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Data Collection and Processing

In this section, we describe data collection processes for all datasets. The rigid double pendu-

lum, swing stick, air dancer, fire and lava lamp datasets were collected from real-world physical

experiments, while the circular motion, reaction diffusion, single pendulum, and elastic double

pendulum datasets were collected from simulations.

Rigid double pendulum.

The physical parameters of our rigid double pendulum system is shown in Fig. 1. The system

used in our investigation is a two colored chaotic pendulum from 3D scientific: the first arm is

black and the second arm is blue. Using the pivot attachment that came with the pendulum, the

pendulum is installed against a brown-beige wall in the laboratory. There are 4 bearings on the

pendulum. Three of them are fixed in place and one is left loose to reduce friction. We used an

iPhone7 to record videos at 720 p and 240 fps.

 

 

 

 

 

Length of the first arm: 20.5 cm 

                  Double Pendulum 

Length of the second arm: 17.9 cm 

Mass of the first arm: 0.262 kg 

Mass of the second arm: 0.110 kg 

Depth of the arms: 3.8 cm 

Fig. S1. Physical Parameters of the Double Pendulum System. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Physical parameters of the rigid double pendulum system

We collected a total of 100 videos, with an approximate length of 15 seconds for each video.

We used 80 of these videos for training and validation, and 20 of them for testing. For better

video quality, we trimmed each video to 11s in order to avoid the movement at the beginning and
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the end of recording caused by humans and small changes in brightness or illumination caused

by the camera. Another reason is that the dynamics towards the late part of the recordings

are more predictable due to the lack of energy and the loss of momentum. Afterwards, we

sub-sampled the video to construct a video dataset with 60 fps to produce sufficient visual

difference between subsequent frames in a prediction triplet. To feed the video frames into our

visual predictive models, the images are resized to 128 × 128.

Since we are interested in evaluating the results of prediction from the double pendulum sys-

tem, we further equalized the background of the pendulum system with a simple color filtering

so that our vision algorithms can detect the position and orientation of the pendulum arms with

another color filtering during the evaluation process. We performed this additional step only to

the double pendulum, for the sake of evaluation alone, while other systems do not involve this

extra preprocessing step.

Swing stick.

The physical parameters of the swing sticks can be found in Fig. 2. The system being used is

from Geelong Shope, made out of a high-quality base, aluminum sticks, high quality bearings

and black rubber feet. We used a GoPro Hero 5 Black camera to capture the motion of the

system on a 240 frame per second and 720 pixel setting. The GoPro was mounted on a tripod

directly at the height of the swing stick table. For each video sequence, we held the stick to a

random position and then applied a force on the arm to cause motions that can last for a longer

period of time.

We collected a total of 23 videos of approximately 150 seconds for each video sequence. We

used 18 of these videos for training and validation and the remaining 5 for testing. Similar to the

rigid double pendulum dataset, we trimmed the videos to obtain high-quality data, resulting in

140 seconds for each video. We further sub-sampled the video to 60 fps and resized the image

3



 

Mass without batteries: 248 g 

                       

               Swing Stick 

Mass with batteries: 340 g 

Span of the two sticks: 34 cm 

Height of the system: 37 cm 

Width of the base: 8 cm 

Length of the baes: 22.5 cm 

Length of the longer stick: 24 cm 

Length of the shorter stick: 18 cm 

Hinge point for the first arm (from the longer side): 17.5 cm 

Hinge point for the second arm (from longer side): 10.1 cm 

Fig. S2. Physical Parameters of the Swing Stick System. 
 

 

Span of the dancer: 19.2 cm 

                  
 Air Dancer 

Height of the dancer: 30.0 cm 

Overall height: 41.0 cm 

Width of the base: 7.0 cm 

Diameter of the fan: 3.0 cm 

Fig. S3. Physical Parameters of the Air Dancer System. 

Fig. 2: Physical parameters of the swing stick system

frames to 128 × 128 before sending the frames to our dynamics predictive model.

Air dancer.

The physics parameters of the air dancer system can be found in Fig. 3. Initially, the air dancer

ran on a 9 V capped battery that could directly be placed in the compartment. However, this led

to undesirable complications in our study. First, the 9 V voltage was too high for the motor as

the rotation of the fan prevented the dancer from showing sustained chaotic behavior. It would

often stand upright after a very short duration. Second, the battery life for the system is short.

Over the time of recording the dataset, the voltage of the battery quickly dropped.

To resolve these complications, we cut the battery connections from the dancer and plugged
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Span of the dancer: 19.2 cm 

                  
 Air Dancer 

Height of the dancer: 30.0 cm 

Overall height: 41.0 cm 

Width of the base: 7.0 cm 

Diameter of the fan: 3.0 cm 

Fig. S3. Physical Parameters of the Air Dancer System. 
Fig. 3: Physical parameters of the air dancer system

it into a variable dc power supply with 6.70 V, and grounding the negative connection. This

produced appropriate airflow through the blower to enforce the repetitive high-low pressure

phenomenon. We recorded the video with a GoPro Hero5 Black. In total, we collected 27

videos, each of approximate length 150 seconds. We used 22 videos for training and validation

and 5 videos for testing. Following the previous steps, all the videos were trimmed to 140

seconds to obtain the final dataset. The image frames were resized to 128 × 128 with 60 fps.

Lava lamp.

We downloaded a real world recording of lava lamp system from YouTube. The video lasts

about 4 hours with 2.5 fps.

Fire.

We downloaded a real world recording of fire system from YouTube. The video lasts about

3,603 seconds with 24 fps.

Circular Motion.

We simulated a circle moving along a circular path with a constant speed to construct the circular

motion dataset. We fixed the center and the radius of the circular path as well as the radius of
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the circle. For each sequence, we randomly sampled the circle’s initial position and constant

speed. In total, we collected 1,100 sequences with 60fps. We used 880 of these sequences for

training and validation, and 220 of them for testing.

Reaction diffusion.

We simulated the dynamics of a planar spiral wave to construct our reaction diffusion dataset.

The dynamics of the system is driven by the following reaction-diffusion PDEs:

ut = (1− (u2 + v2))u+ β(u2 + v2)v + d(uxx + uyy),

vt = −β(u2 + v2)u+ (1− (u2 + v2))v + d(vxx + vyy),

with parameters d = 0.1 and β = 1. We ran only one simulation by solving the PDEs, following

the original implementations. We then constructed the dataset by rendering the scalar field

u(x, y, t) at each time t as a 128× 128 image with time t sampled at 5 fps. The long sequence

of frames sampled from the simulation was divided into 100 shorter sequences. We used 80 of

these sequences for training and validation, and 20 of them for testing.

Single pendulum.

We will present the physics equations of the single pendulum system in the “Physics Equations

of Pendulum Systems” section. We set the pendulum mass as m = 1kg and the pendulum

length as L = 0.5m. For each sequence, we randomly sampled the initial position and velocity

of the pendulum arm. In total, we collected 1,200 sequences with 60fps. We used 960 of these

sequences for training and validation, and 240 of them for testing.

Elastic double pendulum.

We will present the physics equations of the elastic double pendulum system in the “Physics

Equations of Pendulum Systems” section. We set the physical parameters of this system to be
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the same as the physical parameters of the rigid double pendulum except that the first arm was

replaced by a massless spring with a elasticity constant k = 40kg/s2. For each sequence, we

randomly sampled the initial angle and angular velocity of the spring, the initial length and

stretch velocity of the spring, and the initial angle and angular velocity of the pendulum arm.

In total, we collected 1,200 sequences with 60fps. We used 960 of these sequences for training

and validation, and 240 of them for testing.

Physics Equations of Pendulum Systems

In this section, we provide more information on the physical state variables and equations of

the three pendulum systems: the single pendulum, the rigid double pendulum, and the elastic

double pendulum. See Fig. 4 for a graphical illustration of those systems.

θ

𝐿

θ1

𝐿1 𝐿2

θ2

θ1

𝐿1 + 𝑧

𝐿2

θ2

Single pendulum Rigid double pendulum Elastic double pendulum

Fig. 4: Illustration of our three pendulum systems

Single pendulum

Denote m the mass and L the length of the pendulum. The pendulum’s momentum of inertia is

I = 1
3
mL2. We specify the system state by the pendulum’s angular position θ and its respective

angular velocity θ̇. The system’s kinetic energy is

T =
1

2
Iθ̇2 =

1

6
mL2θ̇2.
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Taking the configuration that the pendulum arm is horizontal as the zero point, the system’s

potential energy is

V = −1

2
mgL cos θ.

Therefore, the system’s Lagrangian is

L = T − V =
1

6
mL2θ̇2 +

1

2
mgL cos θ,

which gives the the equation of motion of the system:

θ̈ = − 3g

2L
sin θ.

The total energy of the system is:

E = T + V =
1

6
mL2θ̇2 − 1

2
mgL cos θ.

E is also the Hamiltonian of the system.

Rigid double pendulum

Denote m1 and m2 the masses of the two arms of the double pendulum, L1 and W1 the length

and width of the first arm, and L2 and W2 the length and width of the second arm. The momenta

of inertia of the two arms are:

I1 =
1

12
(L2

1 +W 2
1 ), I2 =

1

12
(L2

2 +W 2
2 ).

We specify the system state by the two arms’ angular positions θ1 and θ2, and their respective

angular velocities θ̇1 and θ̇2.

The kinetic energy of the system is the sum of the two arms’ translational and rotational

kinetic energies, which is given by:

T =
1

2

(
1

4
m1L

2
1 +m2L

2
1 + I1

)
θ̇21 +

1

2

(
1

4
m2L

2
2 + I2

)
θ̇22 +

1

2
m2L1L2θ̇1θ̇2 cos(θ1 − θ2),
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The potential energy of the system is the sum of the two arms’ gravitational potential energies.

Taking the configuration that both arms are horizontal as the zero point, the potential energy of

the system is given by:

V = −
(
1

2
m1 +m2

)
gL1 cos θ1 −

1

2
m2gL2 cos θ2,

The total energy of the system is the sum of kinetic and potential energies, which is given by:

E =
1

2

(
1

4
m1L

2
1 +m2L

2
1 + I1

)
θ̇21 +

1

2

(
1

4
m2L

2
2 + I2

)
θ̇22 +

1

2
m2L1L2θ̇1θ̇2 cos(θ1 − θ2)

−
(
1

2
m1 +m2

)
gL1 cos θ1 −

1

2
m2gL2 cos θ2.

E is also the Hamiltonian of the system.

Elastic double pendulum

The elastic double pendulum is composed of a massless spring and a rigid pendulum. We denote

m the mass of the pendulum. In addition, we denote L1 the original length and z the stretch of

the spring, and L2 and W2 the length and width of the pendulum. The pendulum’s momentum

of inertia is I = 1
12
(L2

2 +W 2
2 ).

We specify the system state by the spring’s angular position θ1, the pendulum’s angular

position θ2, the spring stretch z, and their respective velocities θ̇1, θ̇2, ż.

The kinetic energy of the system is the sum of the pendulum’s translational and rotational

kinetic energies, which is given by

T =
1

2
m

[
(L1 + z)2θ̇21 +

1

4
L2
2θ̇

2
2 + ż2 + (L1 + z)L2 cos(θ1 − θ2)θ̇1θ̇2 + L2 sin(θ1 − θ2)θ̇2ż

]
+

1

2
Iθ̇22.

The potential energy of the system is the sum of the gravitational potential energy of the pendu-

lum and the elastic potential energy of the spring. Taking the configuration that both the spring
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and the pendulum are horizontal as the zero point of the pendulum’s gravitational potential

energy, the system’s potential energy is given by:

V = mg

[
−(L1 + z) cos θ1 −

1

2
L2 cos θ2

]
+

1

2
kz2.

Therefore, the system’s Lagrangian L = T − V is given by

L =
1

2
m

[
(L1 + z)2θ̇21 +

1

4
L2
2θ̇

2
2 + ż2 + (L1 + z)L2 cos(θ1 − θ2)θ̇1θ̇2 + L2 sin(θ1 − θ2)θ̇2ż

]
+

1

2
Iθ̇22 +mg

[
(L1 + z) cos θ1 +

1

2
L2 cos θ2

]
− 1

2
kz2.

Then we can derive the system’s equations of motion from the above Lagrangian, resulting in a

3× 3 system of ODEs:

A

θ̈1θ̈2
z̈

 = b,

where

A =

 (L1 + z)2 1
2
(L1 + z)L2 cos(θ1 − θ2) 0

1
2
(L1 + z)L2 cos(θ1 − θ2)

1
4
L2
2 +

I
m

1
2
L2 sin(θ1 − θ2)

0 1
2
L2 sin(θ1 − θ2) 1

 ,

and

b =

−1
2
(L1 + z)L2 sin(θ1 − θ2)(θ̇

2
2)− 2(L1 + z)θ̇1ż − g(L1 + z) sin θ1

1
2
(L1 + z)L2 sin(θ1 − θ2)(θ̇

2
1)− L2 cos(θ1 − θ2)θ̇1ż − 1

2
gL2 sin θ2

(L1 + z)θ̇21 +
1
2
L2 cos(θ1 − θ2)θ̇

2
2 + g cos θ1 − k

m
z

 .

It is straightforward to verify that the matrix A is symmetric and positive definite. Therefore

the ODE system is always solvable.

The system’s total energy is the sum of its kinetic and potential energies, which is given by:

E =
1

2
m

[
(L1 + z)2θ̇21 +

1

4
L2
2θ̇

2
2 + ż2 + (L1 + z)L2 cos(θ1 − θ2)θ̇1θ̇2 + L2 sin(θ1 − θ2)θ̇2ż

]
+

1

2
Iθ̇22 −mg

[
(L1 + z) cos θ1 +

1

2
L2 cos θ2

]
+

1

2
kz2.

E is also the Hamiltonian of the system.
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Model Details

In this section, we provide details about our models for dynamics prediction, latent reconstruc-

tion, and latent dynamics prediction with Neural State Variables.

Dynamics predictive model architecture

The dynamics predictive model is an auto-encoder with specific parameters listed in Fig. 5. All

convolutional or transposed convolutional layers are accompanied with a batch normalization

layer and a specified activation function. For the encoder network, after each “Conv” layer as

shown in Fig. 5, we attach another convolutional layer with the same number of filters as the

current convolutional layer but with 3×3 kernel and 1 as stride. For the decoder network, along

with each “Deconv” layer as shown in Fig. 5 except for the last one, the input is also passed

through a transposed convolutional layer with kernel size 4 × 4, 2 as stride, and a Sigmoid

activation function. The output of this branch will then be concatenated with each “Deconv”

layer along the feature dimension as the input of the next “Deconv” layer.

Latent reconstruction model architecture

The latent reconstruction model is also an auto-encoder with specific parameters listed in Fig. 6.

Each layer is a linear layer accompanied with a sine activation function, and ID refers to the sys-

tem’s intrinsic dimension. The intermediate latent vectors whose dimension is ID are identified

as Neural State Variables.

Neural latent dynamics model architecture

The neural latent dynamics model is a simple six-layer MLP, the widths of first five layers are

(32, 64, 64, 64, 32, ID) where ID is the dimension of Neural State Variables, and each layer is

accompanied with the ReLU activation function.
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Layer Kernel Size #Filters Stride Padding Activation

Conv1 4× 4 32 2 1 ReLU

Conv2 4× 4 32 2 1 ReLU

Conv3 4× 4 64 2 1 ReLU

Conv4 4× 4 128 2 1 ReLU

Conv5 3× 4 128 (1,2) 1 ReLU

Deconv5 3× 4 64 (1,2) 1 ReLU

Deconv4 4× 4 64 2 1 ReLU

Deconv3 4× 4 32 2 1 ReLU

Deconv2 4× 4 16 2 1 ReLU

Deconv1 4× 4 3 2 1 Sigmoid

Fig. 5: Dynamics predictive model architecture

Encoder Layer #Filters Activation Decoder Layer #Filters Activation

Layer1 128 Sine Layer5 32 Sine

Layer2 64 Sine Layer6 64 Sine

Layer3 32 Sine Layer7 128 Sine

Layer4 ID Sine Layer8 64 Sine

Fig. 6: Latent reconstruction model architecture
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More Physics Evaluation Results for Dynamics Predictive Model

In this section, we show physics evaluation results for the high-dimensional dynamics predictive

model on the single pendulum and rigid double pendulum systems. As shown in Fig. 7 and

Fig. 8, our dynamics predictive model outperforms both the copy data and linear extrapolation

baselines on both systems.

Method θ (deg) θ̇ (deg/s) Energy (J)

Copy data 10.09 (±0.04) 37.44 (±0.14) 0.10 (±0.00)

Linear extrapolation 0.67 (±0.00) 37.44 (±0.14) 0.28 (±0.00)

Our model 0.22 (±0.00) 18.97 (±0.12) 0.15 (±0.00)

Fig. 7: Physics evaluation results on the single pendulum system

Method θ1 (deg) θ2 (deg) θ̇1 (deg/s) θ̇2 (deg/s) Energy (J)

Copy data 8.29 (±0.04) 17.96 (±0.10) 111.64 (±0.78) 170.75 (±0.96) 0.06 (±0.00)

Linear extrapolation 2.39 (±0.02) 3.12 (±0.02) 111.64 (±0.78) 170.75 (±0.96) 0.08 (±0.00)

Our model 0.89 (±0.01) 1.55 (±0.01) 66.67 (±0.53) 113.94 (±0.84) 0.06 (±0.00)

Fig. 8: Physics evaluation results on the rigid double pendulum system

More Results from Intrinsic Dimension Estimation

There are several intrinsic dimension estimation algorithms in addition to the Levina-Bickel’s

algorithm. In this section we provide the intrinsic dimension estimation results from another

four widely used algorithms: MiND ML, MiND KL, Hein, and CD using the same latent vec-

tors. Those results together with results from the Levina-Bickel’s algorithm and ground truth

values are shown in Fig. 9. As shown in the results, Levina-Bickel’s algorithm provides robust

and accurate estimations across all six systems.
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System Ground Truth Levina-Bickel MiND ML MiND KL Hein CD

Circular motion 2 2.19 (±0.05) 2.66 (±0.07) 3.00 (±0.00) 6.33 (±0.47) 5.23 (±0.41)

Reaction diffusion 2 2.16 (±0.14) 2.34 (±0.08) 3.00 (±0.00) 3.00 (±1.41) 3.08 (±1.04)

Single pendulum 2 2.05 (±0.02) 2.05 (±0.01) 2.00 (±0.00) 2.00 (±0.00) 2.03 (±0.04)

Rigid double pendulum 4 4.71 (±0.03) 4.69 (±0.03) 5.00 (±0.00) 3.33 (±0.47) 3.63 (±0.10)

Swing stick 4 4.89 (±0.33) 4.38 (±0.10) 4.80 (±0.40) 3.33 (±0.47) 3.15 (±0.10)

Elastic double pendulum 6 5.34 (±0.20) 5.15 (±0.13) 5.13 (±0.34) 4.00 (±0.00) 4.26 (±0.12)

Fig. 9: Intrinsic Dimension Estimation Results from Different Algorithms.

More Physics Evaluation Results for Hybrid Schemes

In this section, we provide physics evaluation results testing the hybrid schemes for long term

predictions on the rigid double pendulum system. The hybrid scheme follows a N + 1 pattern

where every N steps performed with the high-dimensional latent vectors are followed by a one

step prediction using Neural State Variables. We implemented the hybrid N + 1 scheme with

N = 3, 4, 5, 6 on the double pendulum system and compared physics evaluation results from

the generated long term predictions. As shown in Fig. 10, the hybrid scheme always produces

reasonable long-term predictions, and performance is not sensitive to the choice of N .

More Theoretical Analysis on Long-Term Prediction Stability

In this section, we provide more theoretical analysis on long term prediction stability. We will

fix the notations that S ⊂ RD is the system’s state space where RD is the high-dimensional im-

age space, ID = dimS is the system’s intrinsic dimension, and LD is the latent space dimension

of a given dynamics predictive model. The dimensions are assumed to satisfy ID ≪ LD ≪ D.

The ground truth dynamics is given by X t+1 = F (X t) where F : S → S is the system

evolution mapping.
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Fig. 10: Physics evaluation with hybrid schemes on the double pendulum system
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For the theoretical analysis purpose, let us define:

MS(X̂) ≜ dist(X̂,S) = inf
X∈S

∥∥∥X̂ −X
∥∥∥,

as the metric measuring the deviation from any predicted state X̂ to the state space S, where

∥·∥ is the Euclidean norm in RD.

Now let us consider the long term predictions generated from model rollouts through Neural

State Variables. Starting from any initial state X0 ∈ S, the model rollouts produce:

X0 = X̂0 → V̂ 0 → X̂dt → V̂ dt → X̂2dt → V̂ 2dt → X̂3dt → · · · ,

where X̂ t ∈ RD, t = 0, dt, 2dt, · · · are the predicted frames, and V̂ t ∈ RID, t = 0, dt, 2dt, · · ·

are the corresponding Neural State Variables. We denote ϕE = hE ◦ gE that maps every X̂ t to

V̂ t and ϕD = gD ◦ hD that maps every V̂ t to X̂ t+dt for t = 0, dt, 2dt, · · · . Both ϕE and ϕD

are compositions of neural networks that are trained to minimize the one-step prediction error.

Therefore, F̂ = ϕD ◦ ϕE provides an approximation of the ground truth evolution mapping F

through Neural State Variables. We will make the following assumption regarding the one-step

dynamics approximation error.

Assumption 1. MS(X̂) ≤ ε ∀X̂ = F̂ (X), X ∈ S for some ε > 0.

We note that all possible ground truth and predicted states fall into the set

Z ≜
∞⋃
n=0

F̂ (n)(S),

where F̂ (0)(S) = S and

F̂ (n)(S) = {X̂ = F̂ ◦ F̂ · · · ◦ F̂︸ ︷︷ ︸
n times

(X) : X ∈ S}, n = 1, 2, · · ·

By definition S ⊂ Z ⊂ RD, which yields ϕE(S) ⊂ ϕE(Z) ⊂ RID. Here we make the second

assumption saying that ϕE(Z) is no larger than ϕE(S) even if Z might be strictly larger than S.
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Assumption 2. ϕE(S) = ϕE(Z).

This assumption essentially relies on the dimensionality constraint. The state space S has di-

mension ID, while Z may have a higher dimension than ID. By projecting to the space of Neural

State Variables whose dimension is ID, the extra dimensions of Z will be eliminated.

By Assumption 2 and the definition of Z , we have:

F̂ (S) = ϕD ◦ ϕE(S) = ϕD ◦ ϕE(Z) = F̂ (Z) = Z.

It together with Assumption 1 gives the following conclusion.

Proposition 1. Under Assumptions 1 and 2, we have MS(X̂) ≤ ε ∀X̂ ∈ Z .

As a direct corollary, for any long term prediction sequence {X̂0, X̂dt, X̂2dt, · · · } from any

initial state X̂0 = X0 ∈ S, we have MS(X̂ t) ≤ ε for all t = 0, dt, 2dt, · · · . That is, the pre-

diction sequence always stays in a fixed neighborhood of the ground truth state space S and the

growth of MS(X̂ t) is well-controlled, which guarantees the stability of long term predictions

generated with Neural State Variables. For the model rollouts through latent vectors whose

dimension LD ≫ ID, similar arguments yield that gE(S) ⊂ gE(Z) ⊂ RLD and gE(Z) could

have a dimension higher than ID. Therefore, the long term predictions could escape from the

state space S through the extra dimensions. By shrinking the latent dimension to the system’s

intrinsic dimension, such instability formation can be avoided.

More Results on Neural State Variables for Dynamic Stability Indicators

In this section, we show long term stability evaluation results using dynamic stability indicators

with Neural State Variables. In Fig. 11, the stability plots for six systems are shown. See the

supplementary video for the corresponding visual predictions.
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Fig. 11: Stability evaluation with Neural State Variables

More Analysis on Neural State Variables

In this section, we show more results to demonstrate the rich physics information contained

in our learned Neural State Variables. First, we give the quantitative latent regression results

on the elastic double pendulum system in Fig. 12. It can be observed that the learned Neural

State Variables capture much richer information about the system dynamics than the variables

obtained through PCA from high dimensional latent embedding vectors.

We also show visualizations of the Neural State Variables after applying PCA on them. See

Fig. 13.

Latent Variables θ1 (deg) θ2 (deg) z (m) θ̇1 (deg/s) θ̇2 (deg/s) ż (m/s) Total energy (J)

dim-6 PCA of
dim-8192 Latents 23.86 (±1.14) 43.03 (±0.72) 0.02 (±0.00) 149.36 (±3.20) 397.20 (±9.50) 0.52 (±0.01) 0.08 (±0.00)

dim-6 PCA of
dim-64 Latents 14.10 (±0.88) 27.96 (±0.85) 0.01 (±0.00) 170.68 (±6.37) 396.70 (±2.90) 0.59 (±0.01) 0.07 (±0.00)

dim-6 Latents 7.85 (±0.54) 14.11 (±0.50) 0.01 (±0.00) 70.03 (±1.41) 163.13 (±4.10) 0.27 (±0.01) 0.05 (±0.00)

Fig. 12: Latent regression results on the elastic double pendulum system
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Fig. 13: Visualization of Neural State Variables
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