

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 2, pp. 249--278

STEINER POINT REMOVAL WITH DISTORTION \bfitO (log \bfitk) USING
THE RELAXED-VORONOI ALGORITHM\ast

ARNOLD FILTSER\dagger

Abstract. In the Steiner point removal problem, we are given a weighted graph G = (V,E)
and a set of terminals K \subset V of size k. The objective is to find a minor M of G with only
the terminals as its vertex set, such that distances between the terminals will be preserved up
to a small multiplicative distortion. Kamma, Krauthgamer, and Nguyen [SIAM J. Comput., 44
(2015), pp. 975--995] devised a ball-growing algorithm with exponential distributions to show that
the distortion is at most O(log5 k). Cheung [Proceedings of the 29th Annual ACM/SIAM Symposium
on Discrete Algorithms, 2018, pp. 1353--1360] improved the analysis of the same algorithm, bounding
the distortion by O(log2 k). We devise a novel and simpler algorithm (called the Relaxed-Voronoi

algorithm) which incurs distortion O(log k). This algorithm can be implemented in almost linear
time (O(| E| log | V |)).

Key words. Steiner point removal (SPR), distortion, metric embedding, minor graph, random-
ized algorithm

AMS subject classifications. 41, 60, 68

DOI. 10.1137/18M1184400

1. Introduction. In graph compression problems the input is usually a massive
graph. The objective is to compress the graph into a smaller graph, while preserving
certain properties of the original graph, such as distances or cut values. Compression
allows us to obtain faster algorithms while reducing the storage space. In the era
of massive data, the benefits are obvious. Examples of such structures are graph
spanners [37], distance oracles [39], cut sparsifiers [7], spectral sparsifiers [6], and
vertex sparsifiers [36].

In this paper we study the Steiner point removal (SPR) problem. Here we are
given an undirected graph G = (V,E) with positive weight function w : E \rightarrow \BbbR +,
and a subset of terminals K \subseteq V of size k (the nonterminal vertices are called Steiner
vertices). The goal is to construct a new graph M = (K,E\prime) with positive weight
function w\prime , with the terminals as its vertex set, such that (1) M is a graph minor of
G and (2) the distance between every pair of terminals t, t\prime is distorted by at most a
multiplicative factor of \alpha , formally

\forall t, t\prime \in K, dG(t, t
\prime) \leq dM (t, t\prime) \leq \alpha \cdot dG(t, t\prime) .

Property (1) expresses preservation of the topological structure of the original graph.
For example, if G was planar, so will M be. Property (2), however, expresses preser-
vation of the geometric structure of the original graph, that is, distances between
terminals. The question is, What is the minimal \alpha (which may depend on k) such
that every graph with a terminal set of size k will admit a solution to the SPR problem
with distortion \alpha ?

The first to study a problem of this flavor was Gupta [24], who showed that given
a weighted tree T with a subset of terminals K, there is a tree T \prime with K as its vertex

\ast Received by the editors April 30, 2018; accepted for publication January 22, 2019; published
electronically March 26, 2019. A preliminary version appeared in Proceedings of SODA'18, 2018.

http://www.siam.org/journals/sicomp/48-2/M118440.html
Funding: The research was supported in part by ISF grant (1718/18) and BSF grant 2015813.

\dagger Department of Computer Science, Ben Gurion University of the Negev, Beer Sheva, 8410501,
Israel (arnoldf@cs.bgu.ac.il).

249

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/48-2/M118440.html
mailto:arnoldf@cs.bgu.ac.il

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

250 ARNOLD FILTSER

set that preserves all the distances between terminals up to a multiplicative factor of
8. Chan et al. [9] observed that the tree T \prime of Gupta is in fact a minor of the original
tree T . They showed that 8 is the best possible distortion and formulated the problem
for general graphs. This lower bound of 8 is achieved on the complete unweighted
binary tree and is the best known lower bound for the general SPR problem.

Basu and Gupta [5] showed that on outerplanar graphs, the SPR problem can be
solved with distortion O(1).

Kamma, Krauthgamer, and Nguyen were the first to bound the distortion for
general graphs. They suggested the Ball-growing algorithm. Their first analysis
provide O(log6 k) distortion (conference version [26]), which they later improved to
O(log5 k) (journal version [27]). Recently, Cheung [11] improved the analysis of the
Ball-growing algorithm further, providing an O(log2 k) upper bound on the distor-
tion.

The Ball-growing algorithm constructs a terminal partition, that is, a partition
where each cluster is connected and contains a single terminal. The minor is then
constructed by contracting all the internal edges in all clusters. The weight of the
minor edge \{ t, t\prime \} (if it exists) is defined simply to dG(t, t

\prime). The clusters are generated
iteratively. In each round, by turn, each terminal tj increases the radius Rj of its ball
cluster Vj in an attempt to add more vertices to its ball cluster Vj . Once a vertex
joins some cluster, it will remain there. In round \ell , the radii are (independently) dis-
tributed according to an exponential distribution, where the mean of the distribution
grows in each round. A description of the Ball-growing algorithm can be found in
Appendix B.

The main contribution of this paper is a new upper bound of O(log k) for the SPR
problem. In a preliminary conference version [20], the author improved the analysis
of the Ball-growing algorithm, providing an O(log k) upper bound. In this paper
we devise a novel algorithm called the Relaxed-Voronoi algorithm. We bound the
distortion incurred by the minor produced using the Relaxed-Voronoi by O(log k)
as well. Nevertheless, the Relaxed-Voronoi algorithm is arguably simpler and more
intuitive compared to the Ball-growing algorithm. Both algorithms grow clusters
around the terminals; the main difference is that the Ball-growing algorithm has
many iterations, growing slowly from all terminals (almost in parallel), while the
Relaxed-Voronoi algorithm has one round only (the terminals create clusters by
turns. Once a cluster is created it will remain unchanged till the end of the algorithm).
The analysis in [20] was built upon [11]. In both papers, a considerable effort was
made to lower and upper bound the number of the round in which each nonterminal is
clustered. The analysis in this paper is quite similar to [20], while all the round-base
analysis simply becomes unnecessary.

Furthermore, we devise an efficient implementation of the Relaxed-Voronoi al-
gorithm in almost linear time O (m+min\{ m,nk\} \cdot log n) (m (resp., n) here is the
number of edges (resp., vertices) in G). While the Ball-growing algorithm can be
implemented in polynomial time, it is not clear how to do so efficiently.

We show that the analysis of the Relaxed-Voronoi algorithm is asymptotically
tight. That is, there are graphs for which the Relaxed-Voronoi produces a mi-
nor which incurs distortion \Omega (log k). We prove a similar lower bound also for the
Ball-growing algorithm. However, there we are only able to prove an \Omega (

\surd
log k)

lower bound on the performance of the algorithm.

1.1. Related work. Englert et al. [17] showed that every graph G admits a
distribution \scrD over terminal minors with expected distortion O(log k). Formally, for

all ti, tj \in K, it holds that 1 \leq \BbbE M\sim \scrD [dM (ti,tj)]
dG(ti,tj)

\leq O (log k). Thus, Theorem 3.1 can be

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 251

seen as an improvement upon [17], where we replace distribution with a single minor.
Englert et al. showed better results for \beta -decomposable graphs; in particular, they
showed that graphs excluding a fixed minor admit a distribution with O(1) expected
distortion.

Krauthgamer, Nguyen, and Zondiner [29] showed that if we allow the minor M to

contain at most
\bigl(
k
2

\bigr) 2
Steiner vertices (in addition to the terminals), then distortion 1

can be achieved. They further showed that for graphs with constant treewidth, O(k2)
Steiner points will suffice for distortion 1. Cheung, Goranci, and Henzinger [12]

showed that allowing O(k2+
2
t) Steiner vertices, one can achieve distortion 2t - 1 (in

particular distortion O(log k) with O(k2) Steiners). For planar graphs, they achieved
1 + \epsilon distortion with \~O((k\epsilon)

2) Steiner points.
There is a long line of work focusing on preserving the cut/flow structure among

the terminals by a graph minor. See [36, 32, 10, 34, 17, 13, 30, 2, 23, 31].
There are works studying metric embeddings and metric data structures concern-

ing preserving distances among terminals, or from terminals to other vertices, out of
the context of minors. See [14, 38, 25, 28, 15, 16, 4].

Finally, there are clustering algorithms similar in nature to the Relaxed-Voronoi
and Ball-growing algorithms [33, 3, 19, 8, 18, 35].

1.2. Technical ideas. The basic approach in this paper, as well as in all previous
papers on SPR in general graphs, is to use terminal partitions in order to construct
a minor for the SPR problem. Specifically, we partition the vertices into k connected
clusters, with a single terminal in each cluster. Such a partition induces a minor
by contracting all the internal edges in each cluster. See the preliminaries for more
details. Considering such a framework, the most natural idea will be to partition the
vertices into the Voronoi cells, i.e., the cluster Vj of the terminal tj will contain all
the vertices v for which tj is the closest terminal. However, this approach miserably
fails and can incur distortion as large as k - 1. See Figure 1.1 for an illustration.

t1 tkt2 t3 t4 tk−1tk−2

1 1 1 1 1 1 1

ε ε ε ε ε
v2 v3 v4 vk−1vk−2 vkv1

t1 tkt2 t3 t4 tk−1tk−2

2 + ε 2 + ε 2 + ε 2 + ε 2 + ε

G

M

Fig. 1.1. The graph G consists of a k-path of Steiner vertices v1, . . . , vk with edges of weight
\epsilon . To each Steiner vertex vj we add a terminal using a unit weight edge. The Voronoi cell of the
terminal tj is \{ tj , vj\} . The minor M induced by this terminal partition is a path t1, . . . , tk where
the weight of each edge equals 2 + \epsilon . The original distance in G between t1 to tk is 2 + (k - 1) \cdot \epsilon ,
while the distance in the minor M equals (k - 1) \cdot (2 + \epsilon). In particular, when \epsilon tends to 0, the
distortion tends to k - 1.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

252 ARNOLD FILTSER

Our idea is to introduce some noise in order to avoid the sharp boundaries between
the clusters. Specifically, we order the terminals in an arbitrary order. For each
terminal tj we sample a parameter Rj \geq 1 that we will call its magnitude. Then, by
turn, each terminal will construct a cluster Vj which will be essentially a magnified (by
Rj) Voronoi cell (in the remaining graph). However, in order to maintain connectivity,
the magnified Voronoi cell is constructed in a ``Dijkstra manner"" as follows. For
every vertex v, denote by D(v) the distance from v to its closest terminal. Initially
Vj = \{ tj\} . In each step, every unclustered neighboring vertex v of Vj is examined. If
dG(v, tj) \leq Rj \cdot D(v), then v joins the cluster Vj . The process terminates when no
new potential vertices remain. Then we move on to the next terminal and repeat the
same process on the remaining graph. Eventually, all of G is partitioned into clusters.

To sample Rj , we first sample gj according to geometric distribution with param-
eter p = 1

5 . Then, Rj is set to be (1 + \delta)gj , where \delta = \Theta (1
ln k). In particular, all the

Rj 's are bounded by some universal constant with high probability (w.h.p.).
Next, we provide some intuition for the distortion analysis. Consider a pair of

terminals t, t\prime , and let Pt,t\prime be the shortest path between them in the original graph
G. When the algorithm terminates, all the vertices in Pt,t\prime are clustered by different
terminals. See Figure 4.2 for an illustration. Let \scrD \ell 1 , . . . ,\scrD \ell k be the partition of
the vertices in Pt,t\prime induced by the partition of all vertices created by the algorithm.
i.e., \scrD \ell i = Pt,t\prime \cap V\ell i . For simplicity at this stage, we will assume that every \scrD \ell j is
continuous. In the induced minor graph, there is an edge between any two consecutive
terminals t\ell j and t\ell j+1 . Therefore the distance between t and t\prime in the minor graph can
be bounded by

\sum
j dG(t\ell j , t\ell j+1

). Let v\ell j be the ``first"" vertex on Pt,t\prime to be covered
by t\ell j . ``First"" here is in the following sense: we think about the sampling of Rj in a
gradual manner. For a vertex v, let rv denote the minimal value of Rj such that v \in Vj .
Then vj is defined to be the vertex with the minimal value rv. Using the triangle
inequality, dG(t\ell j , t\ell j+1) \leq dG(t\ell j , v

\ell j) + dG(v
\ell j , v\ell j+1) + dG(v

\ell j+1 , t\ell j+1). Therefore

dM (t, t\prime) \leq
\sum k\prime - 1

i=1 dG(v
\ell i , v\ell i+1) + 2

\sum k\prime

i=1 dG(t\ell i , v
\ell i) \leq dG(t, t

\prime) + 2
\sum k\prime

i=1 dG(t\ell i , v
\ell i)

(see Figure 4.2 for an illustration).
In order to bound the distortion, we need to bound the sum of ``deviations""\sum k\prime

i=1 dG(t\ell i , v
\ell i) from the shortest path. However, these deviations are heavily de-

pendent. Instead of analyzing the deviations directly, we will follow an approach first
suggested by [11]. We partition the shortest path Pt,t\prime from t to t\prime into a set of in-
tervals \scrQ ; the idea will be to count for each interval Q how many deviations start
from this interval (denoted X(Q)). Specifically, for each deviation, we will charge the
interval in which this deviation was initiated. Afterward, we will be able to replace
the sum of deviations above by a linear combination of the interval charges.

The partition of the shortest path Pt,t\prime into intervals is done such that the length
of each interval Q \in \scrQ will be a log k fraction of the distance from the interval to
its closest terminal. Such interval lengths will ensure the following crucial property:
given that some vertex v \in Q joins the cluster Vj (of the terminal tj), with probability
at least 1 - p, all of Q joins Vj .

Using this property alone, one can show that the expected charge on each interval
is bounded by a constant. This already will imply an O(log k) distortion on each pair
in expectation. However, as we are interested in O(log k) distortion on all pairs
w.h.p., a more subtle argument is required. We couple the interval charges into a
series of independent random variables that dominate the interval charges. Then, a
concentration bound on the independent variables implies an upper bound on the sum
of interval charges, which provides O(log k) distortion w.h.p.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 253

1.3. Paper organization. In section 3 we describe the Relaxed-Voronoi al-
gorithm and prove some of its basic properties. Then, in section 4 we analyze the
distortion incurred by the Relaxed-Voronoi algorithm. In section 5 we introduce a
small modification to the Relaxed-Voronoi algorithm. We prove that the distortion
analysis is still valid and explain how the modified algorithm can be efficiently imple-
mented. In section 6 we prove that our analysis of the Relaxed-Voronoi algorithm
is asymptotically tight (and provide some lower bound on the performance of the
Ball-growing algorithm). Finally, in section 7 we provide some concluding remarks
and discuss further directions.

2. Preliminaries. Appendix C contains a summary of all the definitions and
notation we use. The reader is encouraged to refer to this index while reading.

We consider undirected graphs G = (V,E) with positive edge weights w : E \rightarrow
\BbbR \geq 0. Let dG denote the shortest path metric in G. For a subset of vertices A \subseteq V ,
let G[A] denote the induced graph on A. Fix K = \{ t1, . . . , tk\} \subseteq V to be a set of
terminals. For a vertex v, D(v) = mint\in K dG(v, t) is the distance from v to its closest
terminal. For clarity, we will assume that all metric distances are unique (that is, for
\{ v, v\prime \} \not = \{ u, u\prime \} , dG(v, v\prime) \not = dG(u, u

\prime)). Moreover, we will assume that for every pair
v, u there is a unique shortest path. Otherwise, we can introduce arbitrarily small
perturbations.

A graph H is a minor of a graph G if we can obtain H from G by edge deletions/
contractions and vertex deletions. A partition \{ V1, . . . , Vk\} of V is called a terminal
partition (w.r.t. K) if for every 1 \leq i \leq k, ti \in Vi, and the induced graph G[Vi] is
connected. See Figure 2.1 for an illustration. The induced minor by terminal partition
\{ V1, . . . , Vk\} is a minor M , where each set Vi is contracted into a single vertex called
(abusing notation) ti. Note that there is an edge inM from ti to tj iff there are vertices
vi \in Vi and vj \in Vj such that \{ vi, vj\} \in E. We determine the weight of the edge
\{ ti, tj\} \in E(M) to be dG(ti, tj). Note that by the triangle inequality, for every pair
of (not necessarily neighboring) terminals ti, tj , it holds that dM (ti, tj) \geq dG(ti, tj).

The distortion of the induced minor is maxi,j
dM (ti,tj)
dG(ti,tj)

.

2.1. Probability. For a distribution \scrD , X \sim \scrD denotes that X is a random
variable distributed according to \scrD .

4

2

5

3

3

1

23

3

4

1111

3
2

2

1

3

5

1

t1t1

t2

t2

t3t3

t4

t4

6

5

6

7
V1

V2

V3

V4

Fig. 2.1. The left side of the figure contains a weighted graph G = (V,E), with weights specified
in red, and four terminals \{ t1, t2, t3, t4\} . The dashed black curves represent a terminal partition of
the vertex set V into the subsets V1, V2, V3, V4. The right side of the figure represent the minor M

induced by the terminal partition. The distortion is realized between t1 and t3, and is
dM (t1,t3)
dG(t1,t3)

=
12
4

= 3.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

254 ARNOLD FILTSER

\sansG \sanse \sanso (p) denotes the geometric distribution with parameter p. Here we toss a
biased coin with probability p for heads, until the first time we get heads. \sansG \sanse \sanso (p) is
the number of coin tosses. Formally, \sansG \sanse \sanso (p) is supported in \{ 1, 2, 3, . . . \} , where the
probability to get s is (1 - p)s - 1 \cdot p.

Exponential distribution is the continuous analogue of geometric distribution.
\sansE \sansx \sansp (\lambda) denotes the exponential distribution with mean \lambda and density function f(x) =
1
\lambda e

 - x
\lambda for x \geq 0. Exponential distribution is closed under scaling, that is, for

X \sim \sansE \sansx \sansp (\lambda), c \cdot X is distributed according to \sansE \sansx \sansp (c\lambda). We will use the following
concentration bound.

Lemma 2.1. Suppose X1, . . . , Xn's are independent random variables, where each
Xi is distributed according to \sansE \sansx \sansp (\lambda i). Let X =

\sum
i Xi and \lambda M = maxi \lambda i. Set

\mu = \BbbE [X] =
\sum

i \lambda i.

For a \geq 2\mu , Pr [X \geq a] \leq exp

\biggl(
 - 1

2\lambda M
(a - 2\mu)

\biggr)
.

In Appendix A we prove a more general bound. In particular, Lemma 2.1 above
is a special case of Lemma A.1 (which is obtained by choosing parameters \alpha = a

\mu - 1

and t = 1
2\lambda M

).

3. Algorithm. The terminals are ordered in arbitrary order t1, t2, . . . , tk. The
Relaxed-Voronoi algorithm has k rounds, where in the round i, the cluster Vi (con-
taining ti) is constructed in the graph induced by the non-terminal vertices not clus-
tered so far.

The clusters are created using the Create-Cluster procedure. The algorithm
provides a random variable Rj = (1 + \delta)gj , where gj is distributed according to
geometric distribution with parameter p.

The Create-Cluster procedure runs in a Dijkstra-like fashion. During the exe-
cution, we maintain three sets: (1) Vj : the currently created cluster (initiated to be
\{ tj\}). (2) U : the set of vertices that were ``refused"" to join Vj . (3) N : the set of
neighboring vertices to Vj (that are not in U).

While N is nonempty, the algorithm extracts an arbitrary vertex v from N . If
dG(v, tj) \leq R(j) \cdot D(v) (the distance from tj to v is at most Rj times the distance
from v to its closest terminal), then v joins Vj . Otherwise v joins U . In the case
where v joins Vj , all its neighbors (outside of U \cup Vj) join N . As each vertex might
join N at most once, eventually N becomes empty. Then the procedure ceases and
returns Vj .

Theorem 3.1. With probability 1 - 1
k , in the minor graph M returned by Algo-

rithm 3.1, it holds that for every two terminals t, t\prime , dM (t, t\prime) \leq O (log k) \cdot dG(t, t\prime).
First we argue that Algorithm 3.1 indeed produces a terminal partition.

Lemma 3.2. The sets V1, . . . , Vk constructed by Algorithm 3.1 form a terminal
partition.

Proof. It is straightforward from the description of the algorithm that the sets
V1, . . . , Vk are disjoint and that for every j, tj \in Vj and G[Vj] is connected. The only
nontrivial property we have to show is that every vertex v \in V joins some cluster.

Fix some v \in V , let tj be the closest terminal to v (s.t. D(v) = dG(v, tj)), and
let P = \{ tj = u0, u1, . . . , us = v\} be the shortest path from tj to v in G. Note that
as P is a shortest path, tj is also the closest terminal to all the vertices in P . As
tj = u0 \in Vj , at least one vertex from P is clustered during the algorithm. Let ui\prime be

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 255

Algorithm 3.1. M = Relaxed-Voronoi(G = (V,E,w),K = \{ t1, . . . , tk\}).
1: Set \delta = 1

20 ln k and p = 1
5 .

2: Set V\bot \leftarrow V \setminus K. // V\bot is the currently unclustered vertices.
3: for j from 1 to k do
4: Choose independently at random gj distributed according to \sansG \sanse \sanso (p).
5: Set Rj \leftarrow (1 + \delta)gj .
6: Set Vj \leftarrow Create-Cluster(G,V\bot , tj , Rj).
7: Remove all the vertices in Vj from V\bot .
8: end for
9: return the terminal-centered minor M of G induced by V1, . . . , Vk.

the first clustered vertex from P (w.r.t. time). Denote by Vj\prime the cluster ui\prime joins to.
We argue by induction on i \geq i\prime that ui also joins Vj\prime . This will imply that us = v joins
Vj\prime and thus is clustered. Suppose ui joins Vj\prime . It holds that dG(ui, tj\prime) \leq Rj\prime \cdot D(ui).
Moreover, all the neighbors of ui join N . Therefore ui+1 necessarily joined to the set
N (at some stage during the execution of the Create-Cluster procedure for Vj\prime). As

dG(ui+1, tj\prime) \leq dG(ui+1, ui) + dG(ui, tj\prime)

\leq dG(ui+1, ui) +Rj\prime \cdot dG(ui, tj)

\leq Rj\prime \cdot dG(ui+1, tj) = Rj\prime \cdot D(ui+1) ,

ui+1 will join Vj\prime , as required.

3.1. Modification. Let \^\Delta = mint,t\prime \in K\{ dG(t, t\prime)\} denote the minimal distance

between a pair of terminals. Note that \^\Delta > 0. For the sake of analysis we will make
a preprocessing step to ensure that every edge e has weight at most cw \cdot \^\Delta = \delta

24 \cdot \^\Delta .
This can be achieved by subdividing larger edges, i.e., adding additional vertices of
degree two in the middle of such edges. Denote by \^G the modified graph G, when we
repeatedly subdivide edges until every edge e has small enough weight. We argue that
such subdivisions did not affect whatsoever the terminal-centered minor returned by
Algorithm 3.1.

Claim 3.3. Let G = (V,E,w) be a weighted graph with terminal set K = \{ t1, . . . ,
tk\} . Consider an edge e = \{ v, u\} \in E of weight \omega . Let \~G be the graph G with
subdivided edge e. Specifically, we add a new Steiner vertex ve and replace the edge e
by two new edges \{ ve, v\} , \{ ve, u\} , both of weight \omega /2.

Fix g1, . . . , gk and consider Algorithm 3.1, where the random choices in line 4 are
g1, . . . , gk, respectively. Then the terminal-centered minor M returned on input G is
the same as the terminal-centered minor \~M returned on input \~G .

Proof. As g1, . . . , gk are fixed, Algorithm 3.1 is now deterministic. Let V1, . . . , Vk

be the terminal partition induced by Algorithm 3.1 on G, and similarly let \~V1, . . . , \~Vk

be the terminal partition induced by Algorithm 3.1 on \~G. We argue that for all j,
Vj = \~Vj \setminus \{ ve\} . Note that this will imply our claim. Indeed, let Vj , Vj\prime be the clusters
such that v \in Vj and u \in Vj\prime . As each cluster is connected, necessarily ve \in Vj \cup Vj\prime .
By the definition of subdivision, this will imply that the terminal-centered minors are
indeed identical.

Each Steiner vertex can be clustered only after at least one of its neighbors is
clustered. Therefore ve cannot be clustered before both v and u. Without loss of
generality (w.l.o.g.) v joined Vj while u is still unclustered. The vertex ve wasn't

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

256 ARNOLD FILTSER

Algorithm 3.2. Vj = Create-Cluster(G = (V,E,w), V\bot , tj , Rj).

1: Set Vj \leftarrow \{ tj\} .
2: Set U \leftarrow \emptyset . // U is the set of vertices already denied from Vj.
3: Set N to be all the neighbors of tj in V\bot .
4: while N \not = \emptyset do
5: Let v be an arbitrary vertex from N .
6: Remove v from N .
7: if dG(v, tj) \leq Rj \cdot D(v) then
8: Add v to Vj .
9: Add all the neighbors of v in V\bot \setminus (U \cup Vj) to N .

10: else
11: Add v to U .
12: end if
13: end while
14: return Vj .

examined before the clustering of v. Denote by V \prime
j (resp., \~V \prime

j) the set Vj (resp., \~Vj)

right after the clustering of v at the execution of Algorithm 3.1 on G (resp., \~G).
Note that the order of extraction from N in line 5 of Algorithm 3.2 is determined
deterministically. Therefore, up to the clustering of v the algorithm behaved the
same on both G and \~G. In particular, for all j\prime \prime < j, Vj\prime \prime = \~Vj\prime \prime . Moreover, V \prime

j = \~V \prime
j .

After v joins Vj , ve joins (for the first time) to the set N (for \~G). Note that

D(ve) = min \{ D(v), D(u)\} + \omega

2
,

dG(tj,ve) = min \{ dG(tj,v), dG(tj , u)\} +
\omega

2
.

As v joined Vj , necessarily dG(tj , v) \leq Rj \cdot D(v). Consider the following cases:
\bullet u /\in Vj : In the algorithm for G, u was examined (as v \in Vj), thus dG(tj , u) >

Rj \cdot D(u). Therefore u will also not join \~Vj . As ve has edges only to v and

u, ve has no impact on any other vertex. Therefore the cluster \~Vj will be
constructed in the same manner as Vj (up to maybe containing ve). Note
that all the other clusters will not be affected, as if ve remained unclustered,
it becomes a leaf. We conclude that for every j\prime \prime , Vj\prime \prime = \~Vj\prime \prime \setminus \{ ve\} .

\bullet u \in Vj : It holds that dG(tj , u) \leq Rj \cdot D(u). Therefore

dG(tj,ve) = min \{ dG(tj,v), dG(tj,e)\} +
\omega

2
\leq Rj \cdot min \{ D(v), D(u)\}

+
\omega

2
\leq Rj \cdot D(ve) .

Therefore ve will join \~Vj , which will ensure that u joins \~N , and afterward

to \~Vj . Note that ve has no other impact. In particular, for every j\prime \prime \not = j,

Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .

Consider the modified graph \^G. Suppose that we proved that with probability at
least 1 - 1

k , in the minor graph \^M returned by Algorithm 3.1 for \^G, it holds that for
every two terminals t, t\prime , d \^M (t, t\prime) \leq O (log k) \cdot d \^G(t, t

\prime) = O (log k) \cdot dG(t, t\prime). Then by
repetitive use of Claim 3.3 (once for every new vertex), Theorem 3.1 follows. From
now on, we will abuse notation and refer to the graph \^G as G. Note that all this is

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 257

done purely for the sake of analysis, as by Claim 3.3 we will get the same minor when
running Algorithm 3.1 for either G or \^G. Thus, in fact, we will execute Algorithm 3.1
on the original graph with no modifications.

4. Distortion analysis.

4.1. Interval and charges. In this section we describe in detail the probabilistic
process of breaking the graph into clusters from the viewpoint of the Steiner vertices.
The main objective will be to define a charging scheme, which we can later use to
bound the distortion.

Consider two terminals t and t\prime . Let Pt,t\prime = \{ t = v0, . . . , v\gamma = t\prime \} be the shortest
path from t to t\prime in G. We can assume that there are no terminals in Pt,t\prime other than
t, t\prime . This is because if we will prove that for every pair of terminals t, t\prime such that
Pt,t\prime \cap K = \{ t, t\prime \} it holds that dM (t, t\prime) \leq O(log k) \cdot dG(t, t\prime), this property will be
implied for all terminal pairs.

For an interval Q = \{ va, . . . , vb\} \subseteq Pt,t\prime , the internal length is L(Q) = dG(va, vb),
while the external length is L+(Q) = dG(va - 1, vb+1).

1 The distance from the interval
Q to the terminals, denoted D(Q) = D(va), is simply the distance from its leftmost
point va to the closest terminal to va. Set cint =

1
6 (``int"" for interval). We partition

the vertices in Pt,t\prime into consecutive intervals \scrQ such that for every Q \in \scrQ ,

L(Q) \leq cint\delta \cdot D(Q) \leq L+(Q) .(4.1)

Such a partition could be constructed as follows. Sweep along the interval Pt,t\prime in
a greedy manner; after partitioning the prefix v0, . . . , vh - 1, to construct the next Q,
simply pick the minimal index s such that L+(\{ vh, . . . , vh+s\}) \geq cint\delta \cdot D(vh). By the
minimality of s, L(\{ vh, . . . , vh+s\}) \leq L+(\{ vh, . . . , vh+s - 1\}) \leq cint\delta \cdot D(vh) (in the case
s = 0, trivially L(\{ vh\}) = 0 \leq cint\delta \cdot D(vh)). Note that such s could always be found,
as L+(\{ vh, . . . , v\gamma \}) = dG(vh - 1, t

\prime) \geq dG(vh, t
\prime) \geq D(vh) = D(Q).

In the beginning of Algorithm 3.1, all the vertices of Pt,t\prime are active. Consider
round j in the algorithm when terminal tj constructs its cluster Vj . Specifically, it
picks gj and sets Rj \leftarrow (1 + \delta)gj . Then, using the Create-Cluster procedure it
grows a cluster in a ``Dijkstra"" fashion. If no active vertex joins Vj , we say that tj
doesn't participate in Pt,t\prime . Otherwise, let aj \in Pt,t\prime (resp., bj) be the active vertex
that joins to Vj with minimal (resp., maximal) index (w.r.t. Pt,t\prime). All the vertices
\{ aj , . . . , bj\} \subset Pt,t\prime between aj and bj (w.r.t. the order induced by Pt,t\prime) become
inactive. We call this set \{ aj , . . . , bj\} a detour \scrD j from aj to bj . See Figure 4.1 for
an illustration.

Within each interval Q, each maximal subinterval of active vertices is called a
slice. We denote by \scrS (Q) the current number of slices in Q. In the beginning of the
algorithm, for every interval Q, \scrS (Q) = 1, while at the end of the algorithm \scrS (Q) = 0.

For an active vertex v, let rv be the minimal choice of Rj (determined by gj) that
will force v to join Vj . Let vj be the active vertex with minimal rv (breaking ties
arbitrarily). Note that Vj is monotone with respect to Rj . That is, if v will join Vj

for Rj = r, it will join Vj for Rj = r\prime \geq r as well. We denote by Qj \in \scrQ the interval
containing vj . Similarly, Sj is the slice containing vj . We charge Qj for the detour
\scrD j . We denote by X(Q) the number of detours the interval Q is currently charged
for. For every detour \scrD j\prime which is contained in \scrD j (that is, aj < aj\prime < bj\prime < bj w.r.t.
the order induced by Pt,t\prime), we erase the detour and its charge. That is, for every

1For ease of notation we will denote v - 1 = t and v\gamma +1 = t\prime .

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

258 ARNOLD FILTSER

tj

aj bj

Q1 Q2 Q3 = Qj Q4

tj

vj
bj

Q1 Q2 Q3 = Qj Q4

aj

S1 S2 S3 S4 = Sj S5 S6

S1 S2 S3 S4 = Sj S5 S6

(A)

(B)

D`1 D`2

D`1 D`2

vj

Fig. 4.1. The figure illustrates round j in Algorithm 3.1, when tj grows the cluster Vj . We
present two scenarios for different choices of Rj . The black line is part of Pt,t\prime the shortest path
from t to t\prime . The blue intervals Qi represent the intervals in \scrQ . The red subintervals Si represent
the slices (maximal continuous subsets of active vertices), where S2, S3 \subset Q2 and S4, S5 \subset Q3. The
yellow areas represent detours \scrD \ell 1 and \scrD \ell 2 , where Q2 (resp., Q3) is charged for \scrD \ell 1 (resp., \scrD \ell 2).
Note that vertices in those areas are inactive. The terminal tj increases gradually Rj , and the first
vertex to be covered is vj . In scenario (A), the growth of Rj terminates immediately after covering
vj and sets the borderline vertices aj and bj within the subinterval Sj . In scenario (B), the growth of
Rj continues for another step, setting both aj and bj out of Sj . Vertices already inactive are shown
in blue. Vertices that join the cluster Vj are shown in red. The green vertices are vertices which are
still uncovered, but nevertheless become inactive. Vertices which remain active after the creation
of Vj are colored in black. In scenario (A) all the vertices that become inactive, \scrD j , are included
in S4. Q3 is charged for \scrD j . The number of slices in Q3 is increased by 1, and no other changes
occur (X(Q2) = 1, X(Q3) = 2). In scenario (B) \scrD \ell contains all the vertices in S2, S3, S4, S5 and
part of the vertices in S1, S6. The number of slices in Q2 and Q3 becomes 0, while the number of
slices in Q1 and Q4 remains unchanged. Q3 is charged for \scrD \ell , while its charge for \scrD \ell 2 is erased.
Additionally, the charge of Q2 for \scrD \ell 1 is erased. That is, Q2 will remain uncharged till the end of

the algorithm (\~X(Q2) = X(Q2) = 0, X(Q3) = 1).

Q\prime \not = Qj , X(Q\prime) might only decrease, while X(Qj) might increase by at most 1 (and

can also decrease as a result of deleted detours). We denote by \~X(Q) the size of X(Q)
by the end of Algorithm 3.1. Figure 4.1 illustrates a single step.

Next, we analyze the change in the number of slices as a result of constructing
the cluster Vj . If Rj < rvj , then no active vertex joins Vj and therefore X(Q) and
\scrS (Q) stay unchanged, for all Q \in \scrQ . Otherwise, Rj \geq rvj , a new detour will appear

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 259

and will be charged upon Qj . All the slices S which are contained in \scrD j are deleted.
Every slice S that intersects \scrD j but is not contained in it will be replaced by one or
two new slices. If \scrD j \cap S /\in \{ \scrD j , S\} , then S is replaced by a single new subslice S\prime .
The only possibility for a slice to be replaced by two subslices is if \scrD j \subseteq S, and \scrD j

does not contain an ``extremal"" vertex in S (see Figure 4.1, scenario (A)). This can
happen only at Sj . We conclude that for every Q\prime \not = Qj , \scrS (Q\prime) might only decrease,
while \scrS (Qj) might increase by at most 1.

Claim 4.1. Assuming Rj \geq rvj , all of Sj joins Vj with probability at least 1 - p.

Proof. As vj joins Vj for Rj \geq rvj , by line 7 of Algorithm 3.2, necessarily
dG(vj ,tj)
D(vj) \leq rvj . We will argue that for every u \in Sj , the following inequality holds:

dG(u, tj)

D(u)
\leq dG(v

j , tj)

D(vj)
(1 + \delta) \leq rvj (1 + \delta) .(4.2)

Next, assume that Rj \geq (1 + \delta)rvj . Before the execution of the Create-Cluster

procedure for Vj , all the vertices in Sj belong to V\bot (as all of them are active).
Because Rj \geq rvj , vj will join Vj (by the definition of rvj). In particular, additional
vertices from Sj (if they exist) will join N . Using inequality (4.2), for every u \in Sj ,
dG(u, tj)/Du \leq rvj (1 + \delta) \leq Rj . Therefore every vertex from Sj joining N will also
join Vj . In such a way, since Sj is connected in V\bot , all the vertices of Sj will join Vj ,
as required.

Next, we analyze the probability that indeed Rj \geq (1 + \delta)rvj . Recall that Rj =
(1 + \delta)gj , where gj is distributed according to geometric distribution with parameter
Pt,t\prime . Conditioned on the event Rj \geq rvj , we have that

Pr [Rj \geq (1 + \delta)rvj | Rj \geq rvj]

= Pr
\bigl[
gj \geq log1+\delta ((1 + \delta)rvj) | gj \geq log1+\delta rvj

\bigr]
= Pr

\bigl[
gj \geq 1 + log1+\delta rvj | gj \geq log1+\delta rvj

\bigr]
= 1 - p .(4.3)

It remains to prove inequality (4.2). By the definition of D(Qj) and the triangle
inequality

L(Qj)
(4.1)

\leq cint\delta \cdot D(Qj) \leq cint\delta \cdot
\bigl(
D(vj) + L(Qj)

\bigr)
\leq 2cint\delta \cdot D(vj) \leq 2cint\delta \cdot dG(vj , tj) .(4.4)

Therefore, for every u \in Sj ,

dG(u, tj) \leq dG(v
j , tj) + L(Qj)

(4.4)

\leq dG(v
j , tj) (1 + 2cint\delta) .

Similarly,

D(u) \geq D(vj) - L(Qj) \geq D(vj) (1 - 2cint\delta) .(4.5)

We conclude that

dG(u, tj)

D(u)
\leq dG(v

j , tj) (1 + 2cint\delta)

D(vj) (1 - 2cint\delta)
\leq dG(v

j , tj)

D(vj)
(1 + 3 \cdot 2cint\delta) =

dG(v
j , tj)

D(vj)
(1 + \delta) .D

ow
nl

oa
de

d
06

/2
3/

19
 to

 1
32

.7
2.

42
.2

07
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

260 ARNOLD FILTSER

4.2. Bounding the number of failures. Next, we define a cost function

f : \BbbR | \scrQ |
+ \rightarrow \BbbR +. Intuitively, the cost function is simply a summation over the inter-

vals, where for each interval Q we add its length L(Q) for each time it was charged.
Formally, f(\{ xQ\} Q\in \scrQ) =

\sum
Q\in \scrQ xQ \cdot L+(Q) . Even though our goal will be to bound

f(\{ \~X(Q)\} Q\in \scrQ), we define f as a general function from \BbbR | \scrQ | in order to use it on other
variables as well. Note that the cost function f is linear and monotonically increas-
ing coordinatewise. In subsection 4.3 we show that the distance dM (t, t\prime) between t
and t\prime in the minor graph M can be bounded by log k \cdot f(\{ \~X(Q)\} Q\in \scrQ), the scaled
cost function applied on the charges. This section is devoted to proving the following
lemma.

Lemma 4.2. Pr[f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime)] \leq k - 3.

Using Claim 4.1, one can show that for every Q \in \scrQ , \BbbE [\~X(Q)] = O(1), and
moreover, w.h.p. \~X(Q) = O(log k) for all Q. However, we use a concentration bound
on all \{ \~X(Q)\} Q\in \scrQ simultaneously in order to provide a stronger upper bound.

4.2.1. Bounding by independent variables. In our journey to bound
f(\{ \~X(Q)\} Q\in \scrQ), the first step will be to replace \{ \~X(Q)\} Q\in \scrQ with independent random
variables. Consider the following process: a box B which contains coins of two types,
active and inactive. In the beginning, there is a single active coin. In each round,
we toss an active coin, which gets 0 (failure) with probability p, and 1 (success) with
probability 1 - p. If we get a 0, two additional active coins are added to the box. In
any case, the tossed coin becomes inactive. All the coin tosses throughout the process
are independent. The process terminates when no active coins remain. Let \{ BQ\} Q\in \scrQ
be a set of | \scrQ | independent boxes (here the box BQ resembles the interval Q). For the
box BQ, denote by Z(Q) the number of active coins, by Y (Q) the number of inactive

coins, and by \~Y (Q) the number of inactive coin at the end of the process.

Claim 4.3. For every \alpha \in \BbbR +,

Pr
\Bigl[
f
\Bigl(
\{ \~X(Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
\leq Pr

\Bigl[
f
\Bigl(
\{ \~Y (Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
.

Proof. The proof is done by coupling the two processes of Algorithm 3.1 and the
coin tosses. We execute Algorithm 3.1, which implicitly induces slices and detour
charges. Simultaneously, we will use Algorithm 3.1 to toss coins. Inductively, we will
maintain the invariant that \{ Y (Q)\} Q\in \scrQ and \{ Z(Q)\} Q\in \scrQ are no less than \{ X(Q)\} Q\in \scrQ
and \{ S(Q)\} Q\in \scrQ (respectively) coordinatewise.

In the beginning \{ X(Q)\} Q\in \scrQ = \{ Y (Q)\} Q\in \scrQ = \{ 0\} Q\in \scrQ and \{ S(Q)\} Q\in \scrQ =
\{ Z(Q)\} Q\in \scrQ = \{ 1\} Q\in \scrQ . Consider round j, where the cluster Vj is created for the
terminal tj . If Rj < rvj , then nothing happens, and the invariant holds. Else,
Rj \geq rvj , we will make a coin toss from the BQj

box. Let p\prime be the probability that
not all of Sj joins Vj . By Claim 4.1, p\prime \leq p. If indeed not all of Sj joins Vj , the toss

result is set to 0. Otherwise, with probability p - p\prime

1 - p\prime the toss is set to 0. Note that the

probability of 0 is exactly p\prime \cdot 1 + (1 - p\prime) \cdot p - p\prime

1 - p\prime = p.
Next we argue that the invariant is maintained in either case. If not all of Sj joins

Qj , then S(Qj) might increase by at most one, while the number of active coins ZQj

increases by exactly one. Otherwise, all of Sj joins Qj . In this case S(Qj) necessarily
decreases by at least one, while ZQj

might either decrease or increase by one. For the
charge parameter, X(Qj) might increase by at most one, while the number of inactive
coins Y (Qj) increases by exactly one. For every Q\prime \not = Qj , \scrS (Q\prime) and X(Q\prime) might

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 261

only decrease, while ZQ\prime and Y (Q\prime) stay unchanged. We conclude that the invariant
holds after the construction of the cluster Vj .

Intuitively speaking, creating a cluster for a terminal tj is a global processes that
can involve many slices in different terminals, the crux being that only the interval
Qj is charged, and only the slice Sj might get splitted. For all other intervals, charges
can only get erased and slices eliminated. The process of coin tosses in the boxes
imitates charge and slice counting, while ignoring the potential savings.

At the end of the algorithm (when no slices are left), we might still have some
active coins. In this case we will simply toss coins until no active coins remain (note
that this indeed happens with probability 1). Note that by doing so \{ Y (Q)\} Q\in \scrQ can

only grow coordinatewise. As the marginal distribution on \{ \~Y (Q)\} Q\in \scrQ is exactly
identical to the original one, the claim follows.

4.2.2. Replacing coins with exponential random variables. Our next step
is to replace each Y (Q) with exponential random variable. This replacement will
make the use of concentration bounds more convenient. Consider some box BQ. An
equivalent way to describe the probabilistic process in BQ is the following. Take a
single coin with failure probability p, and toss this coin until the number of successes
exceeds the number of failures. The total number of tosses is exactly \~Y (Q). Note
that \~Y (Q) is necessarily odd. Next we bound the probability that \~Y (Q) \geq 2m + 1
for m \geq 1. This is obviously upper bounded by the probability that in a series of
2m tosses we had at least m failures (as otherwise the process would have stopped

earlier). Let \chi i be an indicator for a failure in the ith toss, and \chi =
\sum 2m

i=1 \chi i. Note
that \BbbE [\chi] = 2m \cdot p. A bound on \chi follows by the Chernoff inequality.

Fact 1 (Chernoff inequality). Let X1, . . . , Xn be independent and identically
distributed (i.i.d.) indicator variables each with probability p. Set X =

\sum
i Xi and

\mu = \BbbE [X] = np. Then for every \delta \leq 2e - 1, Pr [X \geq (1 + \delta)\mu] \leq exp(- \mu \delta 2/4).

Pr
\Bigl[
\~Y (Q) \geq 2m+ 1

\Bigr]
\leq Pr [\chi \geq m] = Pr

\biggl[
\chi \geq

\biggl(
1 +

\biggl(
1

2p
 - 1

\biggr) \biggr)
\BbbE [\chi]

\biggr]
\leq exp

\Biggl(
 - 2m \cdot p \cdot

\biggl(
1

2p
 - 1

\biggr) 2

/4

\Biggr)
= exp

\biggl(
 - 9

40
m

\biggr)
\leq exp

\biggl(
 - 1

5
m

\biggr)
.

We conclude that the distribution of \~Y (Q) is dominated by 1 + \sansE \sansx \sansp (10) (as for W \sim
\sansE \sansx \sansp (10), Pr [1 +W \geq 2m+ 1] = exp

\bigl(
 - m

5

\bigr)
). Let (\{ W (Q)\} Q\in \scrQ) be i.i.d. random

variables distributed according to \sansE \sansx \sansp (10); since all the boxes are independent and f
is linear and monotone coordinatewise, we conclude as follows.

Claim 4.4. For every \alpha \in \BbbR +,

Pr

\biggl[
f

\biggl(\Bigl\{
\~Y (Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq \alpha

\biggr]
\leq Pr

\Bigl[
f
\Bigl(
\{ 1\} Q\in \scrQ

\Bigr)
+ f

\Bigl(
\{ W (Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
.

Proof. Set \varphi = | \scrQ | . Let Q1, Q2, . . . , Q\varphi be some arbitrarily fixed ordering of the
intervals. For s \in [\varphi], set f\setminus \{ s\} (x1, . . . , xs - 1, xs+1, . . . , x\varphi) =

\sum
i\in [\varphi]\setminus \{ s\} xi \cdot L+(Qi).

When integrating over the appropriate measure space, it holds that

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

262 ARNOLD FILTSER

Pr
\Bigl[
f
\Bigl(
\~Y (Q1), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]
=

\int
\beta

Pr
\Bigl[
f\setminus \{ 1\}

\Bigl(
\~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
= \beta

\Bigr]
\cdot Pr

\Bigl[
\~Y (Q1) \cdot L+(Q1) \geq \alpha - \beta

\Bigr]
d\beta

\leq
\int
\beta

Pr
\Bigl[
f\setminus \{ 1\}

\Bigl(
\~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
= \beta

\Bigr]
\cdot Pr

\bigl[\bigl(
1 +W (Q1)

\bigr)
\cdot L+(Q1) \geq \alpha - \beta

\bigr]
d\beta

= Pr
\Bigl[
f
\Bigl(
1 +W (Q1), \~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]
\leq Pr

\Bigl[
f
\Bigl(
1 +W (Q1), 1 +W (Q2), \~Y (Q3), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]
\leq \cdot \cdot \cdot \leq Pr

\bigl[
f
\bigl(
1 +W (Q1), . . . , 1 +W (Q\varphi)

\bigr)
\geq \alpha

\bigr]
= Pr

\bigl[
f (1, . . . , 1) + f

\bigl(
W (Q1), . . . ,W (Q\varphi)

\bigr)
\geq \alpha

\bigr]
.

4.2.3. Concentration. Set \Delta = dG(t, t
\prime). It holds that

\Delta \leq
\sum
Q\in \scrQ

L+(Q) \leq 2\Delta ,

as every edge in Pt,t\prime is counted at least once, and at most twice in this sum. In
particular f(\{ 1\} Q\in \scrQ) \leq 2\Delta . Recall that by our modification step, every edge in Pt,t\prime

is of weight at most cw \cdot \Delta . In particular, for everyQ \in \scrQ , L+(\scrQ) \leq L(\scrQ)+2cw \cdot \Delta . For
every vertex v on Pt,t\prime , it holds that D(v) \leq min \{ dG(v, t), dG(v, t\prime)\} \leq \Delta

2 . Therefore
for every Q \in \scrQ ,

L+(\scrQ) \leq L(\scrQ) + 2cw \cdot \Delta
(4.1)

\leq cint\delta \cdot D(Q) + 2cw \cdot \Delta \leq
\biggl(
cint\delta

2
+ 2cw

\biggr)
\cdot \Delta = cint\delta \cdot \Delta .

Let \~W (Q) \sim L+(Q) \cdot \sansE \sansx \sansp (10). In particular, \~W (Q) \sim \sansE \sansx \sansp (10 \cdot L+(Q)). Set
\~W =

\sum
Q\in \scrQ

\~W (Q). Then f(\{ W (Q)\} Q\in \scrQ) is distributed exactly as \~W . The maximal

mean among the \~W (Q)'s is \lambda M = maxQ\in \scrQ 10 \cdot L+(Q) \leq 10 \cdot cint\delta \cdot \Delta . The mean of
\~W is \mu =

\sum
Q\in \scrQ 10 \cdot L+(Q) \leq 20\Delta . Set ccon = 1

2 (con for concentration). Using
Claim 4.3, Claim 4.4, and Lemma 2.1, we conclude

Pr

\biggl[
f

\biggl(\Bigl\{
\~X(Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq (ccon + 42)\Delta

\biggr]
\leq Pr

\biggl[
f

\biggl(\Bigl\{
\~Y (Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq (ccon + 42)\Delta

\biggr]
\leq Pr

\Bigl[
f
\Bigl(
\{ W (Q)\} Q\in \scrQ

\Bigr)
\geq (ccon + 42)\Delta - f

\Bigl(
\{ 1\} Q\in \scrQ

\Bigr) \Bigr]
\leq Pr

\Bigl[
\~W \geq (ccon + 40)\Delta

\Bigr]
\leq exp

\biggl(
 - 1

2\lambda M
((ccon + 40)\Delta - 2\mu)

\biggr)
\leq exp

\biggl(
 - 1

2
\cdot 1

10cint\delta \Delta
\cdot ccon\Delta

\biggr)
= exp

\biggl(
 - ccon
20 \cdot cint\delta

\biggr)
= k - 3 .

Note that ccon \leq 1, thus Lemma 4.2 follows.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 263

4.3. Bounding the distortion. Denote by \scrE fBig the event that for some pair of
terminals t, t\prime , f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime).2 By Lemma 4.2 and the union bound,

Pr [\scrE fBig] \leq
\bigl(
k
2

\bigr)
\cdot k - 3 < 1

2k .
Let \scrE B be the event that for some j, Rj > cd, where cd = e2. Note that if \scrE B does

not hold, then every vertex v joins to a cluster Vj such that dG(v, tj) \leq cd \cdot D(v).

Claim 4.5. Pr[\scrE B] \leq 1
2k .

Proof. Let \scrE B
j be the event that Rj > cd. It holds that

Pr[\scrE B

j] = Pr[gj \geq log1+\delta cd] \leq (1 - p)log1+\delta cd - 1 \leq (1 - p)
2
\delta - 1 \leq 1

k3
,

where the second inequality holds as log1+\delta cd = ln cd
ln 1+\delta \geq

2
\delta . By the union bound,

Pr[\scrE B] \leq 1
k2 \leq 1

2k as required.

Lemma 4.6. Assuming \scrE B and \scrE fBig, for every pair of terminals t, t\prime , dM (t, t\prime) \leq
O(log k) \cdot dG(t, t\prime).

Proof. Fix some t, t\prime . By the end of Algorithm 3.1, all the vertices in Pt,t\prime =
\{ t = v0, . . . , v\gamma = t\prime \} are divided into consecutive detours3 \scrD \ell 1 , . . . ,\scrD \ell k\prime . The detour
\scrD \ell j was constructed at round \ell j by the terminal t\ell j . The detour \scrD \ell j was charged upon
the interval Q\ell j , which contains the vertex v\ell j . The leftmost vertex in \scrD \ell j is called
a\ell j , while the rightmost vertex is called b\ell j . In particular, for every 1 \leq j \leq k\prime - 1,
there is an edge in G between b\ell j and a\ell j+1 , and therefore there is an edge between
t\ell j to t\ell j+1 in the terminal-centered minor M . As t = v0 joins the cluster of itself,
necessarily t\ell 1 = t. Similarly t\ell k\prime = t\prime . See Figure 4.2 for an illustration. Using the
triangle inequality, we conclude

Pt,t′

t

t`2

t`3

t`4

t′

t`5

v`2

v`3
v`4

v`5

= t`1
t`6 =
v`6 == v`1

b`1a`2 a`3

a`4
a`5

a`6
b`2

b`3

= b`4

b`5

= a`1
b`6 =

Fig. 4.2. The vertices Pt,t\prime = v0 . . . v\gamma are divided into consecutive detours \scrD \ell 1 , . . . ,\scrD \ell 6 .
t\ell 1 , t\ell 2 , t\ell 3 , t\ell 4 , t\ell 5 , t\ell 6 is a path in the terminal-centered minor M of G (induced by V1, . . . , Vk).
The weight of the edge \{ t\ell j , t\ell j+1

\} in M is dG(t\ell j , t\ell j+1
), which is bounded by dG(t\ell j , v\ell j) +

dG(v\ell j , v\ell j+1
) + dG(v\ell j+1

, t\ell j+1
).

2We abuse notation here and use the same \{ \~X(Q)\} Q\in \scrQ for all terminals.
3Note that we consider only detours that inflict a charge by the end of the algorithm. Therefore

the detours are disjoint and every vertex in Pt,t\prime belongs to some detour.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

264 ARNOLD FILTSER

dM (t, t\prime) \leq
k\prime - 1\sum
j=1

dG(t\ell j , t\ell j+1) \leq
k\prime - 1\sum
j=1

\bigl[
dG(t\ell j , v

\ell j) + dG(v
\ell j , v\ell j+1) + dG(v

\ell j+1 , t\ell j+1)
\bigr]

\leq
k\prime - 1\sum
j=1

dG(v
\ell j , v\ell j+1) + 2

k\prime \sum
j=1

dG(t\ell j , v
\ell j)

\leq dG(t, t
\prime) + 2

k\prime \sum
j=1

cd \cdot D(v\ell j),

where the last inequality follows by our assumption \scrE B. By the definition of D(Q\ell j),
inequality (4.1) and the triangle inequality, D(v\ell j) \leq D(Q\ell j) + L(Q\ell j) \leq (1

cint\delta
+ 1)

L+(Q\ell j) \leq 2
cint\delta
\cdot L+(Q\ell j). Using the assumption \scrE fBig, we conclude

dM (t, t\prime) \leq dG(t, t
\prime) + 2cd

k\prime \sum
i=1

2

cint\delta
\cdot L+(Q\ell i)(4.6)

= dG(t, t
\prime) +

4cd
cint\delta

\sum
Q\in \scrQ

\~X(Q) \cdot L+(Q)

= dG(t, t
\prime) +

4cd
cint\delta

\cdot f
\Bigl(
\{ \~X(Q)\} Q\in \scrQ

\Bigr)
= O (ln k) \cdot dG(t, t\prime) .

As Pr
\bigl[
\scrE B \wedge \scrE fBig

\bigr]
\geq 1 - (Pr [\scrE B] + Pr [\scrE fBig]) \geq 1 - 1

2k -
1
2k = 1 - 1

k , Theorem 3.1
follows.

5. Fast-Relaxed-Voronoi algorithm. In this section, we describe a slightly
modified version of the Relaxed-Voronoi algorithm. Then we will show how to
implement the modified algorithm in O(m log n) time.

Given two terminals ti, tj , and two clusters Vi, Vj \subseteq V s.t. ti (resp., tj) is the
unique terminal in Vi (resp., Vj), dG,Vi+Vj (ti, tj) denotes the length of the shortest
path between ti and tj in G[Vi \cup Vj] that uses exactly one crossing edge between Vi

and Vj . See Figure 5.1 for an illustration.
In order to allow fast implementation, and avoid costly shortest path computa-

tions, we will introduce several modifications:
\bullet In Algorithm 3.1, line 9, we will modify the edge weights in the induced
terminal-centered minor. The weight of the edge \{ ti, tj\} (if exists) will be
dG,Vi+Vj

(ti, tj) instead of dG(ti, tj).

1

2
1

10

3

t1 t2
V1

V2
3

7
b

c

t3

a

V3

Fig. 5.1. t1, t2, t3 are terminals. The different color areas describes the terminal partition.
The shortest path in G from t1 to t2 is t1, a, b, t2 and has length dG(t1, t2) = 10. Note that all the
vertices in this path are in V1 \cup V2. Nevertheless, the shortest path from t1 to t2 that uses only one
crossing edge from t1 to t2 is \{ t1, b, t2\} and has length dG,V1+V2 (t1, t2) = 12.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 265

Algorithm 5.1. M = Fast-Relaxed-Voronoi(G = (V,E,w),K = \{ t1, . . . , tk\}).
1: Set \delta = 1

20 ln k and p = 1
5 .

2: Set V\bot \leftarrow V \setminus K. // V\bot is the currently unclustered vertices.
3: for j from 1 to k do
4: Choose independently at random gj distributed according to \sansG \sanse \sanso (p).
5: Set Rj \leftarrow (1 + \delta)gj .
6: Set Vj \leftarrow Fast-Create-Cluster(G,V\bot , tj , Rj).
7: Remove all the vertices in Vj from V\bot .
8: end for
9: LetM be the minor ofG created by contracting all the internal edges in V1, . . . , Vk.

The weight of the edge \{ ti, tj\} (if it exists) is defined to be dG,Vi+Vj (ti, tj).
10: return M .

Algorithm 5.2. Vj = Fast-Create-Cluster(G = (V,E,w), V\bot , tj , Rj).

1: Set Vj \leftarrow \{ tj\} .
2: Set U \leftarrow \emptyset . // U is the set of vertices already denied from Vj.
3: Set N to be all the neighbors of tj in V\bot .
4: while N \not = \emptyset do
5: Let v \in N be the vertex with minimal dG[Vj\cup \{ v\}](v, tj).
6: Remove v from N .
7: if dG[Vj\cup \{ v\}](v, tj) \leq Rj \cdot D(v) then
8: Add v to Vj .
9: Add all the neighbors of v in V\bot \setminus U to N .

10: else
11: Add v to U .
12: end if
13: end while
14: return Vj .

\bullet In Algorithm 3.2, line 5, instead of extracting an arbitrary vertex v from N ,
we will extract the closest vertex v to tj in N w.r.t. the shortest path metric
induced by Vj \cup \{ v\} (i.e., v \in N with minimal dG[Vj\cup \{ v\}](v, tj), and note that
it is a different graph for each vertex).
Similarly, in line 7, instead of checking whether dG(v, tj) \leq Rj \cdot D(v), we will
check whether dG[Vj\cup \{ v\}](v, tj) \leq Rj \cdot D(v).

The pseudocode of the modified algorithm appears in Algorithms 5.1 and 5.2.

Theorem 5.1. With probability 1 - 1
k , for the minor graph M returned by Algo-

rithm 5.1, it holds that for every two terminals t, t\prime , dM (t, t\prime) \leq O (log k) \cdot dG(t, t\prime).
Moreover, executing Algorithm 5.1 takes O(m+min \{ m,nk\} \cdot log n) time.

We prove Theorem 5.1 in several steps. First, in subsection 5.1 we show that
Algorithm 5.1 indeed returns a terminal partition and that similarly to Algorithm 3.1,
the edge subdivision does not change the outcome of the algorithm. Then in subsec-
tion 5.2 we'll go through the analysis provided in section 4 and verify that it still goes
through for Algorithm 5.1 as well. Finally, in subsection 5.3 we describe an efficient
implementation of Algorithm 5.1.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

266 ARNOLD FILTSER

5.1. Basic properties. Consider the Fast-Create-Cluster procedure (Al-
gorithm 5.2). This is a Dijkstra-like algorithm. For every vertex v, set \ell v =
dG[Vj\cup \{ v\}](v, tj). Note that for a vertex v, the value \ell v is decreasing throughout
the algorithm as the set Vj grows. Note also that \ell v is defined for all the vertices (but

simply has value \infty for vertices out of Vj \cup N). Denote by \^\ell v the value \ell v at the time
v is extracted from N at line 6 of Algorithm 5.2 (if such an occasion indeed occurs).

Claim 5.2. Consider the values \^\ell v of the vertices, extracted from N at line 6 of
Algorithm 5.2. Then these values are nondecreasing. That is, if v was extracted before
v\prime , then \^\ell v \leq \^\ell v\prime .

Moreover, after v is extracted, the value \ell v remains unchanged till the end of the
algorithm.

Proof. The proof of the first property is by induction on the execution of the
algorithm. Let v, v\prime be a pair of vertices such that v\prime was extracted from N right after
v. It will be enough to show that \^\ell v \leq \^\ell v\prime . Consider the time when v was extracted
from N . Let \~Vj denote the set Vj at that time. By minimality, for every u \in N ,
\^\ell v = dG[\~Vj\cup \{ v\}](v, tj) \leq dG[\~Vj\cup \{ u\}](u, tj). If the value \ell v\prime did not change, we already

have \^\ell v\prime = dG[\~Vj\cup \{ v\prime \}](v
\prime , tj) \geq \^\ell v (as necessarily v\prime \in N because it is extracted next).

Otherwise, if the value \ell v\prime decreased, then necessarily v joined Vj and the shortest

path from from tj to v\prime (in \~Vj \cup \{ v, v\prime \}) goes through v (as otherwise \ell v\prime would

not have changed). In particular, \^\ell v\prime = dG[\~Vj\cup \{ v,v\prime \}](tj , v
\prime) = dG[\~Vj\cup \{ v,v\prime \}](tj , v) +

dG[\~Vj\cup \{ v,v\prime \}](v, v
\prime) > \^\ell v.

For the second property (that after extraction, \ell v remains unchanged), seeking
contradiction, assume that \ell v is updated after some u is extracted from N and joined
Vj . This implies that the new shortest path from tj to v goes through u and thus is

of length greater than \^\ell u, a contradiction.

Now we are ready to show that Algorithm 5.1 indeed returns a terminal partition
(that is, reprove Lemma 3.2).

Lemma 5.3. The sets V1, . . . , Vk constructed by Algorithm 5.1 form a terminal
partition.

Proof. It is clear that the clusters V1, . . . , Vj are disjoint and that each cluster is
connected. It will be enough to argue that every vertex v \in V is clustered. Following
along the lines of the proof of Lemma 3.2, let tj be the closest terminal to v, and let
P = \{ tj = u0, u1, . . . , us = v\} be the shortest path from tj to v. Let ui\prime be the first
vertex from Pt,t\prime to be clustered during the algorithm (u0 = tj \in Vj , so at least one
vertex in Pt,t\prime is clustered). Let Vj\prime be the cluster ui\prime joins to. We argue by induction
on i \geq i\prime that ui also joins Vj\prime . This will imply that us = v joins Vj\prime and thus is
clustered.

Suppose ui joins Vj\prime . Denote by V i
j\prime the set Vj\prime right after ui joins it. As ui joins

Vj\prime , dG[V i
j\prime]
(ui, tj\prime) \leq Rj\prime \cdot D(ui). In particular, at that stage

\ell ui+1 = d
G
\Bigl[
V i
j\prime \cup \{ ui+1\}

\Bigr] (ui+1, tj\prime) \leq d
G
\Bigl[
V i
j\prime

\Bigr] (ui, tj\prime) + w (\{ ui, ui+1\})

\leq Rj\prime \cdot D(ui) + dG(ui, ui+1) \leq Rj\prime \cdot D(ui+1).

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 267

As at least one neighbor (ui) of ui+1 joins Vj\prime , ui+1 joins N at some stage of the

algorithm. In particular, by Claim 5.2, when ui+1 will be extracted from N , \^\ell ui+1
\leq

Rj\prime \cdot D(ui+1), and thus ui+1 will join Vj\prime as required.

We will use the modified graph \^G (with the subdivided edges) for the distortion
analysis. In order to prove validity, we will argue that Claim 3.3 still holds.

Claim 5.4. In Claim 3.3, if we replace Algorithm 3.1 with Algorithm 5.1, the
claim still holds.

Proof. We follow the lines of the proof of Claim 3.3. Let V1, . . . , Vk (resp.,
\~V1, . . . , \~Vk) be the terminal partition induced by Algorithm 5.1 on G (resp., \~G). We
argue that for all j, Vj = \~Vj \setminus \{ ve\} . As previously, this will imply that the terminal-
centered minors have the same edges set. As ve only subdivides the edge e, it will
also hold for all i, j that dG,Vi+Vj

(ti, tj) = dG, \~Vi+\~Vj
(ti, tj), and thus the edge weights

in both minors will also be identical. In particular, the claim will follow.
Suppose w.l.o.g. that v joins Vj while u is still unclustered. Denote by V \prime

j (resp.,
\~V \prime
j) the set Vj (resp., \~Vj) right after the clustering of v at the execution of Algo-

rithm 5.1 on G (resp., \~G). As previously, for all j\prime \prime < j, Vj\prime \prime = \~Vj\prime \prime , while V \prime
j = \~V \prime

j .

Recall that \^\ell v = dG[V \prime
j](tj ,v)

(resp.,
\~\^\ell v) denotes the distance between tj to v at

the time of the extraction of v from N (resp. \~N). Note that \^\ell v =
\~\^\ell v. As v joins

Vj , necessarily \^\ell v \leq Rj \cdot D(v). In the rest of the proof we consider the following
cases:

\bullet \^\ell u > Rj \cdot D(v): In this case u will not join Vj . As ve has edges only to

v and u, ve has no impact on any other vertex. In particular, \^\ell u \leq \~\^\ell u.
Therefore \~Vj will be constructed in the same manner as Vj (up to maybe
containing ve). Note that all the other clusters will not be affected, as if
ve remained unclustered, it becomes a leaf. We conclude that for every j\prime ,
Vj\prime = \~Vj\prime \setminus \{ vu\} .

\bullet \^\ell u \leq Rj \cdot D(v): Recall that \omega is the weight of e. There are two subcases:

-- \^\ell u = \^\ell v + \omega . After v joins \~Vj , the label of ve is updated to \^\ell ve \leftarrow
\~\^\ell v + \omega

2 .
It holds that

\~\^\ell ve \leq \~\ell ve =
\~\^\ell v +

\omega

2
= \^\ell v +

\omega

2
=

1

2

\Bigl(
\^\ell v + \^\ell u

\Bigr)
\leq 1

2
\cdot Rj (D(v) +D(u)) \leq Rj \cdot D(ev) .

In particular, ve will join \~Vj , and \~\ell u will be updated to
\~\^\ell ve +

\omega
2 =

\~\^\ell v + \omega .
From this point on, the two algorithms will behave in the same way. In
particular, for every j\prime \prime \not = j, Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .

-- \^\ell u < \^\ell v + \omega . It holds that u joins Vj . However, the shortest path in Vj

from tj to u did not goes through v. Therefore, as ve did not affect any
vertex (other than v, u), the execution will proceed in the same way in
both algorithms, and u will join \~Vj . As each cluster is connected and all

the vertices are clustered, necessarily ve will join \~Vj as well. We conclude

that for every j\prime \prime \not = j, Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

268 ARNOLD FILTSER

5.2. Distortion analysis. We will follow the distortion analysis of Algo-
rithm 3.1 given in section 4. Consider two terminals t, t\prime . We will use the exact
same notation (the reader is referred to Appendix C in order to recall notation and
definitions). We start by reproving Claim 4.1.

Claim 5.5. During the execution of Algorithm 5.1, assuming Rj \geq rvj , all of Sj

joins Vj with probability at least 1 - p.

Proof. Denote Sj = \{ uj - q\prime , . . . , uj , . . . , uj+q\} \subseteq Qj \subseteq Pt,t\prime where vj = uj .
Denote by V \prime

j the cluster Vj right after uj joins. As uj joined, necessarily
dG[V \prime

j
\cup \{ uj\}]

(uj ,tj)

D(uj)
\leq rvj \leq Rj . We will denote by \=Vj the cluster Vj at the end of

the algorithm. Following inequality (4.3), with probability 1 - p, Rj \geq (1+ \delta)rvj . We
will show that if this event indeed occurs, then Sj \subseteq \=Vj .

We argue by induction on i that uj+i \in \=Vj . The proof that uj - i \in \=Vj is sym-
metric. Assume that \{ ui, ui+1, . . . , uj+i - 1\} \subseteq \=Vj . Following inequalities (4.4) and
(4.5), L(Qj) \leq 2cint\delta \cdot D(vj) and D(uj+i) \geq D(vj) (1 - 2cint\delta). As ui+j - 1 \in \=Vj ,
uj+i necessarily joins N at some stage. In particular, at the time uj+i was extracted
from N ,

\^\ell uj+i
= dG[\=Vj\cup \{ uj+i\}](tj , uj+i) \leq dG[V \prime

j]
(tj , v

j) + L(Qj) \leq dG[V \prime
j]
(tj , v

j) (1 + 2cint\delta) ,

where the first equality follows by Claim 5.2, as \^\ell uj+i
remains unchanged after ex-

traction. We conclude that

\^\ell uj+i

D(uj+i)
\leq

dG[V \prime
j]
(tj , v

j) (1 + 2cint\delta)

D(vj) (1 - 2cint\delta)
\leq

dG[V \prime
j]
(tj , v

j)

D(vj)
(1 + 3 \cdot 2cint\delta) \leq (1 + \delta)Rj .

We conclude that uj+i joins Vj as required.

In subsection 4.2 we defined charge function f(\{ xQ\} Q\in \scrQ) =
\sum

Q\in \scrQ X(Q)\cdot L+(Q),
and in Lemma 4.2 we upper bounded its value (w.h.p.). In that analysis we ex-
ploit only Claim 4.1. Replacing it with Claim 5.5, the analysis still hold. That
is, Pr[f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime)] \leq k - 3. Denote by \scrE fBig the event that for

some pair of terminals t, t\prime , f(\~X(Q1), . . . , \~X(Q\varphi)) \geq 43 \cdot dG(t, t\prime) . As previously, by
union bound Pr [\scrE fBig] < 1

2k . Denote by \scrE B the event that for some j, Rj > cd. By

Claim 4.5, Pr[\scrE B] \leq 1
2k . We argue that assuming \scrE B and \scrE fBig (which happens with

probability 1 - 1
k), the distance between every pair of terminals t, t\prime in the minor

returned by Algorithm 5.1 bounded by O(log k) \cdot dG(v, u). This will conclude the
proof of the distortion argument in Theorem 5.1. Recall that in contrast to Algo-
rithm 3.1, the weight of the edge \{ ti, tj\} (if it exists) is dG,Vi+Vj (ti, tj) rather than
dG(ti, tj); this will force some changes to our analysis. Recall the notation we used
in Lemma 4.6: the path Pt,t\prime is divided into consecutive detours \scrD \ell 1 , . . . ,\scrD \ell k\prime . The
leftmost (resp., rightmost) vertex in \scrD \ell j is denoted by a\ell j (resp., b\ell j). Both a\ell j , b\ell j
belong to V\ell j , the cluster of t\ell j . In particular, the graph G contains an edge between
b\ell j to a\ell j+1 . Recall also that t\ell 1 = t and t\ell \prime k = t\prime (as each terminal covers itself). It
holds thatD

ow
nl

oa
de

d
06

/2
3/

19
 to

 1
32

.7
2.

42
.2

07
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 269

dM (t, t\prime) \leq
k\prime - 1\sum
j=1

dG,V\ell j
+V\ell j+1

(t\ell j , t\ell j+1
)

\leq
k\prime - 1\sum
j=1

\Bigl[
dG[V\ell j]

(t\ell j , b\ell j) + dG(b\ell j , a\ell j+1
) + dG[V\ell j+1]

(a\ell j+1
, t\ell j+1

)
\Bigr]

\leq cd \cdot
k\prime - 1\sum
j=1

\bigl[
dG(t\ell j , b\ell j) + dG(b\ell j , a\ell j+1

) + dG(a\ell j+1
, t\ell j+1

)
\bigr]

\leq cd \cdot
k\prime - 1\sum
j=1

\bigl[
dG(t\ell j , v

\ell j) + dG(v
\ell j , b\ell j) + dG(b\ell j , a\ell j+1

)

+ dG(a\ell j+1 , v
\ell j+1) + dG(v

\ell j+1 , t\ell j+1)
\bigr]

\leq cd \cdot

\left(k\prime - 1\sum
j=1

dG(v
\ell j , v\ell j+1) + 2

k\prime \sum
j=1

dG(t\ell j , v
\ell j)

\right)
\leq cd \cdot

\left(dG(t, t
\prime) + 2cd \cdot

k\prime \sum
j=1

D(v\ell j)

\right)
= O (ln k) \cdot dG(t, t\prime) .

The third inequality follows by our assumption \scrE B, as for every index j and vertex
v \in Vj , it holds that dG[Vj](tj , v) \leq cd \cdot D(v) \leq cd \cdot dG(tj , v). The fifth inequality follows

as all v\ell j , b\ell j , a\ell j+1
, v\ell j+1 lie on the same shortest path Pt,t\prime . The sixth inequality

follows by \scrE B as dG(t\ell j , v
\ell j) \leq dG[V\ell j]

(t\ell j , v
\ell j) \leq cd \cdot D(v\ell j). The equality follows by

inequality (4.6) and \scrE fBig.

5.3. Runtime. For the implementation of Algorithm 5.1 and the
Fast-Create-Cluster procedure we will use two basic data structures. The
first one is a binary array to determine set membership of the vertices. It is folklore
(see, for example, [1]) that an array could be initialized in constant time to be the
all 0 array (that is, the empty set). Changing entry (that is, adding or deleting an
element) also takes constant time. The second data structure is the Fibonacci heap
(see [22]). Here each element has a key (some real number), and we can add a new
element or decrease the value of the key in constant time. Finding the minimal
element in the heap and deleting it takes O(log h) time (assuming there are currently
h elements in the heap).

Before the execution of Algorithm 5.1, we compute the values D(v) for all v \in V .
This is done using an auxiliary graph G\prime where we add new vertex s with edges of
weight 0 to all the terminals. Note that for every vertex v, the distance from s exactly
equals D(v). Thus we can simply run the Dijkstra algorithm from s to determine D(v)
for all v \in V . The runtime is O(m+ n log n) (see [22]).

Next we give a detailed implementation of the Fast-Create-Cluster procedure.
The sets Vj , U , and V\bot are stored using the arrays described above (V\bot will be a
global variable). The set N will be stored using the Fibonacci heap, where the key
value of v \in N will be \ell v (i.e., dG[Vj\cup \{ v\}](v, tj)). Denote by \scrN j all the elements that
belong to N at any stage of the execution of the Fast-Create-Cluster procedure
(which created Vj). Let mj denote the number of edges incident on vertices of Vj .

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

270 ARNOLD FILTSER

Each iteration of the while loop starts by deleting an element v with minimal key
(of value \^\ell v) from N (O(log | \scrN j |) time). Then we examine whether to add v to Vj

(in O(1) time). If v is rejected, we add v to U (in O(1) time). Otherwise, v is
added to Vj . In the latter case we go over each neighbor u of v. If u \in U we do
nothing. If u \in N , its key \ell u is updated to be min\{ \ell u, \ell v + w(\{ v, u\})\} . Finally, if
u \in V\bot \setminus (U \cup N), then u is added to N with the key \ell u \leftarrow \ell v + w(\{ v, u\}). It is easy
to verify that all the keys are indeed maintained with the correct values. Note that
all this processing for u takes only O(1) time. In particular, processing all neighbors
throughout the Fast-Create-Cluster procedure takes O(mj) time. All the deletion
of elements from the heap N takes O(| \scrN j | log | \scrN j |) time.

Next we bound the total cost of the k calls to the Fast-Create-Cluster proce-
dure. | \scrN j | can be bounded from above by both mj and n. Moreover,

\sum
j mj \leq 2m,

as every edge is incident on only two vertices. We provide two upper bounds on the
running time:

O(n) +

k\sum
j=1

O(mj + | \scrN j | log | \scrN j |) \leq O

\left(m+

k\sum
j=1

mj log n

\right) = O(m log n) ,

O(n) +

k\sum
j=1

O(mj + | \scrN j | log | \scrN j |) \leq O

\left(m+

k\sum
j=1

n log n

\right) = O(m+ nk log n) .

Thus the total running time of these k calls is bounded by O(m + min \{ m,nk\} \cdot
log n). Finally we bound the total runtime of Algorithm 5.1 without the calls to the
Create-Cluster. It is straightforward that up line 9, where we create the minor M
given the clusters, all computations took O(n) time.4 Using Claim 5.2, by the end of

the for loop in Algorithm 5.1, for every j and v \in Vj it holds that \^\ell v = dG[Vj](tj , v). In
order to create the minor graph M , we go over all the edges iteratively, for every edge
\{ v, u\} \in E, such that v \in Vj , u \in Vi, and i \not = j. We add an edge \{ ti, tj\} to M (if it
does not exist already). The weight of the edge updated to be the minimum between

the current weight (\infty if it does not exist yet) and \^\ell v +w(\{ v, u\})+ \^\ell u (the keys at the
time of extraction from N). It is straightforward that by the end of this procedure
we will indeed compute the minor M , and each edge \{ ti, tj\} in M will have weight
dG,Vi+Vj

(ti, tj). This iterative process takes O(m) time. Theorem 5.1 now follows.

6. Lower bounds on the performance of the algorithms. Chan et al. [9]
gave a lower bound of 8 for the distortion in the SPR problem. This lower bound has
not been improved since. This section is dedicated to lower bounding the performance
of the various algorithms which were suggested for the problem. That is, while we
do not provide better lower bounds for the SPR problem itself, we are able to lower
bound the performance of the algorithms used so far.

In subsection 6.1 we prove that our analysis of the Relaxed-Voronoi algorithm
(Algorithms 3.1 and 5.1) is asymptotically tight. That is, there is a graph family
on which the achieved distortion is \Theta (log k). Next, in subsection 6.2, we provide a
lower bound on the performance of the Ball-growing algorithm studied by [27, 11,
20]. Specifically, we provide (the same) graph family on which the Ball-growing

algorithm incurs \Omega (
\surd
log k) distortion. Recall that in [20], the author proved that the

Ball-growing algorithm finds a minor with distortion O(log k). That is, while the

4In fact, the sampling of g1, . . . , gk takes O(k) time only w.h.p. But we will ignore this issue.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 271

analysis of the Ball-growing algorithm still might be improved, it cannot be pushed
further than \Omega (

\surd
log k).

First, we show that the expected distortion incurred by the minor returned by
the algorithms is large. Then, we deduce that with constant probability the (usual
worst-case) distortion is also large. Formally, both algorithms are randomized and
thus can be viewed as producing a distribution \scrD over graph minors. Given such

distribution \scrD , the expected distortion of the pair t, t\prime is \BbbE M\sim \scrD
\bigl[dM (t,t\prime)
dG(t,t\prime)

\bigr]
. The overall

expected distortion is the maximal expected distortion among all terminal pairs.
A final remark. Both algorithms used an arbitrary order over the terminals, in

contrast to similar algorithms for other problems [8, 19] which consider a random
order. Our lower bounds will still hold even if one replaces the arbitrary order with a
random one.

6.1. Lower bound on the performance of the Relaxed-Voronoi algo-
rithm. The following theorem provides a lower bound on the expected distortion
incurred by Algorithm 3.1. The graphs which we will use for the lower bound are
trees. As both Algorithm 3.1 and Algorithm 5.1 are identical where the input graph
is a tree, the lower bound will also hold on Algorithm 5.1.

Theorem 6.1. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal set
K of size k such that the expected distortion of the minor returned by Algorithm 3.1
is \Omega (log k).

Proof. We will assume that k is large enough, as otherwise 1 = \Omega (log k) and
hence every graph with k terminals provides a valid lower bound. Let Gk be the
graph described in Figure 1.1 with parameter \epsilon = 14\delta = \Theta (1

log k). Let Xj be an
indicator for the event vj \in Vj , that is, tj covers vj . For Xj to occur, it is enough
that for every i \not = j, dG(ti, vj) > Ri \cdot D(vj). That is, Ri < 1 + | i - j| \cdot \epsilon . By the
definition of Ri,

Pr [Ri \geq 1 + | i - j| \epsilon] = Pr
\bigl[
gi \geq log1+\delta (1 + | i - j| \epsilon)

\bigr]
= (1 - p)\lceil log1+\delta (1+| i - j| \epsilon) - 1\rceil .

For i such that | i - j| < 1
\epsilon , it holds that log1+\delta (1 + | i - j| \epsilon) = ln(1+| i - j| \epsilon)

ln(1+\delta) \geq | i - j| \epsilon /2
\delta ,

while for i such that | i - j| \geq 1
\epsilon , log1+\delta (1 + | i - j| \epsilon) \geq ln 2

ln 1+\delta \geq
1
2\delta . We conclude

Pr [Xi] \geq Pr [\forall j \not =i (Rj < 1 + | i - j| \epsilon)]

\geq 1 -
\sum
j \not =i

Pr [Rj \geq 1 + | i - j| \epsilon]

\geq 1 - 2

\lfloor 1
\epsilon \rfloor \sum

i=1

\Bigl(
(1 - p)

i\epsilon /2
\delta - 1

\Bigr)
 - k (1 - p)

1
2\delta - 1

.

Now,
\sum \lfloor 1

\epsilon \rfloor
i=1 (1 - p)

i\epsilon /2
\delta \leq

\sum \infty
i=1((1 - p)

7
)i \leq

\sum \infty
i=1

1
4i = 1

4
1

1 - 1
4

= 1
3 , while

k (1 - p)
1
2\delta = k

\bigl(
4
5

\bigr) 10 ln k
= k1 - 10 ln 5

4 \leq 1
k . In particular Pr [Xi] \geq 1 - (1 - p) - 1 \cdot \bigl(

2 \cdot 13 + 1
k

\bigr)
= \Omega (1).

Set X =
\sum k - 1

i=2 Xi. By linearity of expectation, \BbbE [X] = \Omega (k). Note that the
distance from t1 to tk in the minor graph Mk equals 2+ (k - 1) \epsilon +2X. We conclude

\BbbE
\biggl[
dMk

(t1, tm)

dGk
(t1, tm)

\biggr]
=

2 + (k - 1) \epsilon + 2\BbbE [X]

2 + (k - 1) \epsilon
=

\Omega (k)

O(k\epsilon)
= \Omega

\biggl(
1

\epsilon

\biggr)
= \Omega (log k) .

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

272 ARNOLD FILTSER

Corollary 6.2. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal
set K of size k such that with constant probability, the distortion incurred by the minor
returned by Algorithm 3.1 is \Omega (log k).

Proof. We will use the graph and notation from the proof of Theorem 6.1. Set

\mu = \BbbE [dMk
(t1,tm)

dGk
(t1,tm)] = \Omega (log k). Note the largest possible distortion is 2k - 2+(k - 1)\epsilon

2+(k - 1)\epsilon = c\cdot \mu
for some constant c \geq 1 (this distortion occurred exactly when each vertex vj belongs

to Vj). Denote by \chi the event that
dMk

(t1,tm)

dGk
(t1,tm) \geq

1
2\mu . Then

\mu = \BbbE
\biggl[
dMk

(t1, tm)

dGk
(t1, tm)

\biggr]
\leq Pr [\chi] \cdot c\mu + (1 - Pr [\chi]) \cdot 1

2
\mu ,

therefore

Pr [\chi] \geq
1 - 1

2

c - 1
2

\geq 1

2c
= \Omega (1) .

Therefore, with constaint probability, the distortion is at least 1
2\mu = \Omega (log k).

6.2. Lower bound on the performance of the Ball-Growing algorithm.
In this subsection we provide a lower bound on the performance of the Ball-Growing
algorithm. For completeness, we give in Appendix B a full description of the
Ball-Growing algorithm as it appeared in [20]. In particular, we will use the no-
tation defined there. The Ball-Growing as described in [20] also had a modification
step. As our lower bound example is a tree, this modification has no impact on the
minor returned by the algorithm, and thus we can ignore it. Formally, a claim similar
to Claim 3.3 can be proven.

Theorem 6.3. Fix some k \in \BbbN . There is a graph G = (V,E,w) with termi-
nal set K of size k such that the expected distortion of the minor returned by the
Ball-Growing algorithm is \Omega (

\surd
log k).

Proof. We will use the graph described in Figure 1.1 with modified parameters:
the weight of an edge between terminal to Steiner vertex will be 2 - \epsilon , while the weight
of an edge between two Steiner vertices will be 2\epsilon for \epsilon to be specified later. Note that
the Ball-Growing algorithm assumes that the minimal distance between a terminal
to a Steiner vertex in the input graph is exactly 1. In order to satisfy this condition
we will add an additional Steiner vertex as a leaf connected to t1 via an edge of unit
weight. Note that this new vertex has no impact on the resulting minor whatsoever
and therefore can be completely ignored.

As previously, we denote by Xj the indicator for the event vj \in Vj . Following the
analysis of Theorem 6.3, if we prove that Pr[Xj] = \Omega (1) (for arbitrary j) it will imply
expected distortion of \Omega (1\epsilon).

Let \scrR j be equal to Rj (the magnitude of tj) at the end of the m = logr 3 - 1
round. For simplicity we will assume that m is an integer; otherwise the analysis will
go through after slight modification of the parameters. Recall that \scrR j =

\sum m
\ell =0 q

\ell
j

where q\ell j is distributed according to Exp(D \cdot r\ell). Here r = 1 + \delta
ln k , \delta = 1

20 , D = \delta
ln k ,

and all the q\ell j are independent. It holds thatD
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 273

\BbbE [\scrR j] =

m\sum
\ell =0

D \cdot r\ell = D \cdot r
m+1 - 1

r - 1
= 2 ,

\BbbV [\scrR j] = \BbbV

\Biggl[
m\sum
\ell =0

q\ell j

\Biggr]
=

m\sum
\ell =0

\BbbV
\bigl[
q\ell j
\bigr]
=

m\sum
\ell =0

\bigl(
D \cdot r\ell

\bigr) 2
= D2 \cdot r

2(m+1) - 1

r2 - 1
=

\biggl(
\delta

ln k

\biggr) 2

\cdot 9 - 1

2 \cdot \delta
ln k +

\bigl(
\delta

ln k

\bigr) 2 \leq 4 \cdot \delta

ln k
= O

\biggl(
1

ln k

\biggr)
,

where we used linearity of expectation and independence. In order that Xj will occur,
it is enough that \scrR j \geq d(tj , vj), while for every j\prime \not = j, \scrR j < d(tj\prime , vj). Using the
Chebyshev inequality,

Pr [\scrR j \geq d(tj , vj)] = Pr [\scrR j \geq 2 - \epsilon] \geq Pr [| \scrR j - \BbbE [\scrR j]| < \epsilon] \geq 1 - \BbbV [\scrR]
\epsilon 2

,

Pr [\scrR j\prime \geq d(tj\prime , vj)] \leq Pr [| \scrR j\prime - \BbbE [\scrR j\prime]| \geq (2 | j - j\prime | - 1) \epsilon] \leq \BbbV [\scrR]
(2 | j - j\prime | - 1)

2 \cdot \epsilon 2
.

By the union bound, the probability that for some j\prime \not = j, \scrR j\prime \geq d(tj\prime , vj) is bounded
by \sum

j \not =j\prime

Pr [\scrR j\prime \geq d(tj\prime , vj)] <
\BbbV [\scrR]
\epsilon 2
\cdot 2 \cdot

\infty \sum
i=1

1

i2
=

\BbbV [\scrR]
\epsilon 2
\cdot \pi

2

3
.

We conclude

Pr [Xj] \geq Pr [\scrR j\prime \geq d(tj\prime , vj)] \cdot

\left(1 -
\sum
j \not =j\prime

Pr [\scrR j\prime \geq d(tj\prime , vj)]

\right)
\geq
\biggl(
1 - \BbbV [\scrR]

\epsilon 2

\biggr) \biggl(
1 - \BbbV [\scrR]

\epsilon 2
\cdot \pi

2

3

\biggr)
= 1 - O

\biggl(
1

\epsilon 2 ln k

\biggr)
= \Omega (1)

for \epsilon = \Theta (1\surd
log k

). The theorem now follows.

Following the lines of the proof of Corollary 6.2, we conclude as follows.

Corollary 6.4. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal
set K of size k such that with constant probability, the distortion of the minor returned
by the Ball-Growing algorithm is \Omega (

\surd
log k)

Remark 6.5. Theorem 6.3 can also be proved using concentration bounds. How-
ever, the lower bound remains \Omega (

\surd
log k) so we provided the more basic proof using

the Chebyshev inequality. Nevertheless, the curious reader can find the required con-
centration bounds for such a proof in Appendix A.

7. Discussion. In this paper we proved an O(log k) upper bound for the SPR
problem, improving the previous O(log2 k) upper bound by [11]. The lower bound
is still only 8 [9]. Closing this gap remains an intriguing open problem. Both the
Relaxed-Voronoi and Ball-growing algorithms proceed by creating random termi-
nal partitions. These partitions are determined using random parameters, which are
chosen with no consideration whatsoever of the input graph G. In contrast, the opti-
mal tree algorithm of [24] is a deterministic recursive algorithm which make decisions

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

274 ARNOLD FILTSER

after considering the tree structure at hand. It seems that the input-oblivious ap-
proach of the Relaxed-Voronoi and Ball-growing algorithms is doomed for failure,
and in fact, both these algorithms already fail to achieve constant distortion on a
simple tree example. As a conclusion, input-sensitive approaches seem to be more
promising for future attempts to resolve the SPR problem.

In a follow-up paper with Krauthgamer and Trabelsi [21], we used the
Relaxed-Voronoi algorithm in order to re-prove Gupta's [24] upper bound of 8.
Formally, let r \in V be an arbitrary vertex and order the terminals w.r.t. their
distances from r (that is, d(t1, r) \leq d(t2, r) \leq . . . d(tk, r)). Surprisingly, given a tree,
if we run the Relaxed-Voronoi algorithm w.r.t. the order specified above (instead
of an arbitrary order), and all magnitudes Rj are exactly 3, we will get a tree mi-
nor with distortion at most 8. This example demonstrates that one can use the
Relaxed-Voronoi algorithm also in an input-sensitive manner in order to achieve
optimal results.

We would like to emphasize two additional open problems:
\bullet Expected distortion: Currently the state of the art for usual (worst-case)
distortion and expected distortion for the SPR problem is the same. Both
have O(log k) upper bound and \Omega (1) lower bound. There are cases where
much better results can be achieved for expected distortion (e.g., embedding
a graph into a tree must incur distortion \Omega (n), while a distribution over
embeddings into trees can have expected distortion O(log n) [19]). What are
the right bounds for expected distortion in the SPR problem?

\bullet Special graph families: Basu and Gupta [5] showed that constant distortion
for the SPR problem can be achieved on outer-planar graphs. It will be very
interesting to achieve better upper bounds for planar graphs, and more gen-
erally for minor-free graphs, bounded treewidth graphs, etc. In the expected
distortion regime, an O(1) upper bound is already known [17] for minor-free
graphs. Possibly one can use the Relaxed-Voronoi algorithm with a clever
choice of order and magnitudes in order to achieve such results.

Appendix A. Concentration bounds for sum of exponential distribu-
tions.

Lemma A.1. Suppose X1, . . . , Xn's are independent random variables, where each
Xi is distributed according to \sansE \sansx \sansp (\lambda i). Let X =

\sum
i Xi and \lambda M = maxi \lambda i. Set

\mu = \BbbE [X] =
\sum

i \lambda i.
For 0 < t \leq 1

2\lambda M
, and \alpha \geq 2t\lambda M ,

Pr [X \geq (1 + \alpha)\mu] \leq exp (- t\mu \cdot (\alpha - 2t\lambda M)) ,

Pr [X \leq (1 - \alpha)\mu] \leq exp (- t\mu (\alpha - t\lambda M)) .

Proof. For each Xi, the moment generating function w.r.t. t equals

\BbbE
\bigl[
etXi

\bigr]
=

1

1 - t\lambda i
= 1 + t\lambda i

\left(\sum
\ell \geq 0

(t\lambda i)
\ell

\right) \leq 1 + t\lambda i (1 + 2t\lambda i) \leq et\lambda i(1+2t\lambda i).

Using the Markov inequality,

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 275

Pr [X \geq (1 + \alpha)\mu] = Pr
\Bigl[
etX \geq et(1+\alpha)\mu

\Bigr]
\leq \BbbE

\bigl[
etX
\bigr]
\cdot e - t(1+\alpha)\mu

= e - t(1+\alpha)
\sum

\ell \lambda \ell \cdot
\prod
\ell

\BbbE
\bigl[
etX\ell

\bigr]
\leq e - (1+\alpha)

\sum
\ell t\lambda \ell \cdot e

\sum
\ell t\lambda \ell (1+2t\lambda \ell)

= e
\sum

\ell (t\lambda \ell \cdot (2t\lambda \ell - \alpha))

\leq e(
\sum

\ell t\lambda \ell)\cdot (2t\lambda M - \alpha) = e - t\mu \cdot (\alpha - 2t\lambda M),

where in the second equality we use the fact that \{ Xi\} i are independent.
For the second inequality, it holds that

\BbbE
\bigl[
e - tXi

\bigr]
=

1

1 + t\lambda i
=
\sum
\ell \geq 0

(- 1)\ell (t\lambda i)
\ell \leq 1 - t\lambda i (1 - t\lambda i) \leq e - t\lambda i(1 - t\lambda i) .

Therefore,

Pr [X \leq (1 - \alpha)\mu] = Pr
\Bigl[
e - tX \geq e - t(1 - \alpha)\mu

\Bigr]
\leq \BbbE

\bigl[
e - tX

\bigr]
/e - t(1 - \alpha)\mu

= et(1 - \alpha)\mu \cdot \Pi \ell \BbbE
\bigl[
e - tX\ell

\bigr]
\leq e(1 - \alpha)

\sum
\ell t\lambda \ell \cdot e -

\sum
\ell t\lambda \ell (1 - t\lambda \ell)

= e -
\sum

\ell t\lambda \ell (\alpha - t\lambda \ell)

\leq e - t\mu (\alpha - t\lambda M) .

We derive the following corollary.

Corollary A.2. Suppose X1, . . . , Xn are independent random variables, where
Xi \sim \sansE \sansx \sansp (\lambda i). Let X =

\sum
i Xi and \lambda M = maxi \lambda i. Set \mu = \BbbE [X] =

\sum
i \lambda i. Then,

For \alpha \leq 2 : Pr [X \geq (1 + \alpha)\mu] \leq exp

\biggl(
 - \alpha 2\mu

8\lambda M

\biggr)
,

For \alpha \leq 1 : Pr [X \leq (1 - \alpha)\mu] \leq exp

\biggl(
 - \alpha 2\mu

4\lambda M

\biggr)
.

For the first inequality we choose the parameter t = \alpha
2 \cdot

1
2\lambda M

, while for the second

inequality we choose the parameter t = \alpha \cdot 1
2\lambda M

.

Appendix B. The Ball-Growing algorithm. The Ball-Growing algorithm
assumes w.l.o.g. that the minimal distance between a terminal to a Steiner vertex in
the input graph is exactly 1. Throughout the execution of the algorithm each terminal
tj is associated with a radius Rj and cluster Vj \subset V . The algorithm iteratively grows
clusters V1, . . . , Vk around the terminals. Once some vertex v joins some cluster Vj , it
will stay there. When all the vertices are clustered, the algorithm terminates. Initially
the cluster Vj contains only the terminal tj , while Rj equals 0. The algorithm will
have rounds, where each round consist of k steps. In step j of round \ell , the algorithm
samples a number q\ell j according to distribution \sansE \sansx \sansp (D \cdot r\ell) (note that the mean of
the distribution grows by a factor of r in each round). The radius Rj grows by
q\ell j . We consider the graph induced by the unclustered vertices V\bot union Vj . Every
unclustered vertex of distance at most Rj from tj in G[V\bot \cup Vj] joins Vj .

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

276 ARNOLD FILTSER

Algorithm B.1. M = Ball-Growing(G = (V,E), w,K = \{ t1, . . . , tk\}).
1: Set r \leftarrow 1 + \delta / ln k, where \delta = 1/20.
2: Set D \leftarrow \delta

ln k .
3: For each j \in [k], set Vj \leftarrow \{ tj\} , and set Rj \leftarrow 0.
4: Set V\bot \leftarrow V \setminus

\bigl(
\cup kj=1Vj

\bigr)
.

5: Set \ell \leftarrow 0.
6: while

\bigl(
\cup kj=1Vj

\bigr)
\not = V do

7: for j from 1 to k do
8: Choose independently at random q\ell j distributed according to \sansE \sansx \sansp (D \cdot r\ell).
9: Set Rj \leftarrow Rj + q\ell j .

10: Set Vj \leftarrow BG[V\bot \cup Vj](tj , Rj). . // This is the same as
Vj \leftarrow Vj \cup BG[V\bot \cup Vj](tj , Rj).

11: Set V\bot \leftarrow V \setminus
\bigl(
\cup kj=1Vj

\bigr)
.

12: end for
13: \ell \leftarrow \ell + 1.
14: end while
15: return the terminal-centered minor M of G induced by V1, . . . , Vk.

Appendix C. Index.

Preliminaries.
dG: shortest path metric in G.
G[A]: graph induced by A.
K = \{ t1, . . . , tk\} : set of terminals.
D(v) = mint\in K dG(v, t).
Terminal partition: partition \{ V1, . . . , Vk\} of

V , s.t. for every i, ti \in Vi and Vi is con-
nected.

Induced minor: given terminal partition
\{ V1, . . . , Vk\} , the induced minor ob-
tained by contracting each Vi into the
super vertex ti. The weight of the edge
\{ ti, tj\} (if it exists) set to be dG(ti, tj).

Distortion of induced minor: maxi,j
dM (ti,tj)

dG(ti,tj)
.

\sansG \sanse \sanso (p): geometric distribution with parameter \lambda .
\sansE \sansx \sansp (\lambda): exponential distribution with parameter

p.

Modification. Every edge on Pt,t\prime has
weight at most cw \cdot dG(t, t\prime).

Constants.
p = 1

5
: parameter of the geometric distribution.

\delta = 1
20\cdot ln k

: jumps in Rj are of magnitude 1+ \delta .

cw = \delta
24

.

c\bfi \bfn \bft = 1
6
: governs the size of interval in the par-
tition \scrQ of Pt,t\prime .

ccon = 1
2
: used to bound the variation of the
charge function from its expectation.

cd = e2: bound on the maximal size of Rj .

Events.
\scrE fBig: denotes that for some pair of terminals

t, t\prime , f(\{ X(Q)\} Q\in \scrQ \geq 43 \cdot dG(t, t\prime).
\scrE B: denotes that there exist j such that Rj >

cd.

Notation.
Vj : cluster of tj .
Rj : magnitude of the cluster of tj .

V\bot : set of unclustered (uncovered) vertices.
Pt,t\prime = \{ t = v0, . . . , v\gamma = t\prime \} : shortest path from

t to t\prime .
L(\{ va, va+1, . . . , vb\}) = dG(va, vb): internal

length.
L+(\{ va, va+1, . . . , vb\}) = dG(va - 1, vb+1): ex-

ternal length.
\scrQ : partition of Pt,t\prime into intervals Q.
aj : the leftmost active vertex covered by tj .
bj : the rightmost active vertex covered by tj .

\scrD j = \{ aj , . . . , bj\} : detour created by terminal
tj .

Slice maximal subinterval (of some Q) of active
vertices.

rv : minimal choice of Rj such that v joins Vj .
vj : vertex with the minimal rv (among active

vertices).
Qj : interval containing vj .
Sj : slice containing vj .
f(\{ xQ\} Q\in \scrQ): =

\sum
Q\in \scrQ xQ \cdot L+(Q), charge

function.
BQ: a coin box which resembles the interval Q.
dG,Vi+Vj

(ti, tj): the weight of the shortest path
in G between t1 and t2 that uses only
vertices from Vi \cup Vj and only a single
crossing edge between Vi to Vj .

Counters.
\scrS (Q): (current) number of slices in interval Q.
X(Q): number of detours the interval Q is (cur-

rently) charged for.
\~X(Q): number of detours the interval Q is

charged for by the end of Algorithm 3.1.
Z(Q): number of active coins in BQ. Each coin

is active when added to the box.
Y (Q): number of inactive coins in BQ. A coin

becomes inactive after tossing.
\~Y (Q): number of inactive coins in BQ by the

end of the process.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 277

Acknowledgment. The author would like to thank his advisors Ofer Neiman,
for fruitful discussions, and Robert Krauthgamer, for useful comments.

REFERENCES

[1] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Boston, MA, 1974.

[2] A. Andoni, A. Gupta, and R. Krauthgamer, Towards (1+\epsilon)-approximate flow sparsifiers, in
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Portland,
OR, 2014, pp. 279--293, https://doi.org/10.1137/1.9781611973402.20.

[3] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Burling-
ton, VT, 1996, pp. 184--193, https://doi.org/10.1109/SFCS.1996.548477.

[4] Y. Bartal, A. Filtser, and O. Neiman, On notions of distortion and an almost minimum
spanning tree with constant average distortion, in Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, Arlington, VA, 2016, pp. 873--882, https://doi.
org/10.1137/1.9781611974331.ch62.

[5] A. Basu and A. Gupta, Steiner Point Removal in Graph Metrics, manuscript, http://www.
math.ucdavis.edu/\sim abasu/papers/SPR.pdf (2008).

[6] J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, SIAM J.
Comput., 41 (2012), pp. 1704--1721, https://doi.org/10.1137/090772873.

[7] A. A. Bencz\'ur and D. R. Karger, Approximating s-t minimum cuts in \~O(n2) time, in Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia,
PA, 1996, pp. 47--55, https://doi.org/10.1145/237814.237827.

[8] G. C\u alinescu, H. J. Karloff, and Y. Rabani, Approximation algorithms for the 0-extension
problem, SIAM J. Comput., 34 (2004), pp. 358--372.

[9] T.-H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the Steiner
point removal problem on trees, in Proceedings of the 9th International Conference on
Approximation Algorithms for Combinatorial Optimization Problems, and 10th Inter-
national Conference on Randomization and Computation, Springer-Verlag, Berlin, 2006,
pp. 70--81, https://doi.org/10.1007/11830924 9.

[10] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding
algorithms, in Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science, Las Vegas, NV, 2010, pp. 265--274, https://doi.org/10.1109/FOCS.2010.32.

[11] Y. K. Cheung, Steiner point removal---distant terminals don't (really) bother, in Proceedings
of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA,
2018, pp. 1353--1360.

[12] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal
distances approximately---lower and upper bounds, in 43rd International Colloquium on
Automata, Languages, and Programming, Rome, Italy, 2016, pp. 131:1--131:14, https:
//doi.org/10.4230/LIPIcs.ICALP.2016.131.

[13] J. Chuzhoy, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th Symposium
on Theory of Computing Conference, New York, 2012, pp. 673--688, https://doi.org/10.
1145/2213977.2214039.

[14] D. Coppersmith and M. Elkin, Sparse source-wise and pair-wise distance preservers, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, PA, 2005, pp. 660--669, http://dl.acm.org/citation.cfm?id=1070432.1070524.

[15] M. Elkin, A. Filtser, and O. Neiman, Prioritized metric structures and embedding, in Pro-
ceedings of the 47th Annual ACM on Symposium on Theory of Computing, Portland, OR,
2015, pp. 489--498, https://doi.org/10.1145/2746539.2746623.

[16] M. Elkin, A. Filtser, and O. Neiman, Terminal embeddings, Theoret. Comput. Sci., 697
(2017), pp. 1--36, https://doi.org/10.1016/j.tcs.2017.06.021.

[17] M. Englert, A. Gupta, R. Krauthgamer, H. R\"acke, I. Talgam-Cohen, and K. Talwar,
Vertex sparsifiers: New results from old techniques, SIAM J. Comput., 43 (2014), pp. 1239--
1262, https://doi.org/10.1137/130908440.

[18] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, An improved approximation
algorithm for the 0-extension problem, in Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 257--265, http://dl.acm.
org/citation.cfm?id=644108.644153.

[19] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485--497, https://doi.org/
10.1016/j.jcss.2004.04.011.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611973402.20
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1137/1.9781611974331.ch62
https://doi.org/10.1137/1.9781611974331.ch62
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
https://doi.org/10.1137/090772873
https://doi.org/10.1145/237814.237827
https://doi.org/10.1007/11830924_9
https://doi.org/10.1109/FOCS.2010.32
https://doi.org/10.4230/LIPIcs.ICALP.2016.131
https://doi.org/10.4230/LIPIcs.ICALP.2016.131
https://doi.org/10.1145/2213977.2214039
https://doi.org/10.1145/2213977.2214039
http://dl.acm.org/citation.cfm?id=1070432.1070524
https://doi.org/10.1145/2746539.2746623
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.1137/130908440
http://dl.acm.org/citation.cfm?id=644108.644153
http://dl.acm.org/citation.cfm?id=644108.644153
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1016/j.jcss.2004.04.011

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

278 ARNOLD FILTSER

[20] A. Filtser, Steiner point removal with distortion O(log k), in Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 2018, pp. 1361--1373,
https://doi.org/10.1137/1.9781611975031.90.

[21] A. Filtser, R. Krauthgamer, and O. Trabelsi, Relaxed voronoi: A simple framework
for terminal-clustering problems, in Proceedings of the 2nd Symposium on Simplicity in
Algorithms, San Diego, CA, 2019, pp. 10:1--10:14, https://doi.org/10.4230/OASIcs.SOSA.
2019.10.

[22] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596--615, https://doi.org/10.1145/28869.
28874.

[23] G. Goranci, M. Henzinger, and P. Peng, Improved guarantees for vertex sparsification in
planar graphs, in Proceedings of the 25th Annual European Symposium on Algorithms,
Vienna, Austria, 2017, pp. 44:1--44:14, https://doi.org/10.4230/LIPIcs.ESA.2017.44.

[24] A. Gupta, Steiner points in tree metrics don't (really) help, in Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, 2001, pp. 220--227,
http://dl.acm.org/citation.cfm?id=365411.365448.

[25] A. Gupta, V. Nagarajan, and R. Ravi, An improved approximation algorithm for require-
ment cut, Oper. Res. Lett., 38 (2010), pp. 322--325.

[26] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to remove
Steiner points, in Proceedings of SODA, 2014, pp. 1029--1040.

[27] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to re-
move Steiner points, SIAM J. Comput., 44 (2015), pp. 975--995, https://doi.org/10.1137/
140951382.

[28] T. Kavitha and N. M. Varma, Small stretch pairwise spanners, in Automata, Languages, and
Programming Part I, Lecture Notes in Comput. Sci. 7965, Springer-Verlag, Berlin, 2013,
pp. 601--612, https://doi.org/10.1007/978-3-642-39206-1 51.

[29] R. Krauthgamer, H. L. Nguyen, and T. Zondiner, Preserving terminal distances using mi-
nors, SIAM J. Discrete Math., 28 (2014), pp. 127--141, https://doi.org/10.1137/120888843.

[30] R. Krauthgamer and I. Rika, Mimicking networks and succinct representations of terminal
cuts, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, 2013, pp. 1789--1799, https://doi.org/10.1137/1.9781611973105.128.

[31] R. Krauthgamer and I. Rika, Refined Vertex Sparsifiers of Planar Graphs, CoRR
abs/1702.05951, 2017.

[32] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings
of the 42nd ACM Symposium on Theory of Computing, Cambridge, MA, 2010, pp. 47--56,
https://doi.org/10.1145/1806689.1806698.

[33] N. Linial and M. E. Saks, Decomposing graphs into regions of small diameter, in Proceed-
ings of the 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, 1991, pp. 320--330, http://dl.acm.org/citation.cfm?id=127787.127848.

[34] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and Lip-
schitz extendability, in Proceedings of the 51th Annual IEEE Symposium on Foundations
of Computer Science, Las Vegas, NV, 2010, pp. 255--264, https://doi.org/10.1109/FOCS.
2010.31.

[35] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, Improved parallel algorithms for spanners
and hopsets, in Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, Portland, OR, 2015, pp. 192--201, https://doi.org/10.1145/2755573.
2755574.

[36] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size, in Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science, Atlanta, GA, 2009, pp. 3--12, https://doi.org/10.1109/FOCS.
2009.28.

[37] D. Peleg and A. A. Sch\"affer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99--116,
https://doi.org/10.1002/jgt.3190130114.

[38] L. Roditty, M. Thorup, and U. Zwick, Deterministic constructions of approximate dis-
tance oracles and spanners, in Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 3580, Springer-Verlag, Berlin, 2005, pp. 261--272, https://doi.org/10.1007/
11523468 22.

[39] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1--24, https:
//doi.org/10.1145/1044731.1044732.

D
ow

nl
oa

de
d

06
/2

3/
19

 to
 1

32
.7

2.
42

.2
07

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611975031.90
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.4230/LIPIcs.ESA.2017.44
http://dl.acm.org/citation.cfm?id=365411.365448
https://doi.org/10.1137/140951382
https://doi.org/10.1137/140951382
https://doi.org/10.1007/978-3-642-39206-1_51
https://doi.org/10.1137/120888843
https://doi.org/10.1137/1.9781611973105.128
https://doi.org/10.1145/1806689.1806698
http://dl.acm.org/citation.cfm?id=127787.127848
https://doi.org/10.1109/FOCS.2010.31
https://doi.org/10.1109/FOCS.2010.31
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1109/FOCS.2009.28
https://doi.org/10.1109/FOCS.2009.28
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1007/11523468_22
https://doi.org/10.1007/11523468_22
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732

	Introduction
	Related work
	Technical ideas
	Paper organization

	Preliminaries
	Probability

	Algorithm
	Modification

	Distortion analysis
	Interval and charges
	Bounding the number of failures
	Bounding by independent variables
	Replacing coins with exponential random variables
	Concentration

	Bounding the distortion

	Fast-Relaxed-Voronoi algorithm
	Basic properties
	Distortion analysis
	Runtime

	Lower bounds on the performance of the algorithms
	Lower bound on the performance of the Relaxed-Voronoi algorithm
	Lower bound on the performance of the Ball-Growing algorithm

	Discussion
	Appendix A. Concentration bounds for sum of exponential distributions
	Appendix B. The Ball-Growing algorithm
	Appendix C. Index
	References

