high�performance

database management systems and persistent languages� This document provides a brief overview

of the EOS Release ��� architecture� facilities� information on using the system including exam�

ples� and setting up tuning parameter values to adjust EOS performance�

i

Contents

� Introduction �

��� Contact for Further Information �

� EOS Architecture and Facilities �

��� Basics �

����� Databases and Storage Areas �

����� Object Identi�ers �OIDs� �

����� Named Objects �

����� File Objects	 File Scans and Clustering �

����
 Object Representation and Object Handles �

����� Large Objects �

����� Indexes �

���� Transactions �

��� The EOS Client�Server Architecture �

����� Concurrency Control �

����� Logging �

����� Transaction Commit and Abort �

����� Checkpoint �

����
 Recovery from System Crash �Restart�

��� Advanced Features �

����� Page Objects and Plain Pages �

����� Extensions and Primitive Events �

� Getting Started with EOS ��

��� Compiling and Linking your Application ��

� Formatting And Deleting Storage Areas ��

��� Formatting Areas �eosareaformat� ��

��� Deleting Areas �eosareadelete� ��

ii

� The EOS Client C�� Interface ��

��� Object ID �class eosoid� ��

��� Persistent New �class eos new� ��

��� Persistent References �class eos Ref� ��

��� Databases �class eosdatabase� �	

��� Transactions �class eostrans� �

��	 EOS Objects �class eosobj� �

��	�� Creating and Removing Objects �

��	�� Accessing Objects ��

��	�� Object Properties ��

��	�� Naming Objects ��

��	�� Tagging Objects ��

��	�	 Accessing Portions of Objects � Byte Range Operations � � � � � � � � � � � � ��

�� File Objects �class eosfile� ��

��
 File Scan �class eosfilescan� ��

��� Page Objects �class eospageobj� ��

���� Plain Database Pages �class eospage� ��

���� Extendible Hashing �eosehash� �	

������ Creating and Destroying Indexes �	

������ Accessing Indexes �	

������ Inserting and Removing Index Elements �

������ Accessing a Particular Key �

������ Accessing Index Properties �

���� Index Scan �class eosehashscan� �

���� Extensions and Primitive Events �class eosexten� � � � � � � � � � � � � � � � � � � ��

������ De�ning Hook Functions ��

������ Return Values of User Functions ��

������ Argument Passed to User Functions ��

������ Primitive Events ��

������ Extension Activation Status ��

iii

������ Example � � Access Control ��

������ Example � � Fixing C		 Pointers ��

� The EOS Server ��

��� Server Startup �

��� Normal Operation ��

��� Server Shutdown ��

��
 Checkpoint ��

��� Is Alive ��

� EOS Customization ��

��� Customizing the Area Formatting Procedure �formatrc� � � � � � � � � � � � � � � � � �

��� Customizing the Client �clientrc� ��

��� Customizing the Server �serverrc�
�

� EOS File System Viewer �eosfsview� ��

� An Example of Using EOS ��

��� File Part�h �

��� File part create�c �

��� File part traverse�c �
�

	
 Troubleshutting ��

		 Release Notes ��

iv

� Introduction

EOS is a storage manager being developed at AT�T Bell Labs for the fast development of high�
performance database management systems� The following is a brief summary of the facilities
provided by EOS�

� Extensive support for large objects� Objects can be accessed transparently in the client�s
cache� without incurring any in�memory copying cost or via byte range operations such as
read� write� append� insert� delete bytes� etc�� specially suited for very large multimedia
objects�

� Any object can be named for fast retrieval� Referential integrity between named objects and
their corresponding names is enforced by EOS�

� Page objects� objects that expand over the entire available space in a page� which can be
accessed in the same way as any other object�

� Plain database pages belonging to a particular storage area� They can be used to build index
structures �We used them to build our extensible hashing��

� Extensible hashing supporting variable size keys and user�de	ned hash and equality functions�

� Database �les for grouping related objects together� Databases as collections of 	les and
objects� Databases are stored in one or more storage areas �UNIX 	les or disk raw partitions�
and each such area may contain many databases� Clustering hints for the physical placement
of objects in pages� 	les� databases and areas�

� A simple and powerful mechanism that allows users to enhance and even modify the EOS
functionality� without compromising modularity� by associating hook functions with certain
primitive events� EOS traps the events as they occur and causes the corresponding hooks to
be executed�

� Transactions in a client�server environment with the option� for experimentation� to turn
on
o� the concurrency control� logging and recovery components� Applications can be linked
with the single�user version of EOS for accessing private
local databases�

� Concurrency control based on the multigranularity two version two phase locking protocol
that allows many readers and one writer to access the same item simultaneously� The option
to switch to simple �PL is also provided�

� Short log 	les because log records contain only after images of updates�

� Fast recovery from system failures because only one forward scan over the log is required�
The restart process can start at any checkpoint taken in the past and stop at any point after
that�

� Non�blocking checkpoints that allow active transactions to continue accessing databases while
a checkpoint is taken�

� Con�guration �les that can be edited by the users to customize and tune EOS performance�

� Persistent references that are valid across transactions boundaries� as well as across databases�
Objects point to other objects by using persistent references�

EOS is written in C��� It can be accessed by programs compiled with any C or C�� compiler
such as the ones distributed by AT�T� Sun� GNU� and CenterLine� Applications that use persistent
references must be compiled with a compiler that supports templates� The EOS system works on

Sun SPARC architectures running SunOS ����x and SOLARIS ��x� SGI MIPS architecture running
IRIX ��x and 	�x� and IBM RS
��� running AIX�

��� Contact for Further Information

For inquires about EOS and a copy of the EOS system please send e�mail to Alex Biliris at

biliris�research�att�com� or write to

EOS Project Group
co A� Biliris

AT�T Bell Labs� Room �C����

�� Mountain Av��

Murray Hill� NJ �����

For bug reports please send e�mail to eos�research�att�com�

�

� EOS Architecture and Facilities

��� Basics

����� Databases and Storage Areas

Databases are collections of �les and ordinary objects� A database is created in one of the available
storage areas � UNIX �les or disk raw partitions� The objects a database contains may be stored
either in the area where the database was created� or in other areas� Thus� a database may physically
extend over many areas� Also� there may be areas in which no database has been created and they
contain objects from di�erent databases�

Storage areas are either shared or private� Shared areas are accessed via the EOS server that
o�ers control for multi�user access to the area� as well as recovery� Private areas are created on the
local machine of the user creating the area� Access to private areas is in general faster compared
to shared areas because all operation are carried out locally with no calls to the server� However�
no concurrency control and recovery is o�ered for private areas�

Disk space allocation in EOS is based on the binary buddy system� A storage area is organized as
a number of �xed�size extents or buddy spaces � disk sections of physically adjacent pages� Segments

are variable�size sequences of physically adjacent disk pages taken from one of the buddy spaces�
There is a ��block allocation map directory associated with each extent indicating the status �free
or allocated	 and the size of each segment in the extent� With
K�byte disk blocks� the maximum
extent size is approximately ��� megabytes �Bil��a�� To maximize performance� the extent size
may have to be carefully matched to the physical properties of the disk device�

����� Object Identi�ers �OIDs�

EOS objects are stored on slotted pages and they are identi�ed by system generated object ids
�oids	� The object id is an ��byte quantity� it is the physical address in which the object is stored
in the database and it consists of the following� the storage area number and the page number
within the area the object is stored in� the slot number that gives the o�set of the object within
the page� and a number to approximate unique ids when space is re�used�

����� Named Objects

Any EOS object can be given a name� An object may have at most one name� and a name may
correspond to at most one object� EOS guarantees that the referential integrity between named
objects and their corresponding names is enforced� e�g�� when a named object is removed from a
database so is the name of the object�

�

����� File Objects� File Scans and Clustering

EOS �le objects serve as a mechanism to gather �related� objects together� i�e�� objects that need
to be collocated� They provide facilities for sequencing through the objects they contain� Files may
contain other �les and every object �including �le objects� is a member of exactly one �le object�
Thus� objects form a tree where internal nodes are �le objects and leaves are ordinary �non �le�
objects� When a new database is created� EOS automatically creates a �le object that serves as
the root �le of this tree� On the physical level� a �le consists of a number of single pages and	or
segments� Pages are not shared among �les�

Forward and backward scanning of objects in a �le is supported� In addition� the set of objects
on which the scan is performed can be restricted to the objects within a single page of the �le being
scanned� Such page
oriented �le scans are useful for e�ciently implementing various kinds of joins
that require all objects in two or more �les to be compared�

To improve performance� clients may exercise control over the physical placement of objects
within a database� Speci�cally� at object creation� clients may instruct the object manager to place
the new object near an existing one� EOS will store the new object on the same page as the existing
object if space is available in that page� otherwise� the new object is placed on a new page that is
near the page the existing object resides on� Clients may also instruct EOS to place the object in
a speci�c storage area and �a� at the end of a �le� �b� in a new page� or �c� not to assign the page
on which the object is stored to any other object that is going to be created in the future �i�e�� the
new object will be the only one in that page�� The latter may be useful in reducing contention
because of locking for frequently accessed pages � hot spots�

����� Object Representation and Object Handles

Every EOS storage object has an object header attached to it� It contains properties of the object
such as the objects length� whether it is small or large� named or unnamed� etc� Two bytes in the
header have no meaning to the storage system� and they are available to users to store information
about the object�

To operate on an EOS object� a handle to that object must be acquired� A handle is a structure
that contains� among other information� the address of the object in the EOS bu�er pool� When
an application requests a handle on an object� the appropriate lock for the page the object is stored
on is acquired� and the page itself is �xed in the bu�er pool � that is� the page will not be replaced
or moved in another place until it is un�xed� When the object is no longer needed� its handle must
be released so that the corresponding page in the bu�er pool is un�xed�

The cost of making a handle of a persistent object is at most one disk access which is the cost
of fetching the page in which the object is stored� no additional cost is involved in translating
an oid because it is a physical database address� After an object handle is acquired� the speed
of subsequent accesses to the object is almost the same to that of an in
memory dereference of a
pointer to resident data� This is because persistent objects can be manipulated directly on the
page on which they reside� without incurring any in
memory copying cost�

�

����� Large Objects

EOS has been designed to handle arbitrary large objects provided that physical storage is indeed
available and accessible� Technically speaking� an object is small if it can �t entirely in a single
page� otherwise� it is large� Small objects may become large� and vice versa� Large objects can be
accessed and updated in exactly the same way as small objects� Thus� the manipulation of large
objects is transparent to the applications� For �very� large objects� however� users may want to
access portions of the object� EOS provides operations that deal with a speci�c byte range within
the � small or large � object� read or write a random byte range within the object� insert or delete
bytes at arbitrary positions within the object� and append bytes at the end of the object�

Large objects are stored in a sequence of variable�size segments which are allocated as explained
in section 	�
�
� These segments are then pointed to by a tree structure in which the keys are the
positions of the object�s bytes within the segments� When length changing updates �byte range
deletes and inserts are performed on the large object� its segments may have to be broken up into
smaller ones� Since small segments have negative performance e�ect on the read operation� EOS
allows the client to specify a segment size threshold T � a constraint on EOS not to store byte
chunks in two �logically adjacent segments� one of which has less than T pages� if they can be
stored in one segment� Note that the threshold mechanism does not specify �xed size segments
neither a minimum number of pages per segment� For example� with T �
�� a large object that
is 	 pages and a half long is kept in three pages� not in
� pages� The tradeo�s that need to be
examined in order to set this value are the following� �See also �Bil�	b� for performance results�
Larger segments lead to better storage utilization� lower �sequential and random read costs and
higher update cost� i�e�� the only aspect of the performance that might be a�ected negatively by
larger segments is the cost of byte inserts and deletes�

����� Indexes

EOS provides extendible hashing indexes �FNPS���� Index keys can be variable size strings or any
�xed�size structure� The values associated with the keys can be any �xed length structure�

����� Transactions

EOS provides full support for concurrency control� logging� and recovery� Concurrency control
allows multiple users to access a database at the same time in a consistent way� When a transaction
is committed� all its updates are permanently posted to the database� When a transaction is aborted
by the user� the recovery�s goal is to make the database look like as if the aborted transaction was
never submitted for execution� The storage manager may also abort a transaction when it is the
victim of the deadlock detection algorithm� or when the system malfunctions� In addition� when the
system restarts after a crash� the database re�ects the updates of all the committed transactions
prior to the crash� �See �GR��� for a description on transaction processing�

�

LoggingDisk I/O

Adminstration

 Buffer
Management

Transaction Management

Communication

Recovery
Management

Data Log

Application Application

Client 1 Client N

EOS Server

Network

Communication

Interface

Lock
Cache

Buffer Management

Transaction &
Log subsytems

Communication

Interface

Lock
Cache

Buffer Management

Transaction &
Log subsytems

Figure �� The client�server architecture of EOS

��� The EOS Client�Server Architecture

Figure � sketches the EOS client�server architecture� The EOS server is a multi�threaded daemon
process that mediates all the accesses made to the database� To avoid blocking UNIX disk I�O
system calls� the EOS server creates a separate disk process to handle the I�O requests for a storage
area the very �rst time this area is accessed� In this way disk I�O is performed in parallel� Dynamic
creation and deletion of storages areas is also hanled by the server �it plays the role of the area

manager process	 and the current release can virtually support up to
��� di�erent areas� At start
up time� the server spawns the checkpoint and the global log processes� and creates a number shared
memory regions and semaphores by using the UNIX System V shared memory� memory mapping�
and semaphore facilities� The EOS server runs as a separate process on the same or on a di�erent
machine than a client application program� The communication between the server and the client
workstations is done by using reliable TCP�IP connections over UNIX sockets Ste���� The server
bu�er pool is stored in shared memory and the disk processes access it directly� Semaphores provide
controlled access to the structures shared by all threads and disk processes� message queues and
UNIX domain sockets KP��� Ste��� provide the interprocess communication among the threads
and the I�O requests directed to the disk processes�

����� Concurrency Control

Concurrency is controled by a page�level mulrigranularity ��Version ��Phase locking �MG��V��PL�
protocol� Transactions acquire locks on data items before they access them� and they release all
locks they hold when they are �nished �committed or aborted�� When a page is locked� the �le
containing this page is locked too in the corresponding intention mode� When a �le is locked in
either S or X mode� the pages it contains do not have to be locked explicitly� This minimizes the
overhead of the concurrency control module� In this locking scheme� a number of readers and at
most one writer can be operating simultaneously on the same granule� The writer has to wait for
all the readers to �nish before it can commit� Deadlocks are handled by a variation of the depth

�rst traversal algorithm applied on the waits�for graph �WFG�� constructed from the lock tables� to
determine if a cycle exists� Deadlock detection is performed every time a lock request is blocked by
another transaction which is blocked too� If a deadlock cycle is found� the requester gets aborted�

����� Logging

The system maintains two kinds of logs� a global log� and a number of private logs� Each private
log is associated with one transaction only� The log records of a private log are redo records� i�e��
they contain the results �after images� of the updates generated by the corresponding transactions�
The global log contains records that are either commit records or checkpoint records� A commit
log record contains the committed transaction	s id and other information related to transaction	s
updates� The checkpoint record contains the ids of all the committed transactions at the time the
checkpoint took place� along with the o
set in the global log of their commit log record�

����� Transaction Commit and Abort

EOS recovery is based on the NO�UNDO�REDO protocol� Transaction updates are applied to
the transaction	s private cache and they are posted to the database only after the transaction is
committed� When a transaction commits the transaction updates recorded in its private log are
�ushed out on stable storage� a commit log record is inserted into the global log� and the global
log is �ushed on stable storage� If all steps are successful� the transaction is declared committed�
When a transaction is aborted� its private log is simply discarded and its locks are released�

Recovery for large objects di
ers from that mentioned above� First� large objects are not bu
ered
in the server	s shared pool� Secondly� updates on large objects are applied directly to the database
without� however� overwriting the object in the database� When a transaction gets aborted� the
changes it made on the extent	s directory� which keeps track of free pages� are thrown away� In
addition� no other transaction can see these changes because of the write lock held on the page
containing the large object directory�

����� Checkpoint

To reduce the amount of work the recovery manager has to do during system restart� the EOS
server periodically issues checkpoints� During a checkpoint dirty pages bu
ered in the shared pool

�

are �ushed to the stable storage� When the checkpoint procedure completes� a checkpoint record
is inserted in the global log �le and the location of this checkpoint record is saved on a well known
location� The EOS checkpoint is non�blocking� new transactions can begin and active transactions
may continue accessing the server and its resources while the checkpoint activity takes place�

����� Recovery from System Crash �Restart�

If a system crash occurs� the EOS server returns the database to the last consistent state it was
in before the failure� This is done by scanning the log �le and redoing all the updates made by
committed transactions in exactly the same order as they were originally performed� After the
database state has been restored� a checkpoint is taken and the system is operational again� If a
system failure occurs while the restart is performed� the subsequent restart performs the same work
again in an idempotent fashion� The restart procedure of EOS is fast for two reasons� �a� only one
forward pass over the log is required� and �b� the log itself is short because only after images of
updates are logged�

EOS provides continuous archiving of the private log �les� The archiving process is activated by
the global log manager every time a checkpoint is taken and the number of the log �les generated
since the last archive is greater than some threshold value� The private log �les created since the
last time the archive process was executed are compressed and merged together on a single �le�

��� Advanced Features

����� Page Objects and Plain Pages

Page objects are �xed�length object that expand in size over the entire available space of a page�
They are useful in building various index structures such as B�trees and hash tables� An object is
speci�ed to be a page object when it is created	 after that� it is accessed in exactly the same way
as ordinary objects�

Plain pages are pages belonging to a particular storage area and they do not contain any control
information	 i�e�� the entire space of the page is available to the application� Plain pages can be
used for building index structures�

����� Extensions and Primitive Events

EOS allows users to extend and even modify the functionality of EOS by associating actions that
are executed when certain primitive events occur� Extensions provide a degree of extensibility
without compromising modularity�

Primitive events are low�level events that occur at various software layers of EOS� such as page
fault� object fault� object update� transaction commit� etc� Applications can associate one or
more hook functions with a particular event� This registration process is usually performed at the
beginning of a program before any access to the database is initiated� For some events� such as
transaction commit� applications will have to specify if the action should be executed just before

or just after the occurrence of the event� The EOS event manager traps primitive events as they
occur and causes the actions that applications associated with these events to be executed� Actions
for a particular event are executed in the order in which they were registered�

This facility can be used to extent the EOS functionality in many ways� e�g� to to collect statistics
on object faults or transaction commits� or to set access privileges so that only certain users can
access an object �or a �le� in the database or the database itself� As another example� a hook may
be registered that restarts a transaction after it is being aborted due to a deadlock�

�

� Getting Started with EOS

To access the binaries and man pages in the eos directory� set your path and manpath environment

variables to include the eos�bin and eos�man directories� respectively� The following shows how

to do this� assuming that EOS is installed in �usr�eos�

If you use csh or tcsh� place the following in your �cshrc�

set path � ��path �usr�eos�bin�

setenv MANPATH �MANPATH��usr�eos�man

If you use Bourne or Korn shell� place the following in your �pro�le�

PATH � �PATH��usr�eos�bin� export PATH

MANPATH � �MANPATH��usr�eos�man� export MANPATH

The rest of this section describes the simplest way of con�guring the EOS storage manager�

and running the three example application programs obj create� obj scan� and obj update

included in the eos�example directory of the EOS distibution� The obj create creates a number

of objects and puts them in a named �le belonging to a database� The obj scan reads all the

objects created and prints them on the screen� Finally� the obj update randomly updates several

of the created objects� Go to the eos�example directory and compile these programs to be ready

for execution�

These are the steps that have to be followed�

�� Install the con�guration �les by running the following three programs�

eosformatenv

eosclientenv

eosserverenv

These programs create the �les formatrc� clientrc� and serverrc� respectively� in the

directory 	eos under your home directory�

�� Start the server� Open a new window and go in the bin directory where the eosserver

executable is� To start up the server� type

eosserver

When the server is ready to accept requests the following message appears on the screen�

EOS server� We are open for business�

�� Create and format a storage area� Let us assume that you want to create an EOS storage

area in the UNIX �le �usr�sue�area� Run the command

��

eosareaformat �usr�sue�area

You are now ready to create databases in this area and populate it with objects�

�� Run the obj create to create a number of objects in a database belonging to the area you

have just created� To create ���� objects type the following�

obj�create �usr�sue�area�myfirstdb ����

To read the objects you have just create� type

obj�scan �usr�sue�area�myfirstdb

To update few of the objects you have just create� type

obj�update �usr�sue�area�myfirstdb

If you want to run the obj scan and obj update programs concurrently� open up two new

windows and run the obj scan on one and the obj update on the other� Running them

concurrently may result to periodic deadlocks because both programs access the same �le in

the same database� When a deadlock occurs� the o�ending program is terminated�

	� If you want to shut down the server� go to the window where the server runs and type the

following command�

shutdown

The server will print a number of messages on the screen and when it �nishes processing the

shutdown command the following message appears on the screen�

EOS server� SHUTTING DOWN� Closing the shop�

��� Compiling and Linking your Application

Application programs written in C

 or C must include the eos�h �le� Application programs that

use persistent references must include the eos Ref�h �le in addition to eos�h� For a C

 applica�

tion� use the �I option of the compiler to add the eos�include directory to the list of directories

the pre�processor searches for �include �les� For a C application� add the eos�include c path to

the list�

EOS o�ers two basic libraries� client�o� and private�o� An application program that uses

the EOS server must be linked with the client�o library� If the application program manipulates

private� local databases� the private�o library is linked with it�

In addition� programs compiled with the C compiler must also be linked with the cfuncs�o

library�

Since the EOS libraries have been generated by a C

 compiler� the linking must be done with

a C

 compiler�

��

� Formatting And Deleting Storage Areas

Storage areas are created� formatted� and removed by invoking EOS commands at the UNIX

prompt� An area can be either a UNIX �le or a disk raw partition� the latter must already exists
in order for EOS to format it�

As it was mentioned in Section ������ an area cam be either shared and private� Shared areas are
accessed via the EOS server� Private areas are created on the local machine of the user creating the
area� The �le���eos�areas of the server account keeps information about all areas formatted by
the server� Information about a private area is kept in the���eos�areas �le of the user formatting
the area�

��� Formatting Areas �eosareaformat�

The command eosareaformat formats an EOS storage area� If the area is a UNIX �le and the �le
does not exist� eosareaformat creates it �rst� The rooted path name of the area being formatted
must be speci�ed when the command is invoked� For example�

eosareaformat �usr�thimios�eos�area

formats the UNIX �le �usr�thimios�eos area�

In general� an area name has the following form�

� host name�� rooted area path

where host name is the machine name the server is running on� If it is not speci�ed� the name of
the area manager�s host machine is taken from the the EOS con�guration �le���eos�formatrc� see
section 	���

The complete set of command line arguments of the eosareaformat command is the following�

eosareaformat aname
�l�
�a num�
�s num�
�n num�
�d num�
�e�
�o�

�l It formats a private area on the local machine� The EOS server is not contacted�
Information about this area is kept in the���eos�areas �le of the user executing
the command�

�a num The area number to be assigned to the area� If no number is speci�ed� the system
will pick a unique one�

�s num The size of each extent �in pages of K�bytes��

�n num The number of extents in the area�

�d num The maximum number of databases that can be created in this area�

��

�e It makes the area expandable� the area will grow dynamically as more space is
needed� by appending one extent at a time to the existing ones� The area must be
a UNIX �le to be speci�ed expandable�

�o If the area exists� it is re�formatted and all its contents are purged�

The values of the command line arguments that are not speci�ed by the user are taken from the
���eos�formatrc con�guration �le� see section ����

��� Deleting Areas �eosareadelete�

The eosareadelete command removes an area given either its name or its number	

eosareadelete aname
�l�
eosareadelete �a num
�l�

�l It removes a private area on the local machine� The EOS server is not contacted�
The record of this area is removed from the���eos�areas �le of the user executing
the command�

aname The rooted path name of the area to be deleted�

�a num The area number of the area to be deleted�

When an area is deleted by the server� the following actions take place	

�� Information about the deleted area is erased from the���eos�areas �le of the server account�

�� The disk process servicing the deleted area exits�

� The area is removed �if it is a UNIX �le��

Removing or reformatting an area dynamically � while the server is running � is highly discour�
aged because it is inherently unsafe and it may result in a system failure� We suggest to perform
such operations when the server is not active because then they can be performed in a safe way� Go
to the server�s account and use the command eosareaformat with the �o �l options to reformat
an existing area� and eosareadelete command with the �l to delete an area� However� if you
want to delete or re�format an area while the server is running make sure that there is no active
transaction using this area�

�

� The EOS Client C�� Interface

The following sections describe the EOS C�� classes available to programmers�

The function eos begin��� which initializes the internal structures of the EOS storage manager�
must be invoked before calling any other EOS function�

��� Object ID �class eosoid�

EOS objects are identi�ed by object ids of type eosoid� The data members of the eosoid class
are the following�

eosspid pno� �� the page number the object resides on
unsigned ano � ��� �� the area number the page resides in
unsigned uno � �� �� number that approximates unique oids
unsigned sno � ��� �� slot number in the page that points to the object

static const eosoid��null

is the null object id�

int is valid�void� const

returns true if the oid is a valid object id �i�e�� there exists an object with such id�� otherwise it
returns false�

int operator		�const eosoid
 oid� const

int operator�	�const eosoid
 oid� const

int operator�	�const eosoid
 oid� const

int operator	�const eosoid
 oid� const

int operator��const eosoid
 oid� const

int operator�const eosoid
 oid� const

return true if this and oid satisfy the corresponding relational operator�

��� Persistent New �class eos new�

Persistent object are created by either using the eosobj class described in Section 	�
� or by using
the overloaded operator new provided by EOS� EOS�s persistent new takes one argument� which
speci�es where the new persistent object is going to be placed� Persistent objects can be placed in
an EOS database� or in an EOS �le� or they can be placed close to another persistent object� The
interface provided is the following�

void� operator new�size t size� const eosdatabase� db�

void� operator new�size t size� const eosfile� pfile�

void� operator new�size t size� const eosobj� obj�

void� operator new�size t size� const eos Ref Any
 refObj�

�

The EOS persistent new returns a pointer to the data part of the newly created persistent object�

CAUTION� The SPARCompiler C����� does not invoke EOS���s overloaded new operators for

objects that are of a nonclass type and arrays of class objects� In this case� the eosobj��create��
function should be used�

��� Persistent References �class eos Ref�

Objects may refer to other objects through a persistent reference called an eos Ref� Persistent

references are valid across transaction boundaries� as well as across databases� The class eos Ref

is parameterized� with a parameter for indicating the type of the object being referenced by the

persistent reference� This means that eos Ref must be used by enclosing in angle brackets the
name of the referent type� For example� we can de	ne a persistent reference to an object of type

employee in the following way

eos Ref�employee� emp�

EOS also provides an eos Ref Any class that provides a generic reference to an object of any type�
The eos Ref class provides an operator for performing the conversion from a reference to an object

of type T to an eos Ref Any� according to the ODMG��� Cat��� standards�

eos Ref�void�

the default constructor for this class� The persistent reference is initialized to NULL�

eos Ref�T �fromObj�

constructs the persistent reference to an object of type T given a virtual memory pointer to that
object�

eos Ref�const eos Ref�T� ��

constructs the persistent reference to an object of type T given a persistent reference to that object�

eos Ref�const eos Ref Any ��

constructs the persistent reference to an object from a generic reference�

� eos Ref��

the destructor for this class�

operator eos Ref Any�void� const

converts an eos Ref�T� to an eos Ref Any�

void clear�void�

sets the persistent reference to NULL�

int is null�void� const�

return true if the persistent reference is NULL�

int delete object�void�

deletes the object that is referenced by this persistent reference�

��

T � ptr�void� const

returns a memory pointer to the object referenced by the persistent reference� The pointer is only

valid until the end of the transaction or until the object it points to is deleted�

T � operator �� �void� const

dereferences the persistent reference and returns the valid T � for which the speci�ed reference is

a substitute�

T � operator � �void� const

dereferences the persistent reference and returns the valid T � for which the speci�ed reference is

a substitute�

eos Ref � operator � �T ��

eos Ref � operator � �const eos Ref�T� ��

eos Ref � operator � �const eos ref Any ��

these operator are used for copy assignment�

friend int operator���const eos Ref�T�� refL	 const eos Ref�T�� refR�

friend int operator���const eos Ref�T�� refL	 const T �ptrR�

friend int operator���const T �ptrL	 eos Ref�T�� refR�

friend int operator���const eos Ref�T�� refL	 const eos Ref Any� anyR�

friend int operator���const eos Ref Any� anyL	 eos Ref�T�� refR�

friend int operator
��const eos Ref�T�� refL	 const eos Ref�T�� refR�

friend int operator
��const eos Ref�T�� refL	 const T �ptrR�

friend int operator
��const T �ptrL	 eos Ref�T�� refR�

friend int operator
��const eos Ref�T�� refL	 const eos Ref Any� anyR�

friend int operator
��const eos Ref Any� anyL	 eos Ref�T�� refR�

these operators are used for testing for equality and inequality�

��� Databases �class eosdatabase�

The following functions create� open� remove� and truncate a database� A database may be opened

many times� it will be closed when an equal number of database close function invocations are

performed� In addition� a number of databases� belonging to the same or di�erent areas� can be

open at any point in time�

static eosdatabase� open�const char �name	

int rdonly��	 int create��	int trunc���

opens the database speci�ed in name� The name argument must have the following format�

� hostname� areaname � dbname

If hostname is omitted� it�s value is taken from the clientrc con�guration �le� Note that the

areaname must be a rooted path relative to the server� not the client� The remaining of the

arguments are used in the following way�

�	

rdonly if true the database is opened for reading only�

create if true the database will be created if it does not exist�

trunc if true the contents of the database will be purged�

For example the following piece of code opens the database phones in area �usr�alex�area� on

machine allegra� if it exists�

eosdatabase �db � eosdatabase��open�allegra��usr�alex�area��phones��

static eosdatabase� of�const eosobj� obj�

returns the database descriptor of the database that contains the object obj� or null on failure�

int open�int rdonly�	�

opens the database whose descriptor that has been retrieved by using one of the static functions

eosdatabase��open�� or eosdatabase��of��� A non�zero value argument opens the database

with read�only access� It returns zero on success� non�zero on failure�

int close�void�

closes the database� It returns zero on success� non�zero on failure�

int destroy��

removes this database� It returns zero on success� non�zero on failure�

int rename�const char� new name�

changes the name of the database to new name provided no other database in the same area has

name new name� It returns zero on success� non�zero on failure�

int is readonly�void� const

returns true if the database has been opened for read�only access�

const char� name�void�

returns the name of the database�

const eosoid
 rootoid�void� const

returns the object id of the root �le�

eosoid oid of�const char �name�

returns the oid of the object whose name is name� If no such object exists in this database� the

function returns eosoid��null�

int set object name�const eos Ref Any
 objRef� const char� name�

sets the name of the object referenced by objRef to name� Zero is returned on success and non�zero

of failure�

int remove object name�const eos Ref Any
 objRef�

removes the name associated with the objected referenced by objRef� Zero is returned on success

and non�zero of failure�

int rename object�const char� old name� const char� new name�

replaces the name of the object whose name is old name with new name� Zero is returned on success

and non�zero of failure�

��

const char� get object name�const eos Ref Any� objRef� const

returns the name on the object referenced by objRef�

eos Ref Any lookup object�const char� name� const

returns a reference to the object whose name is name� The validity of the returned reference must
be checked using the eos Ref Any��is null�� member function�

��� Transactions �class eostrans�

All accesses to EOS objects �except database opening and closing� must be done within a transaction
block�

static int begin�int rdonly � ��

begins a transaction block� If rdonly is true� the transaction is a read�only transaction and no
updates within the transaction area allowed� It returns zero on success� non�zero on failure�

static int commit�void�

commits an active transaction� It returns zero on success� non�zero on failure�

static int abort�int normal � ��

aborts an active transaction� If normal is true� it returns � on successful completion and non�zero
on failure� If normal is false� the application program exits after the completion of abort�

static int is active�void�

returns true if the application program has already started a transaction� Otherwise� it returns
false�

static int is readonly�void�

returns true if a transaction has begun and it is read�only�

��� EOS Objects �class eosobj�

EOS objects are manipulated via object handles� There is one handle for each object fetched from
the database� Having a handle to an object implies that the page the object resides on is �xed in
the bu�er pool 	 i�e�� the page cannot be replaced or moved until it is explicitly un�xed�

����� Creating and Removing Objects

static eosobj� create�int size	 eosdatabase �db	 const void� data��	

int flags��	 int hint��	 int ano���

creates an EOS object of size size in the root �le of the database db� The new object is physically
created in the EOS area whose number is ano unless ano is zero in which case it is created in the
same area the database was created�

�

static eosobj� create�int size� eosfile �pfile� const void� data���

int flags��� int hint��� int ano���

creates an EOS object of size size in the �le pfile� The new object is physically created in the
EOS area whose number is ano unless ano is zero in which case it is created in the same area the
�le was created�

static eosobj� create�int size� eosobj �obj� const void� data���

int flags��� int hint���

creates an EOS object of size size in the �le in which the object obj belongs� The new object is
created on the same page the object obj is stored if space is available� or in a new page close to it
and always in the same area obj is stored�

On success� these three functions return the address of the new object handle� On failure� they
return NULL�

If data is NULL the object remains uninitialized� otherwise� it is initialized with the �rst size

bytes pointed by data�

The hint value is a hint about the potential size of the object being created and it is taken into
consideration only if hint � size� EOS will place the object in a page that can accommodate
MAX�hint� size� bytes in anticipation of the object growth� If no page can accommodate this
amount of space� EOS switches to a di�erent representation suitable for large objects in way that
is invisible to the client�

The flags value is used for further control of the placement of the new object� The flags value is
constructed by ORing constants from the following list�

eosobj��NEAR LAST The new object is appended to the �le� i�e�� it is placed after the
last object in the �le� This is also the default action when the value
of 	ags is
�

eosobj��NEW PAGE The new object is placed in a brand new page even if some other
page can accommodate this object�

eosobj��NO FILL The page in which the new object is stored will not be assigned to
any other object that might be created in the future�

eosobj��HDR ONLY Only the object header remains in the client�s pool after the object�s
creation� This is useful� when the object is large and the user intents
to create the object in pieces by successive appends� If this option
is speci�ed the value returned by mptr�� is garbage and the object
can be accessed only via the byte�range operations described in
section �����

��

eosobj��VAR LENGTH It creates a variable length object� Length changing updates can

be applied on this object by using the byte�range function calls

described in section ������

int destroy�void�

removes this object� It returns zero on success� non�zero on failure�

����� Accessing Objects

static eosobj� get�const eosoid� oid� int flags � ��

returns a handle to the object with id oid� On failure� it returns NULL� The flags value is

constructed by ORing constants from the following list�

eosobj��DIRTY The object is marked dirty�

eosobj��HDR ONLY If the object is large� the header of the object only is fetched� If

this option is speci�ed� the value returned by mptr�� is garbage

and byte range operations must be used to access the object�

static eosobj� get�const eosdatabase� db� const char� name� int flags � ��

returns a handle to the object with name name in the database db� The argument flags is used as

explained above�

int release�void�

releases the handle for an object� It returns zero on success� non�zero on failure�

void� mptr�void� const

returns the memory address of the object in the local bu�er pool� If the application intents to

update the object� then the EOS storage manager must be informed before the update materializes�

so that the right locks are requested� This can be done either when get�� is called� by passing the

eosobj��DIRTY 	ag� or by using touch���

int touch�void�

marks dirty the objects referenced by this�

fetch all�void�

fetches the entire object in the application
s space� It has no e�ect if the object is small or the object

is large and it is already fetched in� This is useful when the handle to this object was obtained by

using the eosobj��HDR ONLY 	ag� Thus� applications may get an object with eosobj��HDR ONLY

set� examine the header and then decide whether they want the entire object�

����� Object Properties

int size�void� const

returns the size of the object in bytes�

const eosoid� oid�void� const

returns the object id of the object�

��

const eosoid� parentoid�void� const

returns the object id of the �le containing the object�

const eosoid� rootoid�void� const

returns the object id of the database�s root �le containing the object�

int is root�void� const

returns true if the object is the root �le�

int is file�void� const

returns true if the object is a �le object�

int is large�void� const

returns true if the object is large�

int is named�void� const

returns true if the object has a name�

int is var length�void� const

returns true if the object is variable length � i�e�� it was created with the eosobj��VAR LENGTH �ag

set�

int is page object�void� const

returns true if the object is a page object�

int is index�void� const

returns true if the object is a the directory of an extendible hash index�

int is dirty�void� const

returns true if the object has been modi�ed by the current transaction�

����� Naming Objects

int name set�const char �name�

sets the name name to the persistent object� It returns zero on success� non�zero on failure�

const char� name�void�

returns the name of the object� or � if the object has no name�

int name remove�void�

removes the name of the object� It returns zero on success� non�zero on failure�

����� Tagging Objects

int utag set�void� tag�

sets the value of the 	�byte tag associated with the object to the value of the �rst two bytes pointed

by tag�

const void� utag get��

returns a pointer to the object�s 	�byte tag�

	

����� Accessing Portions of Objects � Byte Range Operations

Byte range operations can be applied to both small and large objects but they are specially useful
for very large objects that cannot be accessed in one step� A byte range �offset� n� de�nes the
start byte offset and the number of bytes n� The �rst byte of the object is at o�set �� Thus� for
an object of size s � a byte range is valid if � � offset � s� and n � � � and offset� n � s� These
functions return � on success� non	zero on failure�

int read�void �buf� int offset� int n� const

reads n bytes of the object starting at o�set offset into the bu�er pointed by buf�

int write�const void �buf� int offset� int n�

replaces �overwrites� n bytes of the object starting at o�set offset with the �rst n bytes pointed
to by buf�

int append�const void �buf� int n� int hint�

appends the �rst n bytes pointed to by buf at the end of the �possibly � size� object� The hint can
be used when the object is written with several append operations and it indicates an estimate of
the total object size� If the precise size of the object is not known� it is always good to overestimate
the size� The hint is taken into consideration only if its value is greater than the sum of n and the
current object size�

int insert�const void �buf� int offset� int n�

inserts the �rst n bytes pointed to by buf into the object starting at o�set offset� None of the
existing bytes is overwritten�

int delete range�int offset� int n�

deletes n bytes of the object starting at o�set offset� Deleting all bytes of an object does not
delete the object itself�

int truncate�int offset�

deletes all bytes on the right of and including byte offset of the object� The size of the object
becomes offset�

��� File Objects �class eosfile�

class eosfile � private eosobj

EOS treats �les in the same way as it treats objects� A �le can be created within another �le� and
a �le can have a name as any other object�

static eosfile� create�eosfile� pfile� const char� name���

int flags��� int ano���

creates a new �le� The new �le is a child of the �le pfile and it is created in area ano if the value
passed is di�erent than �� Otherwise� it is created in the same area as the pfile� The new �le is
unnamed� unless name points to a string in which case the �le gets this name� Applications that

want to associate names with �les may �rst create an unnamed �le and then give a name to it�

The parameter �ags is used as in the eosobj��create function�

static eosfile� create�eosdatabase� db� const char� name���

int flags��� int ano���

creates a new �le as a child of the root �le of the database db�

static eosfile� open�const eosoid� oid�

opens the �le with id oid� It returns the �le descriptor or zero on failure�

static eosfile� open�const eosdatabase� db� const char� name�

opens the �le with name name in the database db� It returns the �le descriptor or zero on failure�

static eosfile� of�const eosobj �obj�

returns the �le descriptor of the �le containing the object obj�

int destroy�void�

removes the �le and all the objects it contains� An attempt to remove a root �le will result in

error� the root �le of a database is removed when the database itself is removed� It returns zero on

success� non�zero on failure�

int clear�void�

removes all the objects belonging to the �le without removing the �le itself� It returns zero on

success� non�zero on failure�

int npages�void� const

returns the number of pages the �le has�

int close�void�

closes an open �le� It returns zero on success� non�zero on failure�

The following functions of eosobj are also public members of the eosfile class�

oid

parentoid

rootoid

utag	get

utag	set

name

name	set

name	remove

is	named

is	root

��� File Scan �class eosfilescan�

Visiting objects belonging to a �le is done by opening a scan for this �le� The state of a scan is

recorded by a cursor which points to the �current	 object in the �le being scanned�

�

static eosfilescan� open�eosfile �fh� int order�AUTO FWRD�

const eosoid� oid � eosoid��null�

returns a scan for the �le fh or zero on failure� The value of order speci�es the order in which the

object of the �le will be scanned� It can take be one of the following values�

eosfilescan��AUTO FWRD automatic scan of the �le in forward order starting at object with

oid oid or at the very �rst object if oid is the null eosoid�

eosfilescan��AUTO BWRD automatic scan of the �le in backward order starting at object with

oid oid or at the very last object if oid is the null eosoid�

eosfilescan��MANUAL explicit manual movement of the cursor� If oid is not the null oid�

the cursor is position at the object with oid oid�

eosoid cursor�void�

returns the id of the object pointed by the �cursor�� The eosoid��null is returned when the

cursor does not point to a valid object� or there are no more objects in the �le to be visited� If

the eosfilescan��AUTO FWRD order was speci�ed� the cursor will be positioned to the next object�

If the eosfilescan��AUTO BWRD order was speci�ed� the cursor will be positioned on the previous

object� By specifying the eosfilescan��MANUAL� the cursor will remain unchanged�

int eosfilescan��close��

closes a �le scan�

When the eosfilescan��MANUAL order is speci�ed� the cursor must be moved explicitly by using

the following functions� They all return zero on success� non�zero on failure� Note that it is NOT

an error to seek to the �rst� next� previous� or last object when no such object exists in the �le

or the page depending on the kind of scan� In this case� a call to cursor�� will simply return

eosoid��null�

int first�int inpage���

positions the cursor to the �rst object within the current page� if the value of inpage is true� or

within the �le if its value is false�

int last�int inpage���

positions the cursor to the last object within the current page� if the value of inpage is true� or

within the �le if its value is false�

int next�int inpage���

positions the cursor to the next object within the current page� if the value of inpage is true� or

within the �le if its value is false�

int prev�int inpage���

positions the cursor to the previous object within the current page� if the value of inpage is true�

or within the �le if its value is false�

int seek at�const eosoid� oid�

positions the cursor on the object with id oid� It is an error to attempt to position the cursor on

an object that does not exist or it is not an immediate member of the �le being scanned�

�	

��� Page Objects �class eospageobj�

class eospageobj � public eosobj

static eospageobj� create�eosfile� pf� int flags � �� int ano � ��

const eosoid� near � eosoid��null�

creates a page object in �le pf and returns the handle to the new object� it return NULL on failure�

The rest of the arguments are the same with the ones of eosobj��create���

���� Plain Database Pages �class eospage�

EOS provides direct access to plain pages� An application program can create� destroy� pin in the

local bu�er pool� and unpin a plain database page belonging to any storage area� A plain page is

associated only with the storage area it belongs to�

int create�int ano�

allocates and pins down in the local bu�er pool a new plain page in the storage area ano� It returns

zero on success� non�zero on failure�

int destroy�void�

unpins the plain page associated with this and it returns the page to the storage area it belongs�

It returns zero on success� non�zero on failure�

static int destroy�eosspid pno� int ano�

frees the page pno belonging to the storage area ano� If the page appears in the local bu�er pool

it is invalidated� It returns zero on success� non�zero on failure�

int pin�eosspid pno� int ano� int flags � ��

pins down in the local bu�er pool the page pno belonging to the storage area ano� If the value of

flags is eospage��DIRTY then an exclusive lock is acquired on this page� otherwise a shared lock

is obtained� It returns zero on success� non�zero on failure�

int unpin�int flags � ��

unpins the page pointed by this� If the value of flags is eospage��UNLOCK then the lock held on

this page is released� It returns zero on success� non�zero on failure�

int touch�int flags�

marks the page pointed by this dirty when flags have the value eospage��DIRTY� This means

that an exclusive lock is acquired on the page� It returns zero on success� non�zero on failure�

void� mptr�void�

returns a memory pointer to the page�

const eospid� pid�void�

returns the eospid id of the page pointed by this�

int size�void�

returns the size of the page�

��

���� Extendible Hashing �eosehash�

EOS provides extendible hashing indexing facility that associates keys with �xed�size values� More
information about the extendible hashing can be found in �FNPS���� The keys can be either �xed�

length structures or variable length strings� In addition� user�de�ned key�hash and key�equality
functions may be provided�

������ Creating and Destroying Indexes

static eosehash� create�eosfile� pfile� unsigned key size� unsigned val size�

int unique� int string� int init size�

HASH FUNC hashf � �� EQ FUNC eqf � �� int ano � ��

creates a new extendible hash index and returns the address of the handle created on success� On
failure it returns NULL�

The directory of the new index is an EOS object created in the �le pfile� The ano speci�es the
area number in which buckets od this index are allocated� If ano is zero� the buckets are allocated

in the same area in which the directory is stored� key size gives the maximum length of a key�
val size gives the size of each value associated with a key and it must be a multiple of four�

If unique is 	 then multiple values can be associated with the same key� Zero�length values are
allowed only when the index is unique� If string is true then the keys are variable size strings�

init size speci�es the initial number of buckets in the hash�

hashf and eqf are the user de�ned hash and key�equality functions� respectively� Their prototypes

are

typedef unsigned �� HASH�FUNC��const void �key�

typedef int �� EQ�FUNC ��const void �� const void ��

int destroy�void�

destroys an existing extendible hash structure� All the entries in the index are destroyed and the
directory itself is deleted�

������ Accessing Indexes

static eosehash� open�const eosoid� oid� HASH FUNC hashf��� EQ FUNC eqf���

opens an extendible hash index whose oid is oid� The hashf and eqf are the functions to be used

for hashing and comparing for equality index keys� Their prototypes are those described in the
previous section� On success the address of the handle created is returned� On failure NULL is
returned�

int close�void�

releases the handle for the index� It returns zero on success� non�zero on failure�

��

������ Inserting and Removing Index Elements

int insert�const void �key� const void �value�

inserts the �key� value� pair into the index� If the index is a unique�key index and the key

already exists then a non�zero value is returned as indication for the error� On success zero is

returned�

int remove�const void �key� const void �value��� EQ FUNC eqf���

removes the �key� value� pair from the index when when value is not NULL� If value is NULL�

all pairs whose key part is key are removed� The eqf is used to �nd the value that has to be

removed� when it is provided� otherwise� memcmp��� is used� On success zero is returned� If an

error occurs non�zero is returned�

������ Accessing a Particular Key

int count�const void� key�

returns the number of values associated with the key� Zero is returned when there are no values

associated with the key� and a negative number is returned if the key does not exist�

int lookup�const void �key� void �value�

copies to the space pointed by value the very �rst value associated with key� A positive number is

returned when the key cannot be located� and a negative number is returned when a failure occurs�

Zero is returned when the key is found�

������ Accessing Index Properties

int nbuckets�void�

returns the number of buckets belonging to this extendible hash�

int depth�void� const

returns the depth of the extendible hash directory� The value returned indicates the number of bits

used to distinguish the keys stored in the index�

const char� name�void� const

returns the name� if any� associated with the index pointed by this� or � if the index has no name�

int name set�const char� name�

sets the name of the index to name� If the name already exists or an error occurs� non�zero is

returned�

int name remove�void�

removes the name of the index� It returns zero on success� non�zero on failure�

const eosoid� oid�void� const

returns the object id of the index directory�

const eosoid� parentoid�void� const

returns the object id of the �le containing the index directory�

��

const eosoid� rootoid�void� const

returns the object id of the database�s root �le containing the index directory�

���� Index Scan �class eosehashscan�

EOS provides facilities for accessing all the keys and their accosiated values in an index or all the

values associated with a particular key only� The state of an index scan is recorded by a cursor

which points to the �current� �key� value� pair being scanned�

static eosehashscan� open�eosehash� eh� int order�AUTO FWRD� const void� key���

opens a scan for the index pointed by eh� It returns � on failure� If the value of key is not NULL

then the scan is opened for this particular key� order speci�es the order in which the �key� value�

pairs of the index will be scanned� It can take one of the following values�

eosehashscan��AUTO FWRD Automatic scan of the index in forward order� Initialy� the cur	

sor is positioned at the �rst pair of the index if key is NULL

otherwise� it is positioned at the �rst pair whose key is key�

eosehashscan��AUTO BWRD Automatic scan of the index in backward order� Initialy� the

cursor is positioned at the last pair of the index if key is NULL

otherwise� it is positioned at the last pair whose key is key�

eosehashscan��MANUAL Explicit movement of the cursor�

int cursor�int same key���

returns true if the cursor currently points to a valid �key� value� pair� If the scan order is

eosehashscan��AUTO FWRD or eosehashscan��AUTO BWRD the cursor moves to the next or previous

pair� respectively� If the value of same key is true� the cursor is restricted to visit only those pairs

whose key is the same as the key of the currently pointed pair� In other words� if same key is

always true� the cursor will visit all pairs with a particular key� The cursor will remain unchanged

if the scan order is eosehashscan��MANUAL�

const void� key�void�

returns a pointer to the key pointed by the cursor� Zero is returned when the cursor does not point

to a valid �key� value� pair�

const void� value�void�

returns a pointer to the values pointed by the cursor� Zero is returned when the cursor does not

point to a valid �key� value� pair�

int remove�void�

removes the value curently pointed by the cursor� If this is the only one value associated with the

key then the key is removed too� It returns zero on success� non	zero on failure�

int replace value�const void� new value�

replaces the value that is currently being scanned with new value� Zero is returned on success and

non	zero if no value is being scanned or an internal error occurs�

��

int close�void�

closes an open scan� It returns zero on success� non�zero on failure�

When the eosehashscan��MANUAL order is speci�ed� the cursor must be moved explicitly by using

the following functions� They all return zero on success� non�zero on failure� Note that it is NOT

an error to seek to the �rst� next� previous� or last �key� value� pair when no such pair exists in

the index� In this case� a call to cursor�� will simply return false�

int first�int same key���

positions the cursor to the �rst value of the current key� if the value of same key is true� or to the

�rst value of the �rst key in the index� if its value is false�

int last�int same key���

positions the cursor to the last value of the current key� if the value of same key is true� or to the

last value of the last key in the index� it its value is false�

int next�int same key���

positions the cursor to the next value of the current key� If the value of same key is false and there

are no other values for the same key� then it positions the cursor to the �rst value of the next key

in the index�

int prev�int same key���

positions the cursor to the previous value of the current key� If the value of same key is false and

there are no other values for the same key� then it positions the cursor to the last value of the

previous key in the index�

int seek at�const void� key�

positions the cursor on either the �rst or the last value associated with key when the order speci�ed

in eosehash��open�� was eosehashscan��AUTO FWRD or eosehashscan��AUTO BWRD� respectively�

If the order was eosehashscan��MANUAL the cursor is not positioned at any value� It is an error to

attempt to position the cursor on an �key� value� that is not valid� i�e� the key does not exist�

���� Extensions and Primitive Events �class eosexten�

������ De�ning Hook Functions

static int insert�int type�int when� int ��func��eosstat �stat��

registers the hook function func to be executed when the event type type occurs� The value of the

when argument determines if the hook is called before or after the occurrence of this event and it

can take one of two values�

eosexten��BEFORE� the hook is invoked just before the event occurs�

eosexten��AFTER� the hook is invoked just after the occurrence of the event�

On success� a non negative number is returned� called the extension number� On failure �� is

returned�

�	

������ Return Values of User Functions

The user function func must return one of the following values�

eosexten��FAIL The user function func failed� Then� the EOS component that called

func fails too� and it returns either an integer �� �� or NULL depending

on its interface�

eosexten��CONTINUE The user function func successfully completed its operations� The

�ow of the EOS function that called func remains unchanged�

eosexten��RETURN The user function func successfully completed its operations� The

EOS function that called func skips the remaining steps and returns

success immediately� This is translated to a returned value of � when

the EOS function returns an integer� and the value of that member of

the eosstat structure� used by the registered function� that has the

same type as the EOS function prototype�

������ Argument Passed to User Functions

The eosstat structure has the following members�

typedef struct eosstat �

eosdatabase� db�

unsigned create � ��

unsigned trunc � ��

unsigned rdonly � ��

unsigned normal � ��

char� name�

eosobj� obj�

eosfile� file�

eosfile� pfile�

eosoid oid�

int flags�

int hint�

int size�

� eosstat�

������ Primitive Events

When a primitive event is trapped� members of the eosstat structure are initialized� The events

that EOS traps and the members of the eosstat set for each event are described below� The

members of the eosstat structure are set from the values of the corresponding arguments of the

EOS function that called the registered function�

��

TR BEGIN Captured by the eostrans��begin���

Members set� rdonly�

TR COMMIT Captured by the eostrans��commit���

Members set� none�

TR ABORT Captured by the eostrans��abort���

Members set� normal�

TR DEADLOCK Captured in various levels of the EOS storage manager�

Members set� none�

DB OPEN Captured by the eosdatabase��open���

Members set BEFORE� db� rdonly� create� trunc

Members set AFTER� db� rdonly� create� trunc

The db member of the eosstat structure is returned by the

eosdatabase��open�� when the user registered function returns

eosexten��RETURN�

DB REMOVE Captured by the eosdatabase��destroy���

Members set BEFORE� db

Members set AFTER� none

FILE CREATE Captured by the eosfile��create���

Members set BEFORE� pfile� name� flags�

Members set AFTER� file� pfile� name flags�

The file member of the eosstat structure is returned by

the eosfile��create�� when the user registered function returns

eosexten��RETURN�

FILE OPEN Captured by the eosfile��open���

Members set BEFORE� oid�

Members set AFTER� file� oid�

The file member of the eosstat structure is returned by

the eosfile��open�� when the user registered function returns

eosexten��RETURN�

FILE REMOVE Captured by the eosfile��destroy��� Members set BEFORE� file

Members set AFTER� none�

OBJECT FAULT Captured by the eosobj��get���

Members set� obj

Only the eosexten��AFTER can be speci�ed for this event�

The obj member of the eosstat structure is returned when

by the eosobj��get�� when the user registered function returns

eosexten��RETURN�

��

OBJECT CREATE Captured by the eosobj��create���

Members set BEFORE� pfile� oid� flags� size� hint

Members set AFTER� obj� pfile� oid� flags� size� hint

The obj member of the eosstat structure is returned when by

the eosobj��create�� when the user registered function returns

eosexten��RETURN�

OBJECT REMOVE Captured by the eosobj��destroy��� Members set BEFORE� obj�

Members set AFTER� none�

OBJECT UPDATE Captured by a number of EOS functions when an object is going to be

updated� or it is updated for the very �rst time�

Member Set� obj�

SLOTTED PAGE FAULT Captured by a number of function in the lower level of the EOS storage

manager� Only the eosexten��AFTER can be speci�ed� Member Set� oid

The user registered function is called for every object in the page that

just fetched in the local bu�er�

������ Extension Activation Status

static int alter�int type� int when� int extno� int on off�

activates and de�activates a registered function� The extension with number extno registered to

be called when the event type occurs� is de�activated if the value of on off is �� and it is activated

when on off has the value �� A registered action is by default active�

static int is active�int type� int when� int extno�

checks whether the extension extno for the event type� when is active or not�

������ Example � � Access Control

This example demonstrates the use of EOS extensions to provide access control such as when certain

databases should not be accessible to all users� Let us assume that the application keeps a table of

databases and the users that have access to them and that the function access authorized�char�

dbname� char� uname� returns true if the user with name uname has access to database with name

dbname�

We want to de�ne an extension that is triggered just before a database is going to be opened� That

is� the event that triggers this extension is BEFORE DB OPEN� The �rst step is to write the hook we

want to be executed when the above event occurs	 its code may look as follows�

int check�db�access�eosstat �s� �

if �� access�authorized�s	
name� getlogin���� �

printf���s� permission denied for this database�n�� s	
name��

return eosexten��RETURN�

�

�

return eosexten��CONTINUE�

�

After the action is written� the second and �nal step is to register this extension with EOS as
follows�

eosexten��insert�eosexten��DB�OPEN� eosexten��BEFORE� check�db�access��

Before any attempt to open a database� EOS sets the name �eld of the eosstat structure to the

name of the database and invokes the function check db access� In turn� the function checks
whether the user is authorized to access the database with the given name� If the user has access to

this database� the function returns eosexten��CONTINUE� This return value signals EOS to follow
its normal �ow of control� which is to go ahead and open the database� On the other hand� if the

user does not have access to this database� the function prints an error message and then returns
eosexten��RETURN� This return value instructs EOS to bypass its normal control �ow� and return
immediately with error� NULL in this case� Thus� the call to eosdatabase��open that triggered

this action returns NULL � it is as if EOS could not open this database�

������ Example � � Fixing C�� Pointers

This example is taken from the implementation of Ode �BGL�	
�� a C�� based database system�

that uses EOS as its storage manager� The problem encountered during the implementation was
that C�� objects of types that have virtual functions or virtual base classes contain hidden pointers

�BDG	
� � pointers that they were not speci�ed by the user� In the case of virtual functions� the
hidden pointer points to a virtual function table that is used to determine which function is to be
called� In the case of virtual base classes� the hidden pointers are used for sharing base classes

�Str��� Hidden pointers are invalid across program invocations and they need to be �xed� We
register the hook function fix hidden ptrs to be execute right after an object fault occurs as

follows�

eosexten��insert�eosexten��OBJECT�FAULT� eosexten��AFTER� fix�hidden�ptrs��

The hook function fix hidden ptrs looks as follows�

int fix�hidden�ptrs�eosstat �s�

	

if � has�hidden�ptrs�s
�obj
�utag�get��� � 	

s
�obj
�fetch�all���

���� fix the pointers

�

return eosexten��CONTINUE�

�

� The EOS Server

��� Server Startup

The EOS server is started up by executing the following command

eosserver ��h� ��v� ��c� ��l� ��r� ��b� ��t num� ��f secs � ��s service� ��B npages � ��E Mbytes �
��p port � ��J name� ��C name� ��P name� ��O num� ��R num� ��T num�
��L lock protocol � ��e name� ��a name�

The meaning of each one of the available command line arguments is presented below�

�h A brief explanation for each command line argument is displayed on the screen�

�v Verbose mode� It displays messages regarding the progress of the server� In this
way the behavior of the server can be studied�

�c It turns o� the lock manager� No locks will be acquired for any kind of access to
the database�

�l It turns o� the log manager� No log records are generated�

�r Starts the server without performing recovery�

�b The server can run in the background if the � shell �ag is used� The �v option is
ignored in this case�

�t num The maximum number of client programs that can be connected to the server at
the same time�

�f secs The frequency in seconds of the checkpoint process�

�s service The name of the service o�ered as it is in the �etc�services �le �if such service
exists��

�B npages The size of the bu�er pool used by the server in terms of pages �	 Kbytes each��

�E Kbytes The size of the extra space used by the server for large object manipulation because
large objects do not get stored in the bu�er pool�

�p port The port where the server daemon listens for connection requests�

�J name The rooted path of the global log �le to be used�

�C name The rooted path of the checkpoint �le�

�P name The directory that will contain the private log �les� The directory must exists
otherwise an error will be generated�

�O num The maximum number of pages that can be locked at the same time by all active
transactions communicating with the server�

	

�R num The maximum number of lock requests� both granted and blocked� that can be
outstanding at any point in time�

�T num The maximum number of active transactions that can hold locks on database pages
at the same time�

�L lock protocolThe concurrency control protocol to be used� The available protocols are �PL and
�V�PL� �PL is the standard two�phase locking protocol� �V�PL is the two�version
two�phase locking protocol used by default in EOS�

�e name The name of the �le to be used for reporting errors� If not given the stderr is
used�

�a name The directory that will contain the archived private log �les� If the directory does
not exist an error will be reported�

��� Normal Operation

Once the server has started up it monitors the standard input �stdin� for user entered commands�
The commands that are recognized are given below�

help A brief description of all the available commands is given�

version The current EOS version number is printed on the screen�

checkpoint Take a checkpoint now�

debug The values of all the parameters used by the server are printed on the standard
output� In addition� information about the active processes spawned by the server
is given�

stats A number of statistics about the server bu�er and transaction modules of EOS are
printed on the screen�

shutdown The server will be shut down after aborting all active transactions� A checkpoint
is taken so that no recovery is needed when the server starts up again�

exit Exit immediately�

��� Server Shutdown

To shutdown the server when it runs in the background or from a remote machine� run eosserverkill�
The invocation of the above program is done in the following way	

eosserverkill
�c�
�a�
�w�
�f�
host�

The meaning of the available options is explained below�

host The name of the machine where the server runs�

�

�c Take a checkpoint and then exit immediately�

�a Abort all active transactions present in the system and exit�

�w Wait until all active transactions �nish �either commit or abort� and then exit� No new
transaction will be started in the interim�

�f Flush the shared bu�er pool before exiting�

The �a and �w options are con�icting and the �a will be used when both are present� If the
eosserverkill is invoked with no options� the server will exit after aborting all active transactions�
The current release does not verify the permissions of the person invoking the eosserverkill

program�

The server removes all shared memory segments and semaphores used when it exits� However�
there might be cases where there are leftover shared memory segments and semaphores� e�g�� if the
server is killed by the kill �� command� Because the server will not operate properly if these
leftovers are not removed� use the ipcrm system command to remove them� The ipcs command is
used to check if there are any shared memory segments and semaphores left�

��� Checkpoint

The frequency of the checkpoint procedure is set by the �f command line option of the eosserver
command� In addition� the eoscpfrequency utility program can be used to change the checkpoint
frequency while the server is running� Its usage is as follows	

eoscpfrequency
host� secs

The time period between two successive checkpoint requests is given by the secs argument passed to
the above program� If the host is not given� then the host given by the EOS SERVER HOST NAME
variable will be contacted� Currently� there is no limit on the upper bound of the checkpoint period�
This might be changed�

��� Is Alive

The command eosserveralive checks if the EOS server is alive	

eosserveralive
host�

If the host is given� then this particular host will be contacted� Otherwise� the host name will be
taken from the EOS SERVER HOST NAME environment variable� see section ���

If the EOS server is active then the

EOS server is alive and healthy�

�

message will appear on your screen� Otherwise� the

No EOS server is running on �host��

will appear�

��

� EOS Customization

The client and the server modules of EOS� as well as the one that formats an area use a number
of environment variables to perform their task� EOS provides three installation programs that set
up default values for all these variables so users that do not want to customize EOS or they are
not concerned with performance need only change few things to set up their environment� The
default values of these variables are stored in three con�guration �les named formatrc� clientrc
and serverrc under the �HOME��eos directory of the user making the installation�

The following are the three programs that install the default values of the environment variables
used by EOS�

� eosformatenv creates and initializes the con�guration �le formatrc� this �le is used whenever
a new area is formatted with the eosareaformat command�

� eosclientenv creates and initializes the con�guration �le clientrc� this �le is used by the
applications linked with the private�o or client�o object module of EOS�

� eosserverenv creates and initializes the con�guration �le serverrc� this �le is used by the
EOS server�

The con�guration �les contain name� value pairs� one per line� with the equal sign ��� separating
the value from the name� There are two ways to change these default values�

�� Use an editor to open the con�guration �le and locate the parameter whose value is going to
be updated� update the value making sure that you do not delete the � sign or modify the
name of the parameter�

	� Set environment variables whose names are identical to the names found in the con�guration
�les� For csh or tcsh users� this can be done as follows�

setenv name value

For korn shell users� this can be done as follows�

name � value� export name

For a given name� environment variables are checked �rst and if no such variable is set� the
value of the name is taken from the appropriate con�guration �le� For the server� there is a third
way of initializing the parameters by using command line arguments when the server is invoked�
Section
�� elaborates on this�

��� Customizing the Area Formatting Procedure �formatrc�

The formation of an area is based on the following environment variables�

��

EOS AREA EXTENT SIZE� The default extent size of the area being formatted� If possible� the
size of the extent should be set to the number of physically contiguous pages available in the
disk device the area resides on� In this ways� the number of disk seeks required for accessing
large objects is minimized�

EOS AREA NEXTENTS� The default number of extents of an area being formatted�

EOS MAX DBS PER AREA� The maximum number of databases that can be created in a given
EOS area�

EOS AREA EXPANDABLE� This variable speci�es whether the area being formatted is expand�
able� i�e�� whether a new extent should be appended to the existing area if more space is
requested� This variable applies only to storage areas that are UNIX �les�

EOS AREA HOST NAME� The default host machine name the area manager is running on�

EOS AREA HOST PORT� The port number used for communication with the area manager� It
must be di�erent than the EOS SERVER HOST PORT number in the clientrc �le�

��� Customizing the Client �clientrc�

The following are the environment variables for the client program�

EOS POOL SIZE� The maximum size of the transaction�s bu�er pool measured in pages �	K�bytes
each
� The cache is created incrementally in chunks of EOS POOL INCREMENTS pages�
The maximum size of the client cache a�ects the performance of the client program� A small
cache will force the EOS client cache manager to force pages out of the cache sooner than
a larger cache� On the other hand� a very large cache will increase the operating system�s
swapping activity due to memory size limitations and activities from other users running on
the same client machine� It�s hard to come up with a right size for all applications a user
may run� As a general suggestion� keep this number large � e�g�� � or �� megabytes � and
then experiment with the EOS POOL INCREMENTS value�

EOS POOL INCREMENTS� The number of frames allocated to the transaction�s cache each time
more frames are needed � until the cache has reached its �nal size�

EOS LO SEG THRESHOLD� It a�ects large objects only� It speci�es the default segment size
threshold used when updates are performed on large objects� such as when inserting or deleting
a number of bytes starting at an arbitrary o�set within the large object� See section ���� for
the e�ects of this value�

EOS OH INCREMENTS� The number of object handles that will be allocated when new ones
are needed� There is no explicit upper bound on the number of objects fetched� However�
such limit is implicitly imposed by the number of object present in the pages the cache can
�t� as speci�ed by the EOS POOL SIZE variable�

��

EOS EM MAX ACTIONS� The maximum number of hook functions that can be registered for
execution for a particular event� For example� if this value is �� you can register up to �
actions to be executed before the event occurs and up to � actions to be executed after the
event occurs�

EOS SERVER HOST NAME� The host machine name the server is running on� This name is
used when no host name is provided while opening� creating� or deleting a database�

EOS SERVER HOST PORT� The port name through which communication with the server will
take place� This value must match the corresponding value set at the server�s environment
or the value in the �etc�services entry when the service provided by the server is known�

��� Customizing the Server �serverrc�

The following are the environment variables used by the EOS server�

EOS SERVER HOST PORT� The port number where the EOS server listens for connection re�
quests� This number must be well known to all the clients interested in establishing a con�
nection� One way of achieving this is by having an entry in the �etc�services �le� If this is
not possible� then try to use a port number between ��	� and
��� �for the Internet��

EOS REPORT PROGRESS� If its value is not � then most of the steps followed in each operation
carried out by the server will be displayed on the screen� If the value is � only error conditions
are reported�

EOS LOCK IS ENABLED� If its value is not � then the concurrency control module will be active
and locks are acquired while accessing the database� Otherwise� no locks are placed of the
pages accessed� The default value is ��

NOTE� no guarantee is given that the system will operate in a consistent and correct way
when the lock manager is turned o�

EOS LOG IS ENABLED� If its value is not � then all the updates performed by committed
transactions will be logged on durable storage� If the value is �� no logging is performed�

NOTE� no guarantee is given that the system will be in a consistent state should a failure
occur and the log manager is o�

EOS AUTO RESTART� If its value is not �� when the server starts it makes sure that all updates
performed by all committed transactions in the past are in the database� If the value is ��
the servers does not check wether the database is consistent�

NOTE� no guarantee is given that the system will behave correctly in the case where a failure
occurred and the automatic restart is turned o�

EOS MAX CONNECTIONS� The maximum number of open connections at any point in time�

��

EOS CHECKPOINT FREQUENCY� The frequency �in seconds� of the checkpoint request is�
sued by the server� The time interval between two checkpoints is of importance to the
recovery procedure during system restart� The default value is set to ��� seconds�

EOS SHARED POOL SIZE� The number of �K�byte pages of the server�s bu	er pool�

EOS LARGE OBJ SIZE� The size in Kbytes of the extra space the server allocates for large object
disk I
Os�

EOS SHARED POOL FILE PATH� The rooted path name of the �le that will be used to store
the server�s bu	er pool as well as the extra space allocated for large object I
Os� This �le is
memory mapped �mmap��� by the server and the disk daemon during start up� The default
path is �tmp� eos srv pool� If the �le does not exist it will be created automatically�

EOS CONTROL FILE PATH� The rooted path name of the �le that will be used to store all con�
trol structures required by the server�s bu	er manager� This �le is memory mapped �mmap���
by the server during start up� If the �le does not exist it will be created automatically� The
default path is �dev�zero�

EOS CHECKPOINT NAME� The rooted path name of the checkpoint �le�

EOS GLOBAL LOG NAME� The rooted path name of the global log �le�

EOS PRIVATE LOG DIR� The rooted path name of the directory used to store private log �les�
All the log records generated by a transaction are stored in a �le� whose name has the form
eos�priv x y z� under the above directory�

EOS ARCHIVE DIR PATH� The rooted path name of the directory used to store the archived
private log �les� The name of an archive �le has the form eos arch N�Z� where N refers to
the order of creation and it is a monotonically increasing number�

EOS LOG THRESHOLD� The minimum number of private log �les that have to be created before
the archive procedure is activated� The value of this variable depends on the expected size
of the log �les created� If the log �les are small then a large number �hundreds� is adequate�
On the other hand� if the log �les created are big� a small value �tens� is recommended�

EOS MAX LOCK UNITS� The maximum number of database pages that can be locked at the
same time�

EOS MAX LOCK ENTRIES� The maximum number of locks held by all transactions present in
the system on di	erent database pages�

EOS MAX TRANSACTIONS� The maximum number of active transactions that have at least
one lock entry at the same time�

EOS SRV SND BUFFER� The size in kilobytes of the operating system�s bu	er used to send data
over a TCP
IP connection� This value should not exceed the upper bound imposed by the
kernel� The default value is �K�

�

EOS SRV RCV BUFFER� The size in kilobytes of the operating system�s bu�er used to receive
data over a TCP�IP connection� This value should not exceed the upper bound imposed by

the kernel� The default value is ��K�

EOS TR FAIL TIMEOUT� The maximum allowable �idle period� for an application process ex	

pressed in minutes� If the application does not have any interaction with the server during
the above time period
 then the server unconditionally aborts the transaction�

��

� EOS File System Viewer �eosfsview�

eosfsview is a primitive � and not yet complete � interactive browser that shows information about
an EOS storage area� databases� �les and objects� The program accepts one argument� the name
of the area to be viewed�

When you run eosfsview you see this menu�

EOS Release x�y�z

Options� � � quit

� � area info� � � list databases

� � make db� 	 � open db�
 � rm db� � � rename db

Command�

Option � displays all databases in the area� After a database is opened with the option �� the
following menu is displayed�

Options� �� quit� �� go to main menu

�� ls� � cd

��� show names� ��� unix od

Command ����

You may then list all objects in the current �le �option �	� change current �le �option
	� show
all names in the database �option ��	� and apply the Unix od command to see the contents of a
byte range of an object� When option � is chosen� the properties of objects within the current �le
are displayed as follows�

����v�h �� ��������������ce����

����v�h �� ��������������ce����

��ln��� 	��� �����ffe����������� my�large�obj

���n��� �� ������fe������a����� my�small�obj

������� �� ������fe�������c����

�f�nv�� �� �������������������� my�file

The set of dashes and characters refers to the object properties interpreted as follows�

r root file object

f file object

l large object

n named object

v variable length object

p page object

h hash object

The object size �in bytes	 is displayed next� followed by its oid �page no� area no� unique no�
slot no	� followed by the object�s name� if any�

� An Example of Using EOS

This section presents two simple programs included in the EOS distibution � the source code of

these programs is in eos�example directory� The �rst program creates a number of objects that

are linked together by using a number of persistent references� The second programs� traverses the

object hierarchy down to the level which is speci�ed in the command line argument� A number of

other demo programs can be found in the smae directory�

��� File Part�h

�ifndef ��Part�h��

�define ��Part�h��

�include �eos�Ref�h�

�include �eos�h�

�define NPARTS ���

�define NAME�SIZE ���

struct Part 	

int part�no
 �� The part number

eos�Ref�char name
 �� A name given to this part

eos�Ref�Part x�part
 �� Persistent reference to another part

eos�Ref�Part y�part
 �� Persistent reference to another part

eos�Ref�Part z�part
 �� Persistent reference to another part

�

�endif

��� File part create�c

�� Usage� create �database�name

�� This programs creates a hierarchy of objects

�include �stdio�h

�include �stdlib�h

�include �Part�h�

�define ErrR�msg� 	 printf msg
 return ��
 �

int create�parts�eosdatabase �db�

	

eos�Ref� eos�Ref�Part pers�array

Part� a�part

��

�� Create the array of pointers to parts and give it a name

pers�array � new�db� eos�Ref�Part��NPARTS	

if � pers�array�is�null�� �

ErrR���Failed to create the persistent array of references to Parts����

if � db�set�object�name�pers�array� �part�array�� �

ErrR���Cannot set the name to �s�� �part�array���

�� Create the part objects and store references to them in the pers�array

for � int i��
 i�NPARTS
 i��� �

pers�array�i	 � new�db� Part

if � pers�array�i	�is�null�� �

ErrR���Failed to create a persistent Part����

a�part � pers�array�i	

a�part�name � new�db� char�NAME�SIZE	

if � a�part�name�is�null�� �

ErrR���Failed to create the persistent name of a Part����

sprintf� �char �� a�part�name� �Part Object With Number �d�� i�

a�part�part�no � i

�

�� Link the object together

for � int j � �
 j � NPARTS
 j�� � �

a�part � pers�array�j	

a�part�x�part � pers�array� rand�� � NPARTS	

a�part�y�part � pers�array� rand�� � NPARTS	

a�part�z�part � pers�array� rand�� � NPARTS	

�

return �

�

�����������������������������������

main�int argc� char�� argv�

�

eosdatabase �db

if � argc �� � �

printf��Usage� �s database�name �n�� argv��	�� exit ���

��

if ��db � eosdatabase��open�argv���� �� �		 �� NULL 	

printf�
Cannot create database �s�n
� argv���	� exit ��	�

if � eostrans��begin��	 	

printf�
Cannot start a transaction�n
	� exit ��	�

if � create�parts�db	 	

printf�
Cannot create the objects��n
	� eostrans��abort�	� exit��	�

if � eostrans��commit�	 	

printf�
Transaction commit failed��n
	� eostrans��abort�	� exit ��	�

if � db�close�	 	

printf�
Cannot close the opened database�n
	� exit ��	�

exit��	�

�

��� File part traverse�c

�� Usage� traverse �databasename� �level of traversal�

�� This program starts from a random object and traverses the object

�� hierarchy down to the level given in the input�

�include �stdio�h�

�include �stdlib�h�

�include
Part�h

�� The depthfirst traversal of the object hierarchy

void traverse�Part� p� int level	

�

if � level �� � 	 � printf�
 �n
	� return� �

printf�
Part� �d with name �s�n
� p�part�no� �char �	 p�name	�

printf�
�tVisiting x�part�
	� traverse�p�x�part� level�	�

printf�
�tVisiting y�part�
	� traverse�p�y�part� level�	�

printf�
�tVisiting z�part�
	� traverse�p�z�part� level�	�

return�

�

�����������������������������������

main�int argc� char ��argv	

�

eosdatabase �db�

eos�Ref� eos�Ref�Part� � p�array�

��

if � argc �� � �

printf��Usage� �s database level 	n�
 argv���
 exit � ����

if ��db � eosdatabase��open�argv���� �� NULL �

printf��Cannot open database �s	n�
 argv���
 exit �����

if � eostrans��begin��� �

printf��Cannot start a transaction	n��
 exit �����

p�array � �eos�Ref� eos�Ref�Part� �� db��lookup�object��part�array���

if � p�array�is�null�� �

printf��Failed to locate the object	n��
 eostrans��abort��
 exit �����

Part� a�part � p�array� rand�� � NPARTS �

traverse�a�part
 �int� atoi�argv��� � ���

if � eostrans��commit�� �

printf��Transaction commit failed�	n��
 eostrans��abort��
 exit �����

if � db��close�� �

printf��Cannot close the opened database	n��
 exit �����

exit ����

�

��

�� Troubleshutting

Trying to connect ��������� The server was not able to establish the communication link

because the port number it uses is busy� If this happens� the server will re�try� If the server does

not succeed after � tries it gives up�

Solution� change the port number the server uses by altering in both the clientrc and serverrc

con�guration �les the value of the EOS SERVER HOST PORT� The values must be the same

in both �les and it must be di�erent than the EOS AREA HOST PORT value in the formatrc

�le�

Note� if the above message appears after the message EOS server� We are open for business�

then the problem is with the disk daemon� In this case� shutdown the server and try again� If the

problem persists� then change the EOS AREA HOST PORT value�

Cannot create shared memory This may happen when�

�� The machine where the server started on does not support shared memory�

Solution� ask the system administrator to install shared memory on this machine�

	� The number of the available shared memory segments is not enough to satisfy the server
s

requirements�

Solution� decrement the EOS SHARED POOL SIZE value�

�� A con�ict was created because the key used to create a shared memory segment has been

already used by someone else�

Solution� remove any shared memory segments used by other processes because some of the

keys used for creating shared memory are �xed�

� The server was shut down and was not able to cleanup the shared memory segments it used�

Solution� check if there are any shared memory segments left by using the ipcs �m com�

mand� If there are some� remove them by using the ipcrm command�

Cannot create semaphore This may happen when�

�� The machine where the server started on does not support semaphores�

Solution� ask the system administrator to install semaphores on this machine�

	� The number of the available semaphores is not enough to satisfy the server
s requirements�

Solution� ask the system administrator to increase the number of the semaphores that can

be created system�wise�

�� A con�ict was created because the key used to create a semaphore has been already used by

someone else�

Solution� remove any semaphores used by other processes because some of the keys used for

creating semaphores are �xed�

�

�� The server was shut down and was not able to cleanup the semaphores it used�

Solution� Check if there are any semaphores left by using the ipcs �s command� If there

are some� remove them by using the ipcrm command�

Error ����� occurred on the EOS server� This may happen when the application tries to

access a storage area that is not known to the server� This can be a result of�

�� Name misspelling�

�� Creation of the area with the �l �ag while the server was running�

�� The application was connected to the wrong server�

Error ����� occurred on the EOS serverThis may happen when the maximum value for either

of EOS MAX LOCK UNITS� EOS MAX LOCK ENTRIES and EOS MAX TRANSACTIONS is exceeded� Either
increase their values in the serverc con	guration 	le� or use larger numbers when you use the

command line arguments when starting up the server�

�� Release Notes

EOS ����
 versus EOS ����
�

� A parametarized class to be used as a persistent reference to an object has been added� This
class obeys the ODMG��� Cat��� standards�

� Persistent object can also be created by using the overloaded operator new which takes one
argument that speci	es where the new persistent object is going to be placed�

EOS ����
 versus EOS ��
�x�

� Reported bugs have been 	xed and a number of changes have been made to increase perfor�

mance�

� The system now runs on SGI� Suns ����x� and Solaris ��x architectures� C�� compilers that

can be used include the ones distributed by AT�T� Sun� GNU� and CenterLine�

� The server can now run in the background� Use �b �ag and the � shell �ag� See Section ����

� Error messages of the server can be stored in a user speci	ed 	le� Use the �e �ag� See Section
����

� The archived private log 	les can now be stored in a user speci	ed directory by using the �a
�ag at start up time� See Section ����

� The eosareadelete invalidates all the pages belonging to the deleted area that are present
in the bu�er pool of the server�

��

� The eosareaformat invalidates all the pages present in the server�s bu�er pool that belong

to the area being formatted when the area exists already�

� Abnormal client failures are detected by the server by using a timeout period as given by the

user�speci�ed value of EOS TR FAIL TIMEOUT�

� eofsview is a primitive � and not yet complete � interactive browser that shows information

about an EOS storage area� databases� �les and objects� See section ��

	

References

�BDG��� A� Biliris� S� Dar� and N� Gehani� Making C�� objects persistent� The hidden pointers�
Software Practice and Experience� 	�
�	���	� � ����� December �����

�BGL���� A� Biliris� N� Gehani� D� Lieuwen� E� Panagos� and T� Roycraft� Ode 	�� User�s Manual�
Technical report� AT�T Bell Laboratories� �����

�Bil�	a� A� Biliris� An e�cient database storage structure for large dynamic objects� In Pro�

ceedings of the Eighth International Conference on Data Engineering� Tempe� Arizona�
pages ������� February ���	�

�Bil�	b� A� Biliris� The performance of three database storage structures for managing large ob�
jects� In Proceedings of ACM�SIGMOD ���� International Conference on Management

of Data� San Diego� California� pages 	���	�� May ���	�

�Cat��� R�G�G� Cattell� Object Database Standard� ODMG���� Morgan Kaufmann� San Mateo�
California� ����� Contributions by T� Atwood� J� Dubl� G� Ferran� M� Loomis� and
Wade� D�

�FNPS��� R� Fagin� J� Nievergelt� N� Pippenger� and H� R� Strong� Extendible hashing � a fast
access method for dynamic �les� ACM Transactions on Database Systems� �
�����������
September �����

�GR��� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques� Morgan
Kaufmann� San Mateo� California� �����

�KP�� B� Kernighan and R� Pike� The UNIX Programming Environment� Prentice�Hall Soft�
ware Series� ����

�Ste��� R� Stevens� UNIX Network Programming� Prentice�Hall Software Series� �����

�Str�� B� Stroustrup� C�� Programming Language� Addison�Wesley� Reading� MA� ���� 	nd
ed�

��

