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Universal Steiner tree

G = (V,E,w) weighted graph, cost = w(T) opt = Minimal Steiner tree

stretch(T) = maxkcy OP%(KK))

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05])

Suppose G admits (o, T)-sparse partition scheme,
= solution to the UST problem with stretch O(70?log, n).
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K C V - a terminal set of size k.
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K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vi, t' € K, dg(t,t') <du(t,t') < a-dg(t,t).
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.
K C V - a terminal set of size k.
Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:
Vi, t' € K, dg(t,t') <du(t,t') < a-dg(t,t).

@ M is a graph minor of G.

I 2 o
1 1
E> 2
1 1
t t’
G, K M
The distortion is: % = % =2
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.

Theorem ([Fil 19] (improving [Kamma, Krauthgamer, Nguyen 15],
[Cheung 18]) )

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.
Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [Chan, Xia, Konjevod, Richa 06].
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Steiner Point removal problem

G = (V,E,w) - a weighted graph.

K C V - a terminal set of size k.

Construct a new graph M = (K, E’, wy) such that:
@ M has small distortion:

Vt,t' € K, dg(t,t') <du(t,t') < a-dg(t,t) .
@ M is a graph minor of G.
Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [CXKR 06].
What about special graph families?
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Steiner Point removal problem

@ M has small distortion: Vi, t' € K, dg(t,t') < du(t,t') < a-dg(t,t') .
e M is a graph minor of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 [CXKR 06].

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(7353).
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P is a (o, 7, A)-sparse partition if:

f e The diameter of each
% cluster < A.
f e Every ball of radius < 2
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Sparse partitions

P is a (o, 7, A)-sparse partition if:

7 e The diameter of each
cluster < A.
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e Every ball of radius < %
f intersects at most 7
clusters.
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(0, 7)-sparse partition scheme: YA >0 3 (0,7, A)-sparse partition.
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Sparse partitions

P is a (o, 7, A)-sparse partition if:

7 e The diameter of each
cluster < A.

Fauy
9

Fouy
g

e Every ball of radius < %
! intersects at most 7
clusters.

Py
g

(0, 7)-sparse partition scheme: YA >0 3 (0,7, A)-sparse partition.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-sparse partition scheme,
= solution to the UST problem with stretch O(to?log, n).
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
* —o—o depa(u, v) =6
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

o —o—°
dG(U, V) =2
*—o o depa(u, v) =6
't . 1N Weak diameter of A = 4.
Iy \ , u\ Strong diameter of A = 6.
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

dG(U, V) =2
depa)(u, v) = o0
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Strong Vs. Weak Diameter

Given a subset A C V,
Weak Diameter of A := max, ea dc(v, u) .
Strong Diameter of A := max, yca dgja)(Vv, u) .
(induced subgraph)

- - dG(U, V) =2
/ > depay(u, v) = o0
| - A .
P&/ Var T8 Weak diameter of A = 4.
W/ 1 {U) Strong diameter of A = oco.
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Strong Vs. Weak Diameter

P is a (0,7, A)-strong/weak sparse partition if:

g e The strong/weak diameter of
1] each cluster < A.

o
<

e Every ball of radius < 2 intersects
at most 7 clusters.

o
v

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.
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(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(t0? log,. n).
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Strong Vs. Weak Diameter

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(7c? log, n).

[JLNRS 05] produces a non-subgraph solution to the UST problem.
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Strong Vs. Weak Diameter

(o, 7)-strong/weak sparse partition scheme: 3 (o, 7, A)-strong/weak sparse partition
for all A > 0.

Theorem ([JLNRS 05])

Suppose G admits (o, T)-weak sparse partition scheme,
= solution to the UST problem with stretch O(7c? log, n).

[JLNRS 05] produces a non-subgraph solution to the UST problem.

[BDRRS 12]: subgraph solution using hierarchy of strong sparse partitions.
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Scattering partitions

P is a (o, 7, A)-scattering partition if:

e Each cluster is
connected.

e The weak-diameter of
each cluster < A.

e Every shortest path of
length < % intersects at
most 7 clusters.

(o, 7)-scattering partition scheme: VA > 0 3 (o, 7, A)-scattering partition.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(3c3).



Observations

(0,7, A)-strong sparse = (o, 7, A)-weak sparse .

e Each cluster strong diameter < A. e Each cluster weak diameter < A.
e Every ball of radius < 2 intersects e Every ball of radius < 2 intersects
at most 7 clusters. at most 7 clusters.
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Observations

(0,7, A)-strong sparse = (o, T, A)-scattering.

o
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Theorem ([Fil 20])

Suppose all n-vertex trees admit a (o, T)-strong sparse partition scheme.
2
Then T > % - no+l,



Corollary
Vn > 1, there are trees Ty, T> such that,

e T; do not admit (bﬁ%’ log n) -strong sparse partition scheme.

e T, do not admit (\/Iog n,2Vviee ”) -strong sparse partition scheme.
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Theorem ([Fil 20])

Every tree is (2, 3)-scatterable.




Theorem ([Fil 20])

Every tree admits a (4,3)-weak sparse partition scheme.
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Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a
(1,2°09))-weak sparse partition scheme.
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Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a

(1,2°09))-weak sparse partition scheme.




Scattering
Trees
Doubling

Theorem ([Fil 20])

Every graph with doubling dimension d admits a

(O(d), O(d))-strong sparse partition scheme.
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Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), O(d))-strong sparse partition scheme.




Scattering

Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])

Every graph with pathwidth p admits a (O(p), O(p°)
and a (8,5

%))-strong sparse partition scheme,
p)-weak sparse partition scheme.



Scattering

Trees

Cactus

Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])

Every cactus graph admits a (4,5)-scattering partition scheme,
and a (O(1), O(1))-weak sparse partition scheme.




Scattering

Trees
Cactus

Chordal
Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])

Every chordal graph admits a (2, 3)-scattering partition scheme,
and a (24, 3)-weak sparse partition scheme.




Scattering

Trees
Cactus

Chordal
Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])

Suppose that (R?, || - ||») admits a (o, 7)-weak sparse partition scheme.
Then T > (1+ £)? (alternatively o > ;2-).
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Chordal

Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])
The space (RY, || - ||2) admits a (1,2d)-scattering partition scheme.




Scattering

Trees

Euclidean space Cactus

Chordal

Strong

Doubling

‘ Pathwidth ’

Theorem ([Fil 20])

The space (RY, || - ||2) admits a (1,2d)-scattering partition scheme.
(For weak: T > (1 + 3=)¢ = no (O(1), 29)-weak partition scheme).




Scattering

Trees

Euclidean space Cactus

Chordal
Strong

Doubling

Pathwidth

Theorem ([Fil 20])

Every K, ,-free graph admits an (O(r?),2")-weak sparse partition scheme.
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Theorem ([Fil 20])

Every K, ,-free graph admits an (O(r?),2")-weak sparse partition scheme.
What about scattering?
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Conjecture
Planar graphs are (O(1), O(1))-scattering.




Scattering

Trees

Euclidean space Cactus

Chordal

Planar, K, -free

Strong

Doubling

‘ Pathwidth ’

Conjecture
Planar graphs are (O(1), O(1))-scattering.

Will imply a solution for the SPR problem with distortion O(1) for planar graphs!
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Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
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Euclidean space Cactus

Chordal Planar, K,-free
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‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
o [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.
e [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.



General graphs

Scattering

Trees

Euclidean space Cactus

Chordal Planar, K,-free

Strong

Doubling

‘ Pathwidth ’

Consider a general weighted n vertex graph G:
@ [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
o [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.
e [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.
e [Fil 20]: 3G which do not admit (O(Io'gofign)7 O(log n))-weak sparse partition
scheme.




General graphs

Scattering

Trees

Euclidean space Cactus

Chordal Planar, K -free

Strong

Doubling

‘ Pathwidth ’

Every n vertex graph admits (O(1), O(log n))-scattering partition scheme.
Furthermore, this is tight.

Conjecture




Theorem ([JLNRS 05])

Suppose G admits (o, 7)-weak sparse partition scheme,
= solution to the UST problem with stretch O(7c? log, n).

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (o, T)-scattering partition
scheme, = solution to the SPR problem with distortion O(3c3).
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Conjecture

Planar graphs are
(O(1), O(1))-scattering.

Conjecture

Treewidth k graphs are
(f(k), g(k))-scattering.

Conjecture

General n vertex graph are
(O(1), O(log n))-scattering.
Furthermore, this is tight.
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General graphs

Scattering

Euclidean space
Planar, K,-free

Strong

Doubling
Pathwidth
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Conjecture General graphs

Planar graphs are Scattering

(0(1), O(l))—scattering.l

Conjecture

Treewidth k graphs are
(f(k), g(k))-scattering.

Euclidean space
Planar, K,-free

Strong
Conjecture

Doubling

‘ Pathwidth ’

Thank you for listening!

General n vertex graph are
(O(1), O(log n))-scattering.
Furthermore, this is tight.

v
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