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Universal Steiner tree

G = (V,E,w) weighted graph, cost = w(T) opt = Minimal Steiner tree

stretch(T) = maxkcy OP%(KK))

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05])

Suppose G admits (o, T)-sparse partition scheme,
= solution to the UST problem with stretch O(70?log, n).
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.
K C V - a terminal set of size k.
Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:
Vi, t' € K, dg(t,t') <du(t,t') < a-dg(t,t).

@ M is a graph minor of G.

I 2 o
1 1
E> 2
1 1
t t’
G, K M
The distortion is: % = % =2
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.

Theorem ([Fil 19] (improving [Kamma, Krauthgamer, Nguyen 15],
[Cheung 18]) )

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.
Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [Chan, Xia, Konjevod, Richa 06].
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.
Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [CXKR 06].
What about special graph families?
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Steiner Point removal problem

@ M has small distortion: Vi, t' € K, dg(t,t') < du(t,t') < a-dg(t,t') .
e M is a graph minor of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [CXKR 06].

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(7353).
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Sparse partitions

P is a (o, 7, A)-sparse partition if:

f e The diameter of each
% cluster < A.
f e Every ball of radius < 2
< intersects at most 7
clusters.
f
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Sparse partitions

P is a (o, 7, A)-sparse partition if:

7 e The diameter of each
cluster < A.

Fauy
9
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e Every ball of radius < %
f intersects at most 7
clusters.

Py
g

(0, 7)-sparse partition scheme: YA >0 3 (0,7, A)-sparse partition.
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Sparse partitions

P is a (o, 7, A)-sparse partition if:

7 e The diameter of each
cluster < A.

Fauy
9

Fouy
g

e Every ball of radius < %
! intersects at most 7
clusters.

Py
g

(0, 7)-sparse partition scheme: YA >0 3 (0,7, A)-sparse partition.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-sparse partition scheme,
= solution to the UST problem with stretch O(to?log, n).
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
* —o—o depa(u, v) =6
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

o —o—°
dG(U, V) =2
*—o o depa(u, v) =6
't . 1N Weak diameter of A = 4.
Iy \ , u\ Strong diameter of A = 6.
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
depa)(u, v) = o0
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

- - dG(U, V) =2
/ > depay(u, v) = o0
| - A .
P&/ Var T8 Weak diameter of A = 4.
W/ 1 {U) Strong diameter of A = oco.
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Strong Vs. Weak Diameter

P is a (0,7, A)-strong/weak sparse partition if:

g e The strong/weak diameter of
1] each cluster < A.

o
<

e Every ball of radius < 2 intersects
at most 7 clusters.

o
v

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.
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Strong Vs. Weak Diameter

P is a (0,7, A)-strong/weak sparse partition if:

g e The strong/weak diameter of
1] each cluster < A.

o
<

e Every ball of radius < 2 intersects
- at most 7 clusters.

o
v

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(t0? log,. n).
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Strong Vs. Weak Diameter

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(7c? log, n).

[JLNRS 05] produces a non-subgraph solution to the UST problem.
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Strong Vs. Weak Diameter

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(7c? log, n).

[JLNRS 05] produces a non-subgraph solution to the UST problem.

[BDRRS 12]: subgraph solution using hierarchy of strong sparse partitions.
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Scattering partitions

P is a (o, 7, A)-scattering partition if:

e Each cluster is
connected.

e The weak-diameter of
each cluster < A.

e Every shortest path of
length < % intersects at
most 7 clusters.

(o, 7)-scattering partition scheme: VA > 0 3 (o, 7, A)-scattering partition.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(3c3).



Observations

(0,7, A)-strong sparse = (o, 7, A)-weak sparse .

e Each cluster strong diameter < A. e Each cluster weak diameter < A.
e Every ball of radius < 2 intersects e Every ball of radius < 2 intersects
at most 7 clusters. at most 7 clusters.
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Observations

(0,7, A)-strong sparse = (o, T, A)-scattering.
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Observations

(0,7, A)-strong sparse = (o, T, A)-scattering.

o
N\~
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Trees?



Theorem ([Fil 20])

Suppose all n-vertex trees admit a (o, T)-strong sparse partition scheme.
2
Then T > % - no+l,



Corollary
Vn > 1, there are trees Ty, T> such that,

e T; do not admit (bﬁ%’ log n) -strong sparse partition scheme.

e T, do not admit (\/Iog n,2Vviee ”) -strong sparse partition scheme.
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Theorem ([Fil 20])

Every tree is (2, 3)-scatterable.




Theorem ([Fil 20])

Every tree admits a (4,3)-weak sparse partition scheme.
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Metric space has doubling dimension d if
every radius r ball can be covered by 29 balls of radius 5

Example: Every d-dimensional Euclidean space has doubling dimension O(d).
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Packing Property
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Doubling Metrics

Metric space has doubling dimension d if
every radius r ball can be covered by 29 balls of radius 5

Packing Property
N C X sets.t. x,y € N it holds that d(x,y) > d. Then ¥x, R,

B(x, R) N N| < (R/5)°@) .

The graph G = (V, E, w) has doubling dimension O(d),
if (V,dg) (the shortest path metric) has doubling dimension O(d).



Scattering




Scattering

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a
(1,2°(4))-weak sparse partition scheme.
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Doubling

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a
(1,2°(4))-weak sparse partition scheme.




Scattering

Doubling

Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), O(d))-strong sparse partition scheme.




Scattering

Strong

Doubling

Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), O(d))-strong sparse partition scheme.
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MPX [Miller, Peng, Xu 2013]

Inherently connected!

Formally, for v € V set f,(t) = 6: — dg(v, t).

v joins the cluster C; of the center t maximizing f,.
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Partition Algorithm
Algorithm: 1. Let N be a A-net.

Definition (A-net)
Set N s.t.:
e Yu,veN,dg(u,v) > A.
e Vv € V there is a net point u € N s.t. dg(u,v) <A
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2. For each center t € N sample §; ~ BExp (8/4,4A).
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Algorithm: 1. Let N be a A-net.

2. For each center t € N sample §; ~ BExp (2/d,4A).

Definition (Betailed exponential distribution BExp(A, A7))
X = min{X’, A7} where X' ~ Exp(}).




Partition Algorithm
Algorithm: 1. Let N be a A-net.
2. For each center t € N sample §; ~ BExp (2/d,4A).
3. Run [MPX 13] (v goes to arg max f,(t) = d; — dg(v, t) ).
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2. For each center t € N sample §; ~ BExp (2/d,4A).
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Algorithm: 1. Let N be a A-net.
2. For each center t € N sample ; ~ BExp (2/4,4A).
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Partition Algorithm
Algorithm: 1. Let N be a A-net.

2. For each center t € N sample §; ~ BExp (2/d,4A).
3. Run [MPX 13] (v goes to arg max f,(t) = d; — dg(v, t) ).

P S
P

N [fult) = 22 1))
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R
<

\

\

. ’
Y

Consider u € B, for all t € N, If,(t) — fu(t)| < dg(u,v) < %
B can intersects center t’ only if f,(t') > f,(t;) — 22.



Partition Algorithm
Algorithm: 1. Let N be a A-net.
2. For each center t € N sample §; ~ BExp (2/d,4A).
3. Run [MPX 13] (v goes to arg max f,(t) = d; — dg(v, t) ).

- ~
. ~

N, Fult) = 22, £, (1)

L h < >

For how many t € N,,  f,(t) € [f(t1) — 22, f,(t1)] ?
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H B= B(,v(v,%) L H fv(t3) fv(tQ) fv(tl)
\ @ .
Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f](t) =6, — dg(v, t).



1| [B=Bv.2) 1 .
. = '

Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1)
Recall f,(t) = 0; — dg(v,t). Set f](t) =6, — dg(v, t).




1| [B=Bv.2) 1 .
. = '

Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1)
Recall f,(t) = 0; — dg(v,t). Set f](t) =6, — dg(v, t).




H B= B(,v(v,%) L~

fo(E)

Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1)

Recall f,(t) = 0; — dg(v,t). Set f](t) =6, —

Fix s = ©(d) and t..

dG(V, t).

folt) £i(t3)

|
fi(t)



1 - [Fult) = 2 (1)

DB S (T I
. AT T AT T |

1| [B=Bs(v.5) = . folts) fo(ta) fo(t1)

U L]
' aun i | T
‘ , | T 1
fi(t) filty) filts) £ty fu(ty)

Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f](t) =6, — dg(v, t).
Fix s = ©(d) and t,. By Memorylessness

2A

Pr|fl(t) > fl(t) + % | fI(t) > f;(t;)] > Pr {(S’t > 7} — e d = Q(1) .

v



Tt T [Fult) = 22, 1)
DB S (T I
; AT T IIRURIRAINE |
T 1B= 5o, SN ’ folts) fulta) folt1)
,L) L]

' T | NI

: ; | | 1] |

. . Folt) fi) foty) fity) fo(t)
Let 0} ~ Exp(A), 6; = min{0}, A1} (note 0; ~ BExp(A, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0, — dg(v, t). Set f](t) = 6, — dg(v, t).
Fix s = ©(d) and t.. By Memorylessness

Pr|fl(t) > fl(t) + % | fI(t) > fv’(t;)] > Pr [cﬁ > %] — e = Q1) .
Using Chernoff, for § = ﬁs = Q(d), f(tl) > fl(tl) + %_



> % [fu(tl) - %me(tl)}

..... L | R | | I -
RN | | N1
Foty) i) futs) £t fu(ty) fults) folt2) fo(th)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).
Fix s = ©(d) and t,. By Memorylessness

2A 2A 20
Pr|fl(t) > fl(t) + o | fI(t) > fv’(t;)} > Pr {(51 > 7} —e P =Q(1).

Using Chernoff, for 5§ = ﬁs = Q(d)



> 2 =[f1r(tl) — 2, fu(t)]
|| [ WL
RN | LTI T

[ I

£(x) | f;|<tg> f;|<t’2> f;l(t’l) Fultts) fulta) fo(tr)
Let 6} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))
Recall f,(t) = 0; — dg(v, t). Set f/(t) =0, — dg(v, t).

Fix s = ©(d) and t.. By Memorylessness

)

Pr|f)(t) > fl(t) + % | fI(t) > fv’(t;)] > Pr [5; > %] — e d = Q1) .

Using Chernoff, for § = ﬁs = Q(d), f)(tt) > f)(t) + 2.

3

t € N, is betailed with probability Pr[6; = A7] = Pr[6, > \7] = e= > = e %9




> % wa(tl) - %J};(tl)}:
..... L I | I | | I | || -
NI | | IR R
R f) R i) fu(t) ults) fu(ta) fulth)
Let 6} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v, t). Set f](t) = 6, — dg(v, t).
Fix s = ©(d) and t.. By Memorylessness

Pr|f)(t) > fl(t) + % | fI(t) > fv’(t;)] > Pr [5; > %] — e d = Q1) .

Using Chernoff, for § = ﬁs = Q(d), f)(tt) > f)(t) + 2.

t € N, is betailed with probability Pr[d; = Ar| = Pr[0; > \] = e ¥ = e,
The probability that at least S centers in N, are betailed bounded by

|Nv|§' (e—4d)§ — 9O(ds) . (e—4d§) — o d9)




<—> Not betailed

[fu(tr) = 22, Fu(t0)]

..... I | I | | I | || -
BEIRIERRRRL | | TN 11 [
) R ) = L) futh) ults) fu(ta) fulth)
Let 6} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v, t). Set f/(t) =0, — dg(v, t).
Fix s = ©(d) and t.. By Memorylessness

Pr|f)(t) > fl(t) + % | fI(t) > fv’(t;)] > Pr [5; > %] — e d = Q1) .

Using Chernoff, for § = ﬁs = Q(d), f)(tt) > f)(t) + 2.

t € N, is betailed with probability Pr[d; = Ar| = Pr[0; > \] = e ¥ = e,
The probability that at least S centers in N, are betailed bounded by

|Nv|§' (e—4d)§ — 9O(ds) . (e—4d§) — o d9)




> 28 [fu(tl) - %mf’v(tl)}:

— Not betailed <
|
|

..... L | R | | I -
R ||||| | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).
Fix s = ©(d) and t..
There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.



> 28 [fu(tl) - %va(tl)}:

— Not betailed <
|
|

..... L | R | | I -
R ||||| | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).

Fix s = ©(d) and t..

There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that

fot) < £;(t)



> 28 [fu(tl) - %va(tl)}:

— Not betailed <
|
|

..... L | R | | I -
R ||||| | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).

Fix s = ©(d) and t..

There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that

(1) < £,(t) < (&)



> 28 [fu(tl) - %va(tl)}:

— Not betailed <
|
|

..... L | R | | I -
EIIERRRAL | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).
Fix s = ©(d) and t..
There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that
2A

f(t) < £(t) < fi(t) < £(tn) — —



> 28 [fu(tl) - %va(tl)}:

— Not betailed <
|
|

..... L | R | | I -
EIIERRRAL | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).

Fix s = ©(d) and t..

There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that

f(t) < £(t) < (8) < £(t,,) — — = fi(¢



> 28 [fu(tl) - %va(tl)}:

— Not betailed <
|
|

..... L | R | | I -
EIIERRRAL | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Let &} ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v,t). Set f/(t) =6, — dg(v, t).

Fix s = ©(d) and t..

There is index m < § <'s, s.t. f)(tm) > f(t}) + 2 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that

f(t) < £(t) < (8) < £(t,,) — — = fi(¢



> 247 [fu(tl) - %af’v(tl)}:

— Not betailed <
|
|

..... L i | I | I | | | .
NI | | NN 1T [
A R ) = L) fo(th) folts) fulta) fo(ty)
Let &, ~ Exp(A), d; = min{d}, At} (note §; ~ BExp(\, A1) (A =28/d, \r = 4A))

Recall f,(t) = 0; — dg(v, t). Set f](t) =6, — dg(v, t).

Fix s = ©(d) and t..

There is index m < § <'s, s.t. f)(tm) > f,(t)) + 22 and ¢/, is not betailed.
For every t ¢ {t{,t,,...,t.}, it holds that

Corollary
W.h.p. B = Bg(v,%) intersects at most s = O(d) clusters.




>4 [fo(t) = 22, fu(t1)]

<> Not betailed - -
..... R (R
EIIERRRAL | | N1
R R ) = £ fi(#) fults) fulta) fu(tr)
Fix s = ©(d) and t..
There is index m < § <'s, s.t. f)(tm) > f(t}) + 22 and ¢/, is not betailed.

For every t ¢ {t], t},...,t.}, it holds that f,(t) < f,(t;) — 22

Corollary
W.h.p. B = Bg(v,%) intersects at most s = O(d) clusters.

Using the Lovasz Local Lemma, we conclude



> 24 [f’u(tl) - %mft‘(tl)}

— Not betailed < >
|
|

[T 1Hir T 1Tl | I/' |
A R A = fut,) i) fults) fult2) fo(tr)

Fix s = ©(d) and t..
There is index m < § <'s, s.t. f)(tm) > f)(t.) + 22 and t/, is not betailed.

For every t ¢ {t], t5,...,t.}, it holds that f,(t) < f,(t;) — 22

Corollary
W.h.p. B = Bg(v,%) intersects at most s = O(d) clusters.

Using the Lovdsz Local Lemma, we conclude

Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), O(d))-strong sparse partition scheme.
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Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), O(d))-strong sparse partition scheme.
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Theorem ([Fil 20])

Every graph with pathwidth p admits a (O(p), O(p°)
and a (8,5

%))-strong sparse partition scheme,
p)-weak sparse partition scheme.
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Theorem ([Fil 20])

Every cactus graph admits a (4,5)-scattering partition scheme,
and a (O(1), O(1))-weak sparse partition scheme.
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Theorem ([Fil 20])

Every chordal graph admits a (2, 3)-scattering partition scheme,
and a (24, 3)-weak sparse partition scheme.
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Theorem ([Fil 20])

Suppose that the space (]Rd, || - Hz) admits a (o, T)-weak sparse partition scheme.
Then T > (1+ £)? (alternatively o > 2-).
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Theorem ([Fil 20])
The space (RY, || - ||2) admits a (1,2d)-scattering partition scheme.
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Theorem ([Fil 20])

The space (RY, || - ||2) admits a (1,2d)-scattering partition scheme.
(For weak: T > (1 + 3=)¢ = no (O(1), 29)-weak partition scheme).
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Theorem ([Fil 20])

Every K, ,-free graph admits an (O(r?),2")-weak sparse partition scheme.
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Theorem ([Fil 20])

Every K, ,-free graph admits an (O(r?),2")-weak sparse partition scheme.
What about scattering?
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Conjecture
Planar graphs are (O(1), O(1))-scattering.




Scattering

Trees

Euclidean space Cactus

Chordal

Planar, K, -free

Strong

Doubling

‘ Pathwidth ’

Conjecture
Planar graphs are (O(1), O(1))-scattering.

Will imply a solution for the SPR problem with distortion O(1) for planar graphs!
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‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
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‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
o [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.
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Trees
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Chordal Planar, K,-free

Strong
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‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
o [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.
e [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.



General graphs

Scattering

Trees

Euclidean space Cactus

Chordal Planar, K,-free

Strong

Doubling

‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
o [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.
e [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.
e [Fil 20]: 3G which do not admit (O(Io'gofign)7 O(log n))-weak sparse partition
scheme.




General graphs

Scattering

Trees

Euclidean space Cactus

Chordal Planar, K -free

Strong

Doubling

‘ Pathwidth ’

Every n vertex graph admits (O(1), O(log n))-scattering partition scheme.
Furthermore, this is tight.

Conjecture




Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(t0? log, n).

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(73c3).

Arnold Filtser Scattering and Sparse Partitions, and their Applications



General graphs

Conjecture Scattering

Planar graphs are
(0(1), O(1))-scattering.

. Euclidean space
Conjecture

General n vertex graph are
(O(1), O(log n))-scattering.
Furthermore, this is tight.

Planar, K,-free

Strong

Doubling

Pathwidth

Arnold Filtser Scattering and Sparse Partitions, and their Applications



General graphs

Conjecture Scattering

Planar graphs are
(0(1), O(1))-scattering.

. Euclidean space
Conjecture

General n vertex graph are
(O(1), O(log n))-scattering.
Furthermore, this is tight.

Planar, K,-free

Strong

Doubling

v

Pathwidth

Thank you for listening!

Arnold Filtser Scattering and Sparse Partitions, and their Applications
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