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Metric Embeddings

(Rd, ‖·‖2)f : X → Rd

(X, dX)

Embedding f : X → Rd has distortion α if for all x , y ∈ X

dX (x , y) ≤ ‖f (x)− f (y)‖2 ≤ α · dX (x , y)

Theorem (Bourgain,85)

Every n-point metric (X , dX ) is embeddable into Euclidean space
with distortion O(log n).

Asymptotically tight.
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Metric Ramsey-Type Problem

For a fixed distortion k > 1, what is the largest subset M ⊂ X ,
s.t. (M , dX ) is embeddable into Euclidean space with distortion k?

(Rd, ‖·‖2)f : X → Rd

(X, dX)

∀x , y ∈ M , dX (x , y) ≤ ‖f (x)− f (y)‖2 ≤ k · dX (x , y)

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into Euclidean space

with distortion O(k).
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Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into Euclidean space

with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Ultrametric is a spacial kind of tree which is:

1 Very useful for divide an conquer algorithms.

2 Isometrically embeds into Euclidean space (i.e. distortion 1).

Arnold Filtser Ramsey Spanning Trees and their Applications 4 / 26



Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into Euclidean space

with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Ultrametric is a spacial kind of tree which is:

1 Very useful for divide an conquer algorithms.

2 Isometrically embeds into Euclidean space (i.e. distortion 1).

Arnold Filtser Ramsey Spanning Trees and their Applications 4 / 26



Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into Euclidean space

with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Ultrametric is a spacial kind of tree which is:

1 Very useful for divide an conquer algorithms.

2 Isometrically embeds into Euclidean space (i.e. distortion 1).

Arnold Filtser Ramsey Spanning Trees and their Applications 4 / 26



Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into ultrametric

with distortion O(k).

Asymptotically tight.

Euclidean space can be replace here by an ultrametric U! (a.k.a HST)

Ultrametric is a spacial kind of tree which is:

1 Very useful for divide an conquer algorithms.

2 Isometrically embeds into Euclidean space (i.e. distortion 1).

Arnold Filtser Ramsey Spanning Trees and their Applications 4 / 26



Our Second Result: Metric Ramsey-Type Problem

Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
of size n1−1/k that can be embedded into ultrametric
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of size n1−1/k that can be embedded into ultrametric

with distortion O(128 · k).

The constant in the distortion important as it in the exponent.
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Theorem (Mendel, Naor 07, following BFM86, BLMN05)

For every n-point metric space and k ≥ 1, there exists a subset M
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Our Second Result: Metric Ramsey-Type Problem

Theorem (Our Secondary Result)

For every n-point metric space and k ≥ 1, there is a
deterministic algorithm that finds a subset M of size n1−1/k that
can be embedded into ultrametric with distortion 8 · k .

Corollary
For every n-point metric space and k ≥ 1,
there is a set U of k · n 1

k ultrametrics and a mapping
home : X → U , such that for every x , y ∈ U,

dhome(x)
(x , y) ≤ (16 · k) · dX (x , y)
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Distance Oracle

A distance oracle is a succinct data structure that (approximately)
answers distance queries.

The properties of interest are size, distortion and query time.
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Distance Oracles: State of the Art
DO Distortion Size Query Deterministic?
TZ05 2k − 1 O(k · n1+1/k) O(k) no
MN07 128k O(n1+1/k) O(1) no
W13 (2 + ε)k O(k · n1+1/k) O(1/ε) no
C14 2k − 1 O(k · n1+1/k) O(1) no
C15 2k − 1 O(n1+1/k) O(1) no

RTZ05 2k − 1 O(k · n1+1/k) O(k) yes
W13 2k − 1 O(k · n1+1/k) O(log k) yes
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Our contribution: Deterministic Distance Oracles
Distance Oracle Distortion Size Query
RTZ05 2k − 1 O(k · n1+1/k) O(k)
W13 2k − 1 O(k · n1+1/k) O(log k)
This paper 8(1 + ε)k O(n1+1/k) O(1/ε)
This paper+C14 2k − 1 O(k · n1+1/k) O(1)
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Our contribution: Deterministic Distance Oracles

Corollary
For every n-point metric space and k ≥ 1,
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For every tree metric, there is an exact distance oracle of linear
size and constant query time.
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Ramsey Spanning Tree Question

Given a weighted graph G = (V ,E ,w), and a fixed distortion
k > 1, what is the largest subset M ⊂ V , such that:
there is a spanning tree T of G with distortion k w.r.t M × V ?
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Given a weighted graph G = (V ,E ,w), and a fixed distortion
k > 1, what is the largest subset M ⊂ V , such that:
there is a spanning tree T of G with distortion k w.r.t M × V ?

For all v ∈ M and u ∈ V , dT (v , u) ≤ k · dG (v , u).
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Main Result

Ramsey Spanning Tree Question
Given a weighted graph G = (V ,E ,w), and a fixed distortion
k > 1, what is the largest subset M ⊂ V , such that:
there is a spanning tree T of G with distortion k w.r.t M × V ?

Theorem (Main Result)

For every n-vertex weighted graph G = (V ,E ,w) and k ≥ 1,
there exists a subset M of size n1−1/k and spanning tree T of G

with distortion O(k · log log n) w.r.t M × V .

Theorem (Mendel, Naor 07)

For every n-point metric space (X , dX ) and k ≥ 1,
there exists a subset M of size n1−1/k and an ultrametric U over X

with distortion O(k)

· log log n

w.r.t M × X.
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Corollary

For every n-vertex weighted graph G = (V ,E ,w) and k ≥ 1,

there is a set T of k · n 1
k spanning trees and a mapping

home : V → T , such that for every u, v ∈ V ,

dhome(v)
(v , u) ≤ O(k · log log n) · dG (v , u)

G T1 Ti = home(v) T
k·n1/k

v

The union of all the trees in T creates an O(k · log log n)-spanner

with O(k · n1+ 1
k ) edges.
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Application: Compact Routing Scheme

Huge network
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Application: Compact Routing Scheme

%$#32

Huge network

There is a server in each node.

Task: route packages throughout the network.

Store the whole network in each node is unfeasible.
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Compact Routing Scheme

Table
00101
11000
10010. . . . . .. . . . . .

Label
Content

Destination
Label
Content

Initiating
node Routing

Destination

Decision
time

In order to keep other parameters small, we will allow stretch.
Stretch k : the length of a route from v to u will be ≤ k · dG (v , u).

Theorem (Thorup, Zwick, 01)

For any n-vertex tree T = (V ,E ), there is a routing scheme with :

Stretch Label Table Decision time
1 O(log n) O(1) O(1)



Routing using Ramsey Spanning Trees
For every n-vertex weighted graph G = (V ,E ,w) and k ≥ 1,

there is a set T of k · n 1
k spanning trees and a mapping

home : V → T , such that for every u, v ∈ V ,

dhome(v)
(v , u) ≤ O(k · log log n) · dG (v , u)

To route a package from u to v , we will simply route on home(v)!

The label of v will consist of:
(

home(v), Labelhome(v)
(v)

)
.

The table of v will consist of union of all tables in T .

G T1 Ti = home(v) T
k·n1/k

v
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Technical Ideas

Theorem (Main Result)

For every n-vertex weighted graph G = (V ,E ,w) and k ≥ 1,
there exists a subset M of size n1−1/k and spanning tree T of G

with distortion O(k · log log n) w.r.t M × V .

Framework: Petal decomposition.

Hierarchically padded decompositions.

Region growing.
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Petal Decomposition

Each cluster X (petal) has a
center vertex x .
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Petal Decomposition
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center vertex x .

The radius ∆ defined w.r.t
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The radius decrease by 3
4

factor in each hierarchi. step.
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Each cluster X (petal) has a
center vertex x .

The radius ∆ defined w.r.t
the center.

The radius decrease by 3
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Corollary
Suppose v , u were separated while being in cluster of radius ∆. Then
dT (v , u) ≤ 8 ·∆.
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Petal Growth

Degree of freedom:

parameter R ∈ [lo, hi] (hi− lo = ∆
8

).
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t

Wlo Wr Whi
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dG(u, v) = Ω(δ)
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created for R = r .
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Vertex v s.t. B(v , δ) ⊆ Wr is padded.

All vertices out of Wr+δ \Wr−δ
(restricted area) are padded.
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dG(u, v) = Ω(δ)

dT (u, v) = O(∆)

dT (u,v)
dG(u,v) = O(∆

δ ) = O(k · log log n)

u′

δ

Padded vertices suffer distortion at most ∆/δ = O(k · log log n)!

Goal: find r , with many padded vertices! (sparse restricted area).
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distortion w.r.t all other vertices.

Goal: choose parameters
(r ∈ [lo, hi ]) s.t. at least n1− 1

k

vertices will be padded in all
levels.

A vertex is called active if it is
padded in all levels up till now.
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Region Growing

For petal Wr :

Active x ∈ Wr−δ remains active.

Active x ∈ Wr+δ \Wr−δ
ceases to be active.
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Intuition
There is r ∈ [lo, hi ] such that Wr−δ is
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Open Questions

1 Remove the log log n factor.

Conjecture

For every n-vertex weighted graph G = (V ,E ,w) and k ≥ 1,
there exists a subset M of size n1−1/k and spanning tree T of G

with distortion O(k · log log n//////////) w.r.t M × V .

2 Improve construction for deterministic distance oracle.

Distance Oracle Distortion Size Query
This paper+C14 2k − 1 O(k · n1+1/k) O(1)
C15 (Randomized) 2k − 1 O(n1+1/k) O(1)

3 Find more applications to Ramsey spanning trees!
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