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Abstract9

Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or doubling10

metrics) are well understood. This lies in contrast to the situation in high dimensional spaces,11

where except for the work of Har-Peled, Indyk and Sidiropoulos (SODA 2013), who showed that12

any n-point Euclidean metric has an O(t)-spanner with Õ(n1+1/t2 ) edges, little is known.13

In this paper we study several aspects of spanners in high dimensional normed spaces. First,14

we build spanners for finite subsets of `p with 1 < p ≤ 2. Second, our construction yields a15

spanner which is both sparse and also light, i.e., its total weight is not much larger than that of16

the minimum spanning tree. In particular, we show that any n-point subset of `p for 1 < p ≤ 217

has an O(t)-spanner with n1+Õ(1/tp) edges and lightness nÕ(1/tp).18

In fact, our results are more general, and they apply to any metric space admitting a certain19

low diameter stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-20

spanner with lightness O(n1/t). We exhibit the following tradeoff: metrics with decomposability21

parameter ν = ν(t) admit an O(t)-spanner with lightness Õ(ν1/t). For example, n-point Euc-22

lidean metrics have ν ≤ n1/t, metrics with doubling constant λ have ν ≤ λ, and graphs of genus23

g have ν ≤ g. While these families do admit a (1 + ε)-spanner, its lightness depend exponentially24

on the dimension (resp. log g). Our construction alleviates this exponential dependency, at the25

cost of incurring larger stretch.26
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1 Introduction32

1.1 Spanners33

Given a metric space (X, dX), a weighted graph H = (X,E) is a t-spanner of X, if for every34

pair of points x, y ∈ X, dX(x, y) ≤ dH(x, y) ≤ t · dX(x, y) (where dH is the shortest path35

metric in H). The factor t is called the stretch of the spanner. Two important parameters of36

interest are: the sparsity of the spanner, i.e. the number of edges, and the lightness of the37
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spanner, which is the ratio between the total weight of the spanner and the weight of the38

minimum spanning tree (MST).39

The tradeoff between stretch and sparsity/lightness of spanners is the focus of an intensive40

research effort, and low stretch spanners were used in a plethora of applications, to name41

a few: Efficient broadcast protocols [8, 9], network synchronization [6, 49, 8, 9, 48], data42

gathering and dissemination tasks [14, 60, 22], routing [61, 49, 50, 57], distance oracles and43

labeling schemes [47, 58, 53], and almost shortest paths [19, 52, 23, 25, 28].44

Spanners for general metric spaces are well understood. The seminal paper of [4] showed45

that for any parameter k ≥ 1, any metric admits a (2k − 1)-spanner with O(n1+1/k) edges,46

which is conjectured to be best possible. For light spanners, improving [17, 24], it was shown47

in [18] that for every constant ε > 0 there is a (2k− 1)(1 + ε)-spanner with lightness O(n1/k)48

and at most O(n1+1/k) edges.49

There is an extensive study of spanners for restricted classes of metric spaces, most50

notably subsets of low dimensional Euclidean space, and more generally doubling metrics.351

For such low dimensional metrics, much better spanners can be obtained. Specifically, for n52

points in d-dimensional Euclidean space, [54, 59, 21] showed that for any ε ∈ (0, 1
2 ) there is53

a (1 + ε)-spanner with n · ε−O(d) edges and lightness ε−O(d) (further details on Euclidean54

spanners could be found in [45]). This result was recently generalized to doubling metrics55

by [12], with ε−O(ddim) lightness and n · ε−O(ddim) edges (improving [55, 30, 29]). Such56

low stretch spanners were also devised for metrics arising from certain graph families. For57

instance, [4] showed that any planar graph admits a (1 + ε)-spanner with lightness O(1/ε).58

This was extended to graphs with small genus4 by [31], who showed that every graph with59

genus g > 0 admits a spanner with stretch (1 + ε) and lightness O(g/ε). A long sequence60

of works for other graph families, concluded recently with a result of [13], who showed61

(1 + ε)-spanners for graphs excluding Kr as a minor, with lightness ≈ O(r/ε3).62

In all these results there is an exponential dependence on a certain parameter of the input63

metric space (the dimension, the logarithm of the genus/minor-size), which is unfortunately64

unavoidable for small stretch (for all n-point metric spaces the dimension/parameter is at65

most O(logn), while spanner with stretch better than 3 requires in general Ω(n2) edges66

[58]). So when the relevant parameter is small, light spanners could be constructed with67

stretch arbitrarily close to 1. However, in metrics arising from actual data, the parameter68

of interest may be moderately large, and it is not known how to construct light spanners69

avoiding the exponential dependence on it. In this paper, we devise a tradeoff between70

stretch and sparsity/lightness that can diminish this exponential dependence. To the best of71

our knowledge, the only such tradeoff is the recent work of [34], who showed that n-point72

subsets of Euclidean space (in any dimension) admit a O(t)-spanner with Õ(n1+1/t2) edges73

(without any bound on the lightness).74

1.2 Stochastic Decompositions75

In a (stochastic) decomposition of a metric space, the goal is to find a partition of the76

points into clusters of low diameter, such that the probability of nearby points to fall into77

different clusters is small. More formally, for a metric space (X, dX) and parameters t ≥ 178

3 A metric space (X, d) has doubling constant λ if for every x ∈ X and radius r > 0, the ball B(x, 2r) can
be covered by λ balls of radius r. The doubling dimension is defined as ddim = log2 λ. A d-dimensional
`p space has ddim = Θ(d), and every n point metric has ddim = O(logn).

4 The genus of a graph is minimal integer g, such that the graph could be drawn on a surface with g
“handles”.
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and δ = δ(|X|, t) ∈ [0, 1], we say that the metric is (t, δ)-decomposable, if for every ∆ > 079

there is a probability distribution over partitions of X into clusters of diameter at most t ·∆,80

such that every two points of distance at most ∆ have probability at least δ to be in the81

same cluster.82

Such decompositions were introduced in the setting of distributed computing [7, 43], and83

have played a major role in the theory of metric embedding [10, 51, 26, 38, 39, 1], distance84

oracles and routing [44, 2], multi-commodity flow/sparsest cut gaps [41, 37] and also were85

used in approximation algorithms and spectral methods [15, 36, 11]. We are not aware of any86

direct connection of these decompositions to spanners (except spanners for general metrics87

implicit in [44, 2]).88

Note that our definition is slightly different than the standard one. The probability δ89

that a pair x, y ∈ X is in the same cluster may depend on |X| and t, but unlike previous90

definitions, it does not depend on the precise value of dX(x, y) (rather, only on the fact91

that it is bounded by ∆). This simplification suits our needs, and it enables us to capture92

more succinctly the situation for high dimensional normed spaces, where the dependence93

of δ on dX(x, y) is non-linear. These stochastic decompositions are somewhat similar to94

Locality Sensitive Hashing (LSH), that were used by [34] to construct spanners. The main95

difference is that in LSH, far away points may be mapped to the same cluster with some96

small probability, and more focus was given to efficient computation of the hash function. It97

is implicit in [34] that existence of good LSH imply sparse spanners.98

A classic tool for constructing spanners in normed and doubling spaces is WSPD (Well99

Separated Pair Decomposition, see [16, 56, 35]). Given a set of points P , a WSPD is a set of100

pairs {(Ai, Bi)}i of subsets of P , where the diameters of Ai and Bi are at most an ε-fraction101

of d(Ai, Bi), and such that for every pair x, y ∈ P there is some i with (x, y) ∈ Ai ×Bi. A102

WSPD is designed to create a (1 +O(ε))-spanner, by adding an arbitrary edge between a103

point in Ai and a point in Bi for every i (as opposed to our construction, based on stochastic104

decompositions, in which we added only inner-cluster edges). An exponential dependence on105

the dimension is unavoidable with such a low stretch, thus it is not clear whether one can106

use a WSPD to obtain very sparse or light spanners in high dimensions.107

1.3 Our Results108

Our main result is exhibiting a connection between stochastic decompositions of metric spaces,109

and light spanners. Specifically, we show that if an n-point metric is (t, δ)-decomposable,110

then for any constant ε > 0, it admits a (2 + ε) · t-spanner with Õ(n/δ) edges and lightness111

Õ(1/δ). (Abusing notation, Õ hides polylog(n) factors.)112

It can be shown that Euclidean metrics are (t, n−O(1/t2))-decomposable, thus our results113

extends [34] by providing a smaller stretch (2 + ε) · t-spanner, which is both sparse – with114

Õ(n1+O(1/t2)) edges – and has lightness Õ(nO(1/t2)). For d-dimensional Euclidean space,115

where d = o(logn) we can obtain lightness Õ(2O(d/t2)) and Õ(n·2O(d/t2)) edges. We also show116

that n-point subsets of `p spaces for any fixed 1 < p < 2 are (t, n−O(log2 t/tp))-decomposable,117

which yields light spanners for such metrics as well.118

In addition, metrics with doubling constant λ are (t, λ−O(1/t))-decomposable [33, 1], and119

graphs with genus g are (t, g−O(1/t))-decomposable [40, 3], which enables us to alleviate the120

exponential dependence on ddim and log g in the sparsity/lightness by increasing the stretch.121

See Table 1 for more details. (We remark that for graphs excluding Kr as a minor, the122

current best decomposition achieves probability only 2−O(r/t) [3]; if this will be improved to123

the conjectured r−O(1/t), then our results would provide interesting spanners for this family124

as well.)125

ESA 2018
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Stretch Lightness Sparsity

Euclidean space O(t) Õ(n1/t2 ) Õ(n1+1/t2 ) Corollary 6
O(
√

logn) Õ(1) Õ(n)

`p space, 1 < p < 2 O(t) Õ(n log2 t/tp) Õ(n1+ log2 t/tp) Corollary 7
O((logn · log logn)1/p) Õ(1) Õ(n)

Doubling constant λ O(t) Õ(λ1/t) Õ(n · λ1/t) Corollary 8
O(log λ) Õ(1) Õ(n)

Graph with genus g O(t) Õ(g1/t) O(n+ g) Corollary 9
O(log g) Õ(1) O(n+ g)

Table 1 In this table we summarize some corollaries of our main result. The metric spaces have
cardinality n, and Õ hides (mild) polylog(n) factors. The stretch t is a parameter ranging between 1
and logn.

Note that up to polylog(n) factors, our stretch-lightness tradeoff generalizes the [18]126

spanner for general metrics, which has stretch (2t− 1)(1 + ε) and lightness O(n1/t). Define127

for a (t, δ)-decomposable metric the parameter ν = 1/δt. Then we devise for such a metric a128

(2t− 1)(1 + ε)-spanner with lightness O(ν1/t).129

For example, consider an n-point metric with doubling constant λ = 2
√

logn. No spanner130

with stretch o(logn/ log logn) and lightness Õ(1) for such a metric was known. Our result131

implies such a spanner, with stretch O(
√

logn).132

We also remark that the existence of light spanners does not imply decomposability.133

For example, consider the shortest path metrics induced by bounded-degree expander134

graphs. Even though these metrics have the (asymptotically) worst possible decomposability135

parameters (they are only (t, n−Ω(1/t))-decomposable [42]), they nevertheless admit 1-spanners136

with constant lightness (the spanner being the expander graph itself).137

2 Preliminaries138

Given a metric space (X, dX), let T denote its minimum spanning tree (MST) of weight L.139

For a set A ⊆ X, the diameter of A is diam(A) = maxx,y∈A dX(x, y). Assume, as we may,140

that the minimal distance in X is 1.141

By Oε we denote asymptotic notation which hides polynomial factors of 1
ε , that is142

Oε(f) = O(f) · poly( 1
ε ). Unless explicitly specified otherwise, all logarithms are in base 2.143

144

Nets. For r > 0, a set N ⊆ X is an r-net, if (1) for every x ∈ X there is a point y ∈ N145

with dX(x, y) ≤ r, and (2) every pair of net points y, z ∈ N satisfy dX(y, z) > r. It is well146

known that nets can be constructed in a greedy manner. For 0 < r1 ≤ r2 ≤ · · · ≤ rs, a147

hierarchical net is a collection of nested sets X ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Ns, where each Ni is an148

ri-net. Since Ni+1 satisfies the second condition of a net with respect to radius ri, one can149

obtain Ni from Ni+1 by greedily adding points until the first condition is satisfied as well.150

In the following claim we argue that nets are sparse sets with respect to the MST weight.151

I Claim 1. Consider a metric space (X, dX) with MST of weight L, let N be an r-net,152

then |N | ≤ 2L
r .153

Proof. Let T be the MST of X, note that for every x, y ∈ N , dT (x, y) ≥ dX(x, y) > r. For a154

point x ∈ N , BT (x, b) = {y ∈ X | dT (x, y) ≤ b} is the ball of radius b around x in the MST155

metric. We say that an edge {y, z} of T is cut by the ball BT (x, b) if dT (x, y) < b < dT (x, z).156
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Consider the set B of balls of radius r/2 around the points of N . We can subdivide5 the157

edges of T until no edge is cut by any of the balls of B. Note that the subdivisions do not158

change the total weight of T nor the distances between the original points of X.159

If both the endpoints of an edge e belong to the ball B, we say that the edge e is internal160

to B. By the second property of nets, and since BT (x, b) ⊆ BX(x, b), the set of internal161

edges corresponding to the balls B are disjoint. On the other hand, as the tree is connected,162

the weight of the internal edges in each ball must be at least r/2. As the total weight is163

bounded by L, the claim follows. J164

165

Stochastic Decompositions. Consider a partition P of X into disjoint clusters. For166

x ∈ X, we denote by P(x) the cluster P ∈ P that contains x. A partition P is ∆-bounded167

if for every P ∈ P, diam(P ) ≤ ∆. If a pair of points x, y belong to the same cluster, i.e.168

P(x) = P(y), we say that they are clustered together by P.169

I Definition 2. For metric space (X, dX) and parameters t ≥ 1, ∆ > 0 and δ ∈ [0, 1], a170

distribution D over partitions of X is called a (t,∆, δ)-decomposition, if it fulfills the following171

properties.172

Every P ∈ supp(D) is t ·∆-bounded.173

For every x, y ∈ X such that dX(x, y) ≤ ∆, PrD [P(x) = P(y)] ≥ δ.174

A metric is (t, δ)-decomposable, where δ = δ(|X|, t), if it admits a (t,∆, δ)-decomposition for175

any ∆ > 0. A family of metrics is (t, δ)-decomposable if each member (X, dX) in the family176

is (t, δ)-decomposable.177

We observe that if a metric (X, dX) is (t, δ(|X|, t))-decomposable, then also every178

sub-metric Y ⊆ X is (t, δ(|X|, t))-decomposable. In some cases Y is also (t, δ(|Y |, t))-179

decomposable (we will exploit these improved decompositions for subsets of `p). The180

following claim argues that sampling O( logn
δ ) partitions suffices to guarantee that every pair181

is clustered at least once.182

I Claim 3. Let (X, dX) be a metric space which admits a (t,∆, δ)-decomposition, and let183

N ⊆ X be of size |N | = n. Then there is a set {P1, . . . ,Pϕ} of t ·∆-bounded partitions of N ,184

where ϕ = 2 lnn
δ , such that every pair x, y ∈ N at distance at most ∆ is clustered together185

by at least one of the Pi.186

Proof. Let {P1, . . . ,Pϕ} be i.i.d partitions drawn from the (t,∆, δ)-decomposition of X.187

Consider a pair x, y ∈ N at distance at most ∆. The probability that x, y are not clustered188

in any of the partitions is bounded by189

Pr [∀i, Pi(x) 6= Pi(y)] ≤ (1− δ)(2 lnn)/δ ≤ 1
n2 .190

The claim now follows by the union bound. J191

3 Light Spanner Construction192

In this section we present a generalized version of the algorithm of [34], depicted in Algorithm 1.193

The differences in execution and analysis are: (1) Our construction applies to general194

5 To subdivide an edge e = {x, y} of weight w the following steps are taken: (1) Delete the edge e. (2)
Add a new vertex ve. (3) Add two new edges {x, ve}, {ve, y} with weights α ·w and (1−α) ·w for some
α ∈ (0, 1).

ESA 2018
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decomposable metric spaces – we use decompositions rather than LSH schemes. (2) We195

analyze the lightness of the resulting spanners. (3) We achieve stretch t · (2 + ε) rather than196

O(t).197

The basic idea is as follows. For every weight scale ∆i = (1 + ε)i, construct a sequence198

of t ·∆i-bounded partitions P1, . . . ,Pϕ such that every pair x, y at distance ≤ ∆i will be199

clustered together at least once. Then, for each j ∈ [ϕ] and every cluster P ∈ Pj , we pick an200

arbitrary root vertex vP ∈ P , and add to our spanner edges from vP to all the points in P .201

This ensures stretch 2t · (1 + ε) for all pairs with dX(x, y) ∈ [(1− ε)∆i,∆i]. Thus, repeating202

this procedure on all scales i = 1, 2, . . . provides a spanner with stretch 2t · (1 + ε).203

However, the weight of the spanner described above is unbounded. In order to address204

this problem at scale ∆i, instead of taking the partitions over all points, we partition only205

the points of an ε∆i-net. The stretch is still small: x, y at distance ∆i will have nearby net206

points x̃, ỹ. Then, a combination of newly added edges with older ones will produce a short207

path between x to y. The bound on the lightness will follow from the observation that the208

number of net points is bounded with respect to the MST weight.209

I Theorem 4. Let (X, dX) be a (t, δ)-decomposable n-point metric space. Then for every ε ∈210

(0, 1/8), there is a t·(2+ε)-spanner for X with lightness Oε
(
t
δ · log2 n

)
and Oε

(
n
δ · logn · log t

)
211

edges.212

Algorithm 1 H = Spanner-From-Decompositions((X, dX), t, ε)
1: Let N0 ⊇ N1 ⊇ · · · ⊇ Nlog1+ε L be a hierarchical net, where Ni is ε ·∆i = ε · (1 + ε)i-net

of (X, dX).
2: for i ∈

{
0, 1, . . . , log1+ε L

}
do

3: For parameters ∆ = (1 + 2ε)∆i and t, let P1, . . . ,Pϕi be the set of t · ∆-bounded
partitions guaranteed by Claim 3 on the set Ni.

4: for j ∈ {1, . . . , ϕi} and P ∈ Pj do
5: Let vP ∈ P be an arbitrarily point.
6: Add to H an edge from every point x ∈ P \ {vP } to vP .
7: end for
8: end for
9: return H.

Proof. We will prove stretch t · (2 +O(ε)) instead of t · (2 + ε). This is good enough, as post213

factum we can scale ε accordingly.214

215

Stretch Bound. Let c > 1 be a constant (to be determined later). Consider a pair216

x, y ∈ X such that (1 + ε)i−1 < dX(x, y) ≤ (1 + ε)i. We will assume by induction that every217

pair x′, y′ at distance at most (1 + ε)i−1 already enjoys stretch at most α = t · (2 + c · ε) in218

H. Set ∆i = (1 + ε)i, and let x̃, ỹ ∈ Ni be net points such that dX(x, x̃), dX(y, ỹ) ≤ ε ·∆i.219

By the triangle inequality dX(x̃, ỹ) ≤ (1 + 2ε) ·∆i = ∆. Therefore there is a t ·∆-bounded220

partition P constructed at round i such that P(x̃) = P(ỹ). In particular, there is a center221

vertex v = vP(x̃) such that both {x̃, v} , {ỹ, v} were added to the spanner H. Using the222
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induction hypothesis on the pairs {x, x̃} and {y, ỹ}, we conclude223

dH (x, y) ≤ dH (x, x̃) + dH (x̃, v) + dH (v, ỹ) + dH (ỹ, y)224

≤ α · ε∆i + (1 + 2ε)t∆i + (1 + 2ε)t∆i + α · ε∆i225

(∗)
<

α

1 + ε
·∆i ≤ α · dX (x, y) ,226

227

where the inequality (∗) follows as 2(1 + 2ε)t < α( 1
1+ε − 2ε) for large enough constant c,228

using that ε < 1/8.229

230

Sparsity bound. For a point x ∈ X, let sx be the maximal index such that x ∈ Nsx . Note231

that the number of edges in our spanner is not affected by the choice of “cluster centers" in232

line 5 in Algorithm 1. Therefore, the edge count will be still valid if we assume that vP ∈ P233

is the vertex y with maximal value sy among all vertices in P .234

Consider an edge {x, y} added during the i’s phase of the algorithm. Necessarily x, y ∈ Ni,235

and x, y belong to the same cluster P of a partition Pj . W.l.o.g, y = vP , in particular236

sx ≤ sy. The edge {x, y} will be charged upon x. Since the partitions at level i are t ·∆237

bounded, we have that dX(x, y) ≤ t · ∆ = t · (1 + 2ε) · (1 + ε)i. Hence, for i′ such that238

ε · (1 + ε)i′ > t · (1 + 2ε) · (1 + ε)i, i.e. i′ > i+Oε(log t), the points x, y cannot both belong to239

Ni′ . As sx ≤ sy, it must be that x /∈ Ni′ . We conclude that x can be charged in at most240

Oε (log t) different levels. As in level i each vertex is charged for at most ϕi ≤ O( logn
δ ) edges,241

the total charge for each vertex is bounded by Oε( logn·log t
δ ).242

243

Lightness bound. Consider the scale ∆i = (1 + ε)i. As Ni is an ε · ∆i-net, Claim 1244

implies that Ni has size ni ≤ 2L
ε·∆i

, and in any case at most n. In that scale, we constructed245

ϕi = 2
δ logni ≤ 2

δ logn partitions, adding at most ni edges per partition. The weight of each246

edge added in this scale is bounded by O(t ·∆i).247

Let H1 consist of all the edges added in scales i ∈ {log1+ε
L
n , . . . , log1+ε L}, while H2248

consist of edges added in the lower scales. Note that H = H1 ∪H2.249

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi250

= O

 t

δ
· logn ·

∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i

 = Oε

(
t

δ
· log2 n

)
· L .251

w (H2) ≤
∑

∆i∈Ln ·{(1+ε)−1,(1+ε)−2,...,}

O (t ·∆i) · ni · ϕi252

= O

 t

δ
· logn ·

∑
i≥1

1
(1 + ε)i

 · L = Oε

(
t

δ
· logn

)
· L .253

254

The bound on the lightness follows. J255

4 Corollaries and Extensions256

In this section we describe some corollaries of Theorem 4 for certain metric spaces, and show257

some extensions, such as improved lightness bound for normed spaces, and discuss graph258

spanners.259

ESA 2018
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4.1 High Dimensional Normed Spaces260

Here we consider the case that the given metric space (X, d) satisfies that every sub-metric261

Y ⊆ X of size |Y | = n is (t, δ)-decomposable for δ = n−β , where β = β(t) ∈ (0, 1) is a262

function of t. In such a case we are able to shave a logn factor in the lightness.263

I Theorem 5. Let (X, dX) be an n-point metric space such that every Y ⊆ X is (t, |Y |−β)-264

decomposable. Then for every ε ∈ (0, 1/8), there is a t · (2 + ε)-spanner for X with lightness265

Oε

(
t
β · n

β · logn
)
and sparsity Oε

(
n1+β · logn · log t

)
.266

Proof. Using the same Algorithm 1, the analysis of the stretch and sparsity from Theorem 4267

is still valid, since the number partitions taken in each scale is smaller than in Theorem 4.268

Recall that in scale i we set ∆i = (1+ε)i, and the size of the ε ·∆i-net Ni is ni ≤ max{ 2L
ε∆i

, n}.269

The difference from the previous proof is that Ni is (t, n−βi )-decomposable, so the number of270

partitions taken is ϕi = O(nβi logni). In each partition we might add at most one edge per271

net point, and the weight of this edge is O(t ·∆i). We divide the edges of H to H1 and H2,272

and bound the weight of H2 as above (using that ni ≤ n). For H1 we get,273

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi274

= O

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i
·
(

L

ε ·∆i

)β
log L

ε ·∆i

275

= Oε

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

(
L

∆i

)β
· log L

∆i

 · L276

= Oε

t · ∑
i∈{0,...,log1+ε n}

(i+ 1) ·
(

(1 + ε)β
)i · L .277

278

Set the function f(x) =
∑k
i=0 (i+ 1) ·xi, on the domain (1,∞), with parameter k = log1+ε n.279

Then,280

f(x) =
(∫

fdx

)′
=
(

k∑
i=0

xi+1

)′
=
(
xk+2 − x
x− 1

)′
281

=
(
(k + 2)xk+1 − 1

)
(x− 1)−

(
xk+2 − x

)
(x− 1)2 ≤ (k + 2)xk+1

x− 1 .282

283

Hence,284

w (H1) = Oε
(
t · f

(
(1 + ε)β

))
· L285

= Oε

t · log1+ε n ·
(

(1 + ε)β
)log1+ε n

(1 + ε)β − 1

 · L = Oε

(
t

β
· nβ · logn

)
· L .286

287

We conclude that the lightness of H is bounded by Oε
(
t
β · n

β · logn
)
. J288
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In Section 5 we will show that any n-point Euclidean metric is (t, n−O(1/t2))-decomposable,289

and that for fixed p ∈ (1, 2), any n-point subset of `p is (t, n−O( log2 t/tp))-decomposable. The290

following corollaries are implied by Theorem 5 (rescaling t by a constant factor allows us to291

remove the O(·) term in the exponent of n, while obtaining stretch O(t)).292

I Corollary 6. For a set X of n points in Euclidean space, t > 1, there is an O(t)-spanner293

with lightness O
(
t3 · n1/t2 · logn

)
and O

(
n1+1/t2 · logn · log t

)
edges.294

I Corollary 7. For a constant p ∈ (1, 2) and a set X of n points in `p space, there is an295

O(t)-spanner with lightness O
(
t1+p

log2 t
· n log2 t/tp · logn

)
and O

(
n1+ log2 t/tp · logn · log t

)
edges.296

I Remark. Corollary 6 applies for a set of points X ⊆ Rd, where the dimension d is297

arbitrarily large. If d = o(logn) we can obtain improved spanners. Specifically, n-point298

subsets of d-dimensional Euclidean space are (O(t), 2−d/t2 )-decomposable (see Section 6).299

Applying Theorem 4 we obtain an O(t)-spanner with lightness Oε
(
t · 2d/t2 · log2 n

)
and300

Oε
(
n · 2d/t2 · logn · log t

)
edges.301

4.2 Doubling Metrics302

It was shown in [1] that metrics with doubling constant λ are (t, λ−O(1/t))-decomposable (the303

case t = Θ(log λ) was given by [33]). Therefore, Theorem 4 implies:304

I Corollary 8. For every metric space (X, dX) with doubling constant λ, and t ≥ 1, there305

exist an O(t)-spanner with lightness O
(
t · log2 n · λ1/t

)
and O

(
n · λ1/t · logn · log t

)
edges.306

4.3 Graph Spanners307

In the case where the input is a graph G, it is natural to require that the spanner will308

be a graph-spanner, i.e., a subgraph of G. Given a (metric) spanner H, one can define a309

graph-spanner H ′ by replacing every edge {x, y} ∈ H with the shortest path from x to y310

in G. It is straightforward to verify that the stretch and lightness of H ′ are no larger than311

those of H (however, the number of edges may increase).312

Consider a graph G with genus g. In [3] it was shown that (the shortest path metric of)313

G is
(
t, g−O(1/t))-decomposable. Furthermore, graphs with genus g have O(n+ g) edges [32],314

so any graph-spanner will have at most so many edges. By Theorem 4 we have:315

I Corollary 9. Let G be a weighted graph on n vertices with genus g. Given a parameter316

t ≥ 1, there exist an O(t)-graph-spanner of G with lightness O
(
t · log2 n · g1/t

)
and O(n+ g)317

edges.318

For general graphs, the transformation to graph-spanners described above may arbitrarily319

increase the number of edges (in fact, it will be bounded by O(
√
|EH | ·n), [20]). Nevertheless,320

if we have a strong-decomposition, we can modify Algorithm 1 to produce a sparse spanner. In321

a graph G = (X,E), the strong-diameter of a cluster A ⊆ X is maxv,u∈A dG[A](v, u), where322

G[A] is the induced graph by A (as opposed to weak diameter, which is computed w.r.t the323

original metric distances). A partition P of X is ∆-strongly-bounded if the strong diameter324

of every P ∈ P is at most ∆. A distribution D over partitions of X is (t,∆, δ)-strong-325

decomposition, if it is (t,∆, δ)-decomposition and in addition every partition P ∈ supp(D) is326

∆-strongly-bounded. A graph G is (t, δ)-strongly-decomposable, if for every ∆ > 0, the graph327

admits a (∆, t ·∆, δ)-strong-decomposition.328
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I Theorem 10. Let G = (V,E,w) be a (t, δ)-strongly-decomposable, n-vertex graph with329

aspect ratio Λ = maxe∈E w(e)
mine∈E w(e) . Then for every ε ∈ (0, 1), there is a t · (2 + ε)-graph-spanner330

for G with lightness Oε
(
t
δ · log2 n

)
and Oε(nδ · logn · log Λ) edges.331

Proof. We will execute Algorithm 1 with several modifications:332

1. The for loop (in Line 2) will go over scales i ∈ {0, . . . , log1+ε Λ} (instead {0, . . . , log1+ε L}).333

2. We will use strong-decompositions instead of regular (weak) decompositions.334

3. The partitions created in Line 3 will be over the set of all vertices V , rather then only335

net points Ni (as otherwise it will be impossible to get strong diameter).336

However, the requirement from close pairs to be clustered together (at least once), is still337

applied to net points only. Similarly to Claim 3, ϕi = (2 lnni)/δ repetitions will suffice.338

4. In Line 6, we will no longer add edges from vP to all the net points in P ∈ Pj . Instead,339

for every net point x ∈ P ∩Ni, we will add a shortest path in G[P ] from vP to x. Note340

that all the edges added in all the clusters constitute a forest. Thus we add at most n341

edges per partition.342

We now prove the stretch, sparsity and lightness of the resulting spanner.343

344

Stretch. By the triangle inequality, it is enough to show small stretch guarantee only345

for edges (that is, only for x, y ∈ V s.t. {x, y} ∈ E.) As we assumed that the minimal346

distance is 1, all the weights are within [1,Λ]. In particular, every edge {x, y} ∈ E has347

weight (1 + ε)i−1 < w ≤ (1 + ε)i for i ∈ {0, . . . , log1+ε Λ}. The rest of the analysis is similar348

to Theorem 4, with the only difference being that we use a path from vP to x̃ rather than349

the edge {x̃, vP }. This is fine since we only require that the length of this path is at most350

(t · (1 + 2ε) ·∆), which is guaranteed by the strong diameter of clusters.351

352

Sparsity. We have Oε(log Λ) scales. In each scale we had at most ϕi ≤ 2
δ logn partitions,353

where for each partition we added at most n edges. The bound on the sparsity follows.354

355

Lightness. Consider scale i. We have ni net points. For each net point we added at most356

one shortest path of weight at most O(t ·∆i) (as each cluster is O(t ·∆i)-strongly bounded).357

As the number of partitions is ϕi, the total weight of all edges added at scale i is bounded358

by O(t ·∆i) · ni · ϕi. The rest of the analysis follows by similar lines to Theorem 4 (noting359

that Λ < L). J360

5 LSH Induces Decompositions361

In this section, we prove that LSH (locality sensitive hashing) induces decompositions. In362

particular, using the LSH schemes of [5, 46], we will get decompositions for `2 and `p spaces,363

1 < p < 2.364

I Definition 11. (Locality-Sensitive-Hashing) Let H be a family of hash functions mapping365

a metric (X, dX) to some universe U . We say that H is (r, cr, p1, p2)-sensitive if for every366

pair of points x, y ∈ X, the following properties are satisfied:367

1. If dX(x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1.368

2. If dX(x, y) > cr then Prh∈H [h(x) = h(y)] ≤ p2.369

Given an LSH, its parameter is γ = log 1/p1

log 1/p2
. We will implicitly always assume that370

p1 ≥ n−γ (n = |X|), as indeed will occur in all the discussed settings. Andoni and Indyk [5]371

showed that for Euclidean space (`2), and large enough t > 1, there is an LSH with parameter372
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γ = O
( 1
t2

)
. Nguyen [46], showed that for constant p ∈ (1, 2), and large enough t > 1, there373

is an LSH for `p, with parameter γ = O
(

log2 t
tp

)
. We start with the following claim.374

I Claim 12. Let (X, dX) be a metric space, such that for every r > 0, there is an375

(r, t · r, p1, p2)-sensitive LSH family with parameter γ. Then there is an
(
r, t · r, n−O(γ), n−2)-376

sensitive LSH family for X.377

Proof. Set k =
⌈
log 1

p2
n2
⌉
≤ O(logn)

log 1
p2

, and let H be the promised (r, t ·r, p1, p2)-sensitive LSH378

family. We define an LSH family H ′ as follows. In order to sample h ∈ H ′, pick h1, . . . , hk379

uniformly and independently at random from H. The hash function h is defined as the380

concatenation of h1, . . . , hk. That is, h(x) = (h1(x), . . . , hk(x)).381

For x, y ∈ X such that dX(x, y) ≥ t · r it holds that382

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≤ pk2 ≤ n−2 .383

On the other hand, for x, y ∈ X such that dX(x, y) ≤ r, it holds that384

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≥ pk1 = 2
− log 1

p1
·O(logn)

log 1
p2 = n−O(γ) .385

J386

I Lemma 13. Let (X, dX) be a metric space, such that for every r > 0, there is a (r, t ·387

r, p1, p2)-sensitive LSH family with parameter γ. Then (X, dX) is (t, n−O(γ))-decomposable.388

Proof. Let H ′ be an
(
r, tr, n−O(γ), n−2)-sensitive LSH family, given by Claim 12. We will use389

H ′ in order to construct a decomposition forX. Each hash function h ∈ H ′ induces a partition390

Ph, by clustering all points with the same hash value, i.e. Ph(x) = Ph(y) ⇐⇒ h(x) = h(y).391

However, in order to ensure that our partition will be t · r-bounded, we modify it slightly.392

For x ∈ X, if there is a y ∈ Ph(x) with dX(x, y) > t · r, remove x from Ph(x), and create393

a new cluster {x}. Denote by P ′h the resulting partition. P ′h is clearly t · r-bounded, and394

we argue that every pair x, y at distance at most r is clustered together with probability at395

least n−O(γ). Denote by χx (resp., χy) the probability that x (resp., y) was removed from396

Ph(x) (resp., Ph(y)). By the union bound on the at most n points in Ph(x), we have that397

both χx, χy ≤ 1/n. We conclude398

Pr
P′
h

[P ′h(x) = P ′h(y)] ≥ Pr
h∼H

[h(x) = h(y)]− Pr
h

[χx ∨ χy] ≥ n−O(γ) − 2
n

= n−O(γ) .399

J400

Using [5], Lemma 13 implies that `2 is (t, n−O(1/t2))-decomposable. Moreover, using [46]401

for constant p ∈ (1, 2), Lemma 13 implies that `p is (t, n−O( log2 t/tp))-decomposable.402

6 Decomposition for d-Dimensional Euclidean Space403

In Section 5, using a reduction from LSH, we showed that `2 is (t, n−O(1/t2))-decomposable.404

Here, we will show that for dimension d = o(logn), using a direct approach, better decom-405

position could be constructed.406

Denote by Bd(x, r) the d dimensional ball of radius r around x (w.r.t `2 norm). Vd(r)407

denotes the volume of Bd(x, r) (note that the center here is irrelevant). Denote by Cd(u, r)408

the volume of the intersection of two balls of radius r, the centers of which are at distance u409

(i.e. for ‖x− y‖2 = u, Cd(u, r) denotes the volume of Bd(x, r) ∩Bd(y, r)). We will use the410

following lemma which was proved in [5] (based on a lemma from [27]).411
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I Lemma 14. ([5]) For any d ≥ 2 and 0 ≤ u ≤ r412

Ω
(

1√
d

)
·
(

1−
(u
r

)2
) d

2

≤ Cd(u, r)
Vd(r)

≤
(

1−
(u
r

)2
) d

2

.413

Using Lemma 14, we can construct better decompositions:414

I Lemma 15. For every d ≥ 2 and 2 ≤ t ≤
√

2d/ln d, `d2 is O(t, 2−O( d
t2

))-decomposable.415

Proof. Consider a set X of n points in `d2, and fix r > 0. Let B be some box which includes all416

of X and such that each x ∈ X is at distance at least t ·r from the boundary of B. We sample417

points s1, s2 . . . uniformly at random from B. Set Pi = BX(si, t·r2 ) \
⋃i−1
j=1BX

(
sj ,

t·r
2
)
. We418

sample points until X =
⋃
i≥1 Pi. Then, the partition will be P = {P1, P2, . . . .} (dropping419

empty clusters).420

It is straightforward that P is t·r-bounded. Thus it will be enough to prove that every pair421

x, y at distance at most r, has high enough probability to be clustered together. Let si be the422

first point sampled in Bd
(
x, t·r2

)
∪Bd

(
y, t·r2

)
. By the minimality of i, x, y /∈

⋃i−1
j=1Bd

(
sj ,

t·r
2
)

423

and thus both are yet un-clustered. If si ∈ Bd
(
x, t·r2

)
∩ Bd

(
y, t·r2

)
then both x, y join Pi424

and thus clustered together. Using Lemma 14 we conclude,425

Pr
P

[P(x) = P(y)] = Pr
[
si ∈ Bd

(
x,
t · r
2

)
∩Bd

(
y,
t · r
2

)
426

∣∣∣si is first in Bd(x, t · r2

)
∪Bd

(
y,
t · r
2

)]
427

≥
Cd(‖x− y‖2, t·r2 )

2 · Vd( t·r2 )
428

= Ω
(

1√
d

)(
1−

(
‖x− y‖2

t·r
2

)2
) d

2

429

= Ω
(

1√
d

)(
1− 4

t2

) d
2

430

= Ω
(
e−

2d
t2
− 1

2 ln d
)

= 2−O(d/t2) .431
432

J433
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