
Distributed Construction of Light Networks
Extended Abstract∗

Michael Elkin
†

Ben-Gurion University of the Negev

elkinm@cs.bgu.ac.il

Arnold Filtser
‡

Columbia University

arnold273@gmail.com

Ofer Neiman
§

Ben-Gurion University of the Negev

neimano@cs.bgu.ac.il

ABSTRACT
A t-spanner H of a weighted graphG = (V , E,w) is a subgraph that

approximates all pairwise distances up to a factor of t . The lightness
of H is defined as the ratio between the weight of H to that of the

minimum spanning tree. An (α, β)-Shallow Light Tree (SLT) is a tree
of lightness β , that approximates all distances from a designated

root vertex up to a factor of α . A long line of works resulted in

efficient algorithms that produce (nearly) optimal light spanners

and SLTs.

Some of the most notable algorithmic applications of light span-

ners and SLTs are in distributed settings. Surprisingly, so far there

are no known efficient distributed algorithms for constructing these

objects in general graphs. In this paper we devise efficient dis-

tributed algorithms in the CONGEST model for constructing light

spanners and SLTs, with near optimal parameters. Specifically, for

any k ≥ 1 and 0 < ϵ < 1, we show a (2k − 1) · (1 + ϵ)-spanner with

lightnessO(k ·n1/k) can be built in Õ
(
n

1

2
+ 1

4k+2 + D
)
rounds (where

n = |V | and D is the hop-diameter of G). In addition, for any α > 1

we provide an (α, 1 + O (1)
α−1)-SLT in (

√
n + D) · no(1) rounds. The

running times of our algorithms cannot be substantially improved.

We also consider spanners for the family of doubling graphs,

and devise a (
√
n + D) · no(1) rounds algorithm in the CONGEST

model that computes a (1+ ϵ)-spanner with lightness (logn)/ϵO (1)
.

As a stepping stone, which is interesting in its own right, we first

develop a distributed algorithm for constructing nets (for arbitrary

weighted graphs), generalizing previous algorithms that worked

only for unweighted graphs.

CCS CONCEPTS
• Theory of computation → Routing and network design
problems; Distributed algorithms.

∗
The reader is encouraged to read the full version of the paper, found here.

†
This research was supported by the ISF grant No. (724/15).

‡
Supported by the Simons Foundation. The work was done while the author was

affiliated with Ben-Gurion University of the Negev.

§
Supported in part by ISF grant 1817/17, and by BSF Grant 2015813.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’20, August 3–7, 2020, Virtual Event, Italy
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7582-5/20/08. . . $15.00

https://doi.org/10.1145/3382734.3405701

KEYWORDS
CONGEST, Light Spanners, Shallow light tree, Doubling Dimension

ACM Reference Format:
Michael Elkin, Arnold Filtser, and Ofer Neiman. 2020. Distributed Construc-

tion of Light Networks: Extended Abstract. In ACM Symposium on Principles
of Distributed Computing (PODC ’20), August 3–7, 2020, Virtual Event, Italy.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3382734.3405701

1 INTRODUCTION
Let G = (V , E,w) be a graph with edge weights w : E → R+.
For u,v ∈ V , denote by dG (u,v) the shortest path distance in

G between u,v with respect to these weights. A subgraph H =
(V , E ′) with E ′ ⊆ E is called a t-spanner of G, if for all u,v ∈ V ,
dH (u,v) ≤ t · dG (u,v). The parameter t is called the stretch of

H . The most relevant and studied attributes of a t-spanner are its
sparsity (i.e., the number of edges |E ′ |), and the total weight of the

edges w(H) =
∑
e ∈E′ w(e). Since any spanner with finite stretch

must be connected, its weight is at least the weight of the Minimum

Spanning Tree (MST) of G, and the lightness of H is defined as

w (H)

w (MST) .

Given a weighted graph G = (V , E,w) with a designated root

vertex rt , an (α, β)-Shallow-Light Tree (SLT) T of G [8, 44] is a

spanning tree which has lightness β , and approximates all distances

from rt to the other vertices up to a factor of α .
In this paper we focus on the distributed CONGEST model of

computation, where each vertex of the graph G hosts a processor,

and these processors communicate with each other in discrete

rounds via short messages on the graph edges (typically themessage

size isO(1) RAM words). We devise efficient distributed algorithms

that construct light spanners and shallow-light trees for general

graphs, and also light spanners for doubling graphs. See Table 1 for

a succinct summary.

1.1 Light Spanners for General Graphs
Spanners are a fundamental combinatorial object. They have been

extensively studied and have found numerous algorithmic appli-

cations [1, 2, 4, 6, 12, 20, 23, 25, 30, 32, 34, 50, 53, 54, 56, 57, 63].

The basic greedy algorithm [4], for a graph with n vertices and any

integer k ≥ 1, provides a (2k − 1)-spanner with O(n1+1/k) edges,
which is best possible (assuming Erdos’ girth conjecture). Light

spanners have received much attention in recent years [3, 11, 15–

18, 31, 33, 35, 40], and are particularly useful in a distributed setting;

efficient broadcast protocols, network synchronization and comput-

ing global functions [7, 8], network design [48, 59] and routing [64]

are a few examples. The state-of-the-art is a (2k−1) · (1+ϵ)-spanner

of [18] with lightness O(n1/k), for any constant 0 < ϵ < 1. In [36]

483

https://arxiv.org/abs/1905.02592
https://doi.org/10.1145/3382734.3405701
https://doi.org/10.1145/3382734.3405701

PODC ’20, August 3–7, 2020, Virtual Event, Italy Michael Elkin, Arnold Filtser, and Ofer Neiman

Object Distortion Lightness Size Run time

Spanner (2k − 1) · (1 + ϵ) O(k · n1/k) O(k · n1+1/k) Õ
(
n

1

2
+ 1

4k+2 + D
)

SLT 1 +
O (1)
α−1 α NA Õ

(√
n + D

)
· poly

(
1

α−1

)
(γ , β)-net NA NA NA (

√
n + D) · 2

Õ (
√
logn ·log β

γ −β)

Spanner 1 + ϵ ϵ−O (ddim) · logn n · ϵ−O (ddim) · logn (
√
n + D) · ϵ−Õ (

√
logn+ddim)

Table 1: A summary of our main results. Here n is the number of vertices, k ≥ 1 and α ≥ 1 are parameters and 0 < ϵ < 1 is a constant. For
the nets γ > β > 0. All results are in the CONGEST model.

it was shown that the greedy algorithm is existentially optimal.

Hence it also achieves this tradeoff.

The greedy algorithm provides a satisfactory answer to the exis-

tence of sparse and light spanners, but not to efficiently producing

such a spanner (because the greedy algorithm inherently has large

running time). Indeed, the problem of devising fast algorithms for

constructing spanners is very important for many algorithmic ap-

plications. [33] showed a near-linear time algorithm that constructs

a (2k − 1) · (1 + ϵ)-spanner with O(k · n1+1/k) edges and light-

ness O(k · n1/k). The sparsity and lightness were improved (still

in near-linear time) in [3] to O(logk · n1+1/k) and O(logk · n1/k)
respectively. In the distributed setting, [12] devised a randomized

algorithm for a (2k − 1)-spanner with O(k · n1+1/k) edges in O(k)
rounds

1
in the CONGEST model. This was recently improved for

unweighted graphs by [30, 50] to O(n1+1/k) edges. However, the
weight of these spanners may be very large. Surprisingly, none of

the previous works in the CONGEST model has a bound on the

lightness of spanners for general graphs.
Unlike the sparsity of spanners, which can be preserved via

a local algorithm, the lightness is a global measure. Indeed, we

observe that the lower bound of [60] on the number of rounds

required for any polynomial approximation of the weight of MST,

implies a lower bound for computing light spanners. In particular,

for a graph with n vertices and hop-diameter
2 D, any CONGEST

algorithm requires at least Ω̃(
√
n +D) rounds for computing a light

spanner (with any polynomial lightness).
3

Our result. We provide the first algorithm with sub-linear num-

ber of rounds for constructing light spanners for general graphs in

the CONGEST model. In detail, for any integer parameter k ≥ 1

and constant 0 < ϵ < 1, we devise a randomized algorithm that

w.h.p. outputs a (2k − 1) · (1 + ϵ)-spanner with O(k · n1+1/k) edges

and lightness O(k · n1/k), within Õ
(
n

1

2
+ 1

4k+2 + D
)
rounds in the

CONGEST model, thus nearly matching the lower bounds.

1.2 Shallow-Light Trees
Shallow-Light trees are widely used for various distributed tasks,

such as network design, broadcasting in ad-hoc networks and mul-

ticasting [14, 55, 65]. In [44], an optimal tradeoff between the light-

ness of the SLT to the stretch of the root distances was obtained.

1
The paper claimed only O (k2) rounds, but it has been observed that O (k) is also
possible.

2
The hop diameter of a weighted graph is the diameter of the underlying unweighted

graph.

3
The notations Õ (·) hide poly-logarithmic factors. That is f = Õ (д) implies f =
O (д · polylog(д)). Similarly for Ω̃(·).

Specifically, for any α > 1 they obtained an SLT with lightness α
and stretch 1+ 2

α−1 . In addition, [44] exhibited an efficient algorithm

for constructing such a tree in near-linear time, and also inO(logn)
rounds in the PRAM (CREW) model. However, their techniques are

inapplicable to the CONGEST model, and it remained open whether

an SLT can be built efficiently in this model. (Roughly speaking,

[44] uses pointer jumping that require massive communication

between multiple pairs of distant vertices. Hence this approach

appears to be unsuitable for the CONGEST model.)

Our result. We answer this open question in the affirmative,

and devise a distributed deterministic algorithm, that for any α >

1, outputs an SLT with lightness α and stretch 1 +
O (1)
α−1 , within

Õ
(√
n + D

)
· poly

(
1

α−1

)
rounds. See Theorem 1. Recall that by

[24], any distributed SLT algorithm requires at least Ω̃(
√
n + D)

rounds. Thus our result is nearly optimal.

1.3 Light Spanners for Doubling Graphs
A graph G has doubling dimension ddim if for every vertex v ∈ V

and radius r > 0, the ball
4 BG (v, 2r) can be covered by 2

ddim
balls

of radius r . For instance, a d-dimensional ℓp space has ddim = Θ(d),
and every graph with n vertices has ddim = O(logn). This is a
standard and well-studied notion of "growth restriction" on a graph

[5, 41, 42], and it is believed that such graphs occur often in real-

life networks and data [51, 62]. One notable motivation for light

spanners in doubling graphs
5
is their application for polynomial

approximation schemes for the traveling salesperson and related

problems (see, e.g., [40, 45]). While spanners with 1 + ϵ stretch and

constant lightness have been known to exist in low dimensional Eu-

clidean space for a while [4, 22], only recently such (1+ϵ)-spanners

with constant lightness (ddim/ϵ)O (ddim)
have been discovered for

doubling graphs [40]. The lightness was improved by [16] to the

optimal (1/ϵ)O (ddim)
.

Essentially all algorithms for constructing spanners for doubling

graphs use nets in their construction. An (α, β)-net of a graph is a

set N ⊆ V which is both α-covering: for all u ∈ V there is v ∈ N
with dG (u,v) ≤ α , and β-separated: for all x,y ∈ N , dG (x,y) > β .
The standard definition of a net is when α = β , but we shall allow
α > β as well. The usefulness of nets in doubling graphs stems

from the fact that any net restricted to a ball of certain radius has

a small cardinality. While a simple greedy algorithm yields a net,

it is not suitable for distributed models due to it being inherently

sequential.

4
A ball is defined as BG (v , r) = {u ∈ V : dG (u , v) ≤ r }.

5
A graph family is called doubling if its members have constant doubling dimension.

484

Distributed Construction of Light Networks PODC ’20, August 3–7, 2020, Virtual Event, Italy

A ruling set is a net in an unweighted graph. There have been

several works that compute a ruling set in distributed settings. In

[9], a deterministic algorithm for a (k logn,k)-ruling set running

in O(k logn) rounds was developed, and a tradeoff extending this

result was shown in [61]. A consequence of the work of [9] pro-

vides a (k,k)-ruling set computed within k · 2Õ (
√
logn)

rounds, the

running time can be improved to O(k · poly logn) using the recent

breakthrough of [58]. A randomized algorithm for a (k,k)-ruling set
was given in [47] withO(k logn) rounds, and the running time was

improved for graphs of small maximum degree in [10, 38]. However,

all these results apply only for unweighted graphs. The problem of

efficiently constructing a net in distributed models remained open.

Our results. We design a randomized distributed algorithm, that

for a given graph with n vertices and hop-diameter D and any

0 < β < α < 2β , w.h.p. finds an (α, β)-net within (
√
n + D) ·

2
Õ (
√
logn ·log β

α−β)
rounds in the CONGEST model (the proof is de-

ferred to the full version). We show that the running time must be at

least Ω̃(
√
n+D) for general graphs, via a reduction to the problem of

approximating the MSTweight. So our running time is best possible

(up to lower order terms) (the proof is deferred to the full version).

However, we do not know if a faster algorithm is achievable when

the input graph has a constant doubling dimension.

Then, we utilize this algorithm for constructing nets, and devise

a randomized algorithm that for a graph with doubling dimension

ddim and any 0 < ϵ < 1, w.h.p. produces a (1 + ϵ)-spanner with

lightness ϵ−O (ddim) · logn in (
√
n + D) · ϵ−Õ (

√
logn+ddim)

rounds.

1.4 Overview of Techniques
In this section we provide an overview of the algorithms, techniques

and ideas used in the paper.

Eulerian Tour of the MST. LetT be the MST. The first step in both

our constructions of an SLT and a light spanner for general graphs

is a distributed computation of an Eulerian traversal L of T . As
an outcome of this computation, each vertex knows all its visiting

times in L. Our algorithm is a simplification of a similar algorithm

from [29].

Light Spanner for General Graphs. From a high level, our ap-

proach is similar to the algorithms of [17, 31, 33]. We divide the

graph edges intoO(logn) buckets, according to their weight. Denote
by L the weight of the Eulerian traversal L = {x0, x1, . . . , x2n−2}
of the MST (each vertex can appear several times). In the lowest

level, we have all the edges of weight at most L/n. For this bucket
we use the distributed spanner of [12] for weighted graphs.

Consider the i-th bucket Ei , where all edges have weight in(
L

(1+ϵ)i+1 ,
L

(1+ϵ)i

]
. We use the MST traversal L to divide the graph

intoO((1+ϵ)
i

ϵ) clusters of diameter
ϵ ·L

(1+ϵ)i . Next, define an unweighted

cluster graph Gi whose vertices are the clusters, and inter-cluster

edges are taken only from Ei .
We then simulate the spanner algorithm of [30] for unweighted

graphs on Gi , and obtain a spanner Hi . For every edge e ∈ Hi , we

add a corresponding edge e ′ ∈ Ei to the final spanner. The main

technical challenge is this simulation, which is non-trivial since the

communication graph G is not the graph Gi for which we want a

spanner. To resolve this issue, we distinguish between small and

large clusters; for the former we use L to pipeline information

inside the clusters, while for the latter we convergecast all the

relevant information to a single vertex, and then broadcast the

decisions made by this vertex to the entire graph. For this approach

to be efficientwe need to refine the partition to clusters, so that small

clusters will have bounded hop-diameter. One also has to ensure

that there are few large clusters, as otherwise the convergecast and

broadcast would be too expensive.

Shallow Light Tree (SLT). Our algorithm for constructing SLT

employs as subroutines algorithms for constructing the MSTT and

a shortest path tree (SPT) rooted in rt . (This is also the case for other
algorithms for this problem [8, 44].) As currently the fastest known

exact SPT algorithms [26, 39] require more than Õ(
√
n +D) rounds,

we use instead an approximate SPT , T ′
[13, 28, 43]. Our basic

strategy (following [8, 44]) is to choose a subset of vertices called

break points (BP) on the Eulerian traversal L. Then we construct

a subgraph H by taking T , and adding to H the unique path in T ′

from rt to every break point v ∈ BP. The SLT is computed as yet

another approximate SPT rooted in rt , but now using H edges only.

Ideally, we would like to choose BP = {x0, xi1 , xi2 , . . . } such that

(1) every pair of consecutive points xi j , xi j+1 ∈ BP are far from

one another, specifically dL(xi j , xi j+1) > ϵ · dG (rt, xi j+1), and (2)

every node xq ∈ L has a nearby break point xi j ∈ BP, specifically

dL(xi j , xq) ≤ ϵ ·dG (rt, xq). The first condition is used to bound the

lightness, while the second condition is used to bound the stretch.

The choice of BP described above can be easily performed in a

greedy manner by sequentially traversing the nodes in L. Unfortu-

nately, one cannot implement this sequential algorithm efficiently

in a distributed setting. Instead, we break L into O(
√
n) intervals,

each containing at most

√
n nodes. We add the first node in each

interval to a temporary break point set BP
′
. Using these temporary

break points as anchors, we perform the sequential algorithm si-

multaneously in all intervals, and add (permanent) break points.

Finally, we broadcast BP
′
to rt , which performs a local computation

in order to sparsify this set. Specifically, it chooses a subset of BP
′

to serve as permanent break points using the sequential algorithm,

and broadcasts the chosen break points to the entire network. Intu-

itively, we are building a separate SLT for the set BP
′
, which filters

out some of its points. We show that this two-step choice of break

points is up to a constant factor in the lightness as good as the

sequential (one-step) choice of breakpoints.

Net Construction. Our algorithm for an (α, β)-net imitates, on a

high level, previous ruling sets algorithms (like [47, 49]).
6
Ideally,

the net construction works as follows. Initially, all vertices are

active. In each round, sample a permutation π . Each (active) vertex

v which is the first in the permutation with respect to (w.r.t.) its

β-neighborhood joins the net. Every vertex for which some vertex

from its α-neighborhood joined the net, becomes inactive. Repeat

until all vertices become inactive.

In order to check whether a vertex is the first in the permutation

w.r.t. its β-neighborhood, we use Least Element (LE) lists [19]. Given

a permutation π , a vertex u belongs to the LE list of a vertex v , if u

6
In fact, these papers showed algorithms for Maximal Independent Sets (MIS), but a

(k , k)-ruling set is an MIS for the graphGk
.

485

PODC ’20, August 3–7, 2020, Virtual Event, Italy Michael Elkin, Arnold Filtser, and Ofer Neiman

is the first in the permutation among all the vertices at distance at

most dG (v,u) from v . In particular, given the LE list of v , we can
check whether it should join the net or not. Efficient distributed

computation of an LE list is presented in [37]. However, rather than

computing the list w.r.t. the graph G, [37] compute LE list w.r.t.

an auxiliary graph H that approximates G distances up to a 1 + ϵ
factor. Fortunately, we can cope with the approximation by taking

α > (1 + ϵ)β . Once we compute the lists and choose which vertices

will be added to the net, we compute an (approximate) shortest path

tree rooted in the net points. All vertices at distance at most α from

net points become inactive. This concludes a single round. After

O(logn) rounds all vertices become inactive w.h.p.. The running

time is dominated by the LE lists computations.

Light Spanner for Doubling Metrics. The basic idea for construct-
ing spanners for doubling metrics is quite simple and well known.

For every distance scale ∆, construct an (α, β)-net N∆ where α, β ≈

ϵ∆, and connect by a shortest path every pair of net points at dis-

tance at most ∆. The stretch bound follows standard arguments,

based on the covering property of nets. To prove lightness, we will

use a packing argument, stating that every net point has at most

ϵ−O (ddim)
other net points at distance ∆, and every net point must

contribute to the MST weight at least ϵ · ∆.
The main issue is implementing this algorithm efficiently in the

CONGESTmodel. Themain obstacle is to connect nearby net points.

The problem is that the shortest path between nearby net points

may contain many vertices, and so we cannot afford to add these

sequentially.We resolve this issue by conducting a∆-boundedmulti-

source approximate shortest paths (from each net point) based on

hopsets. Roughly speaking, a hopset is a set of (virtual) edges added

to the graph, so that every pair has an approximate shortest path

containing few edges. We use the path-reporting hopsets of [27],

and so the actual paths are added to the spanner. The running time

is indeed bounded: we use the packing property of nets to show that

every vertex participates in a small number of such approximate

shortest path computations.

1.5 Related Work
In the distributed LOCAL model

7
, [21] devised light spanners for

a certain graph family, called unit ball graphs in a doubling metric
space8. Specifically, they showed anO(log∗ n) rounds algorithm for

a (1+ ϵ)-spanner with lightness (1/ϵ)O (ddim) · logΛ, where Λ is the

aspect ratio of G (the ratio between the largest to smallest edge

weights). We note that to obtain such a low number of rounds, they

imposed restrictions on both the distributed model and the graph

family.

1.6 Organization
In Section 3 we devise an Eulerian traversal of the MST, which

will be used in the following sections. In Section 4 we present our

distributed construction of an SLT. In Section 5 we show our light

spanners for general graphs. The construction of nets for general

graphs, their application to light spanners for doubling graphs and

the lower bounds are deferred to the full version.

7
The LOCAL model is similar to CONGEST, but the size of messages is not bounded.

8
A unit ball graph is a graph whose vertices lie in a metric space, and edges connect

vertices of distance at most 1. In this scenario the metric is doubling.

rt = a

b

c d f

e

g

2

2 4

3

31

a b a ab bc d e e ef g2 2 2 21 1 3 3 3 34 4

0 2 10 306 84 7 13 21 2717 24

T

L
Rx

Figure 1: Illustration of an Eulerian path of T .

2 PRELIMINARIES
Let G = (V , E,w) be a weighted graph with n vertices, and let dG
be the induced shortest path metric with respect to the weights. We

assume that the minimal edge weight is 1, and that the maximal

weight is poly(n). For v ∈ V denote by N (v) = {u ∈ V : {u,v} ∈
E} its set of neighbors, and by N+(v) = N (v) ∪ {v}. For a set

C ⊆ V , the induced graph on C is G[C]. The weak diameter of C is

maxu ,v ∈C {dG (u,v)} and its strong diameter ismaxu ,v ∈C {dG[C](u,v)}.
The hop-diameter ofG is defined as its diameter while ignoring the

weights.

In the CONGEST model of distributed computation, the graph

G represents a network, and every vertex initially knows only the

edges incident on it. Communication between vertices occurs in

synchronous rounds. On every round, each vertex may send a small

message to each of its neighbors. Every message has size at most

O(logn) bits. The time complexity is measured by the number of

rounds it takes to complete a task (we assume local computation

does not cost anything). Often the time depends on n, the number

of vertices, and D, the hop-diameter of the graph. The following
lemma formalizes the broadcast ability of a distributed network

(see, e.g., [52]).

Lemma 1. Suppose every v ∈ V holdsmv messages, each of O(1)
words9, for a total ofM =

∑
v ∈V mv . Then all vertices can receive all

the messages within O(M + D) rounds.

A Breadth First Search (BFS) tree τ of G of hop-diameter D
(ignoring the weights) can be computed in O(D) rounds. Since all
our algorithms have a larger running time, we always assume that

we have such a tree at our disposal.

3 EULERIAN TOUR OF THE MST
Let G = (V , E,w) be a weighted graph on n vertices with hop-

diameter D. Let T be the minimum spanning tree of G with a

root vertex rt ∈ V . We compute an Eulerian path L = {rt =
x0, x1, . . . , x2n−2} drawn by taking a preorder traversal of T . The
order between the children of a vertex is determined using their

id. We remark that in [29] it was described how to compute a DFS

search of a tree in Õ(
√
n + D) rounds. However, that paper also

had the property that each vertex uses at most O(logn) words of
memory. We give the full details here for completeness, and also

9
We assume a word size is logn bits.

486

Distributed Construction of Light Networks PODC ’20, August 3–7, 2020, Virtual Event, Italy

since the presentation is somewhat simpler without the bound on

the memory usage.

For a vertex x ∈ L, let Rx = dL(rt, x) be the time visiting x in

L. The total length of the traversal L (that is Rx2n−2) equals 2 ·w(T).
The number of appearances of each vertex v ∈ V in L equals to its

degree inT (other that the root rt who has deg(rt)+1 appearances).
We will treat each such appearance as a separate vertex. That is

L is a path graph. See Figure 1 on the right for an illustration. For

a vertex v ∈ V , let L(v) ⊆ L be the set of appearances of v in L.

In the following lemma we compute the traversal L in Õ(
√
n + D)

rounds, meaning that each vertexv will know L(v) and the visiting
time of every vertex x ∈ L(v). The proof is deferred to the full

version.

Lemma 2 (MST traversal). Let G = (V , E,w) be a weighted graph
with n vertices, hop-diameter D and root rt ∈ V , then there is a
deterministic algorithm in the CONGEST model that computes L in
Õ(

√
n + D) rounds.

4 SHALLOW LIGHT TREE (SLT)
In this section we present our SLT construction. Recall that an

(α, β)-SLT of G with a root rt is a tree TSLT that satisfies: 1) ∀ v ∈

V , dTSLT (rt,v) ≤ α · dG (rt,v), and 2) w(TSLT) ≤ β · w(MST). We

show the following theorem.

Theorem 1 (SLT). There is a deterministic distributed algorithm
in the CONGEST model, that given a weighted graphG with n vertices
and hop-diameter D, root vertex rt and parameter ϵ > 0, constructs
an (1 + ϵ, 1 +O(1ϵ))-SLT in Õ

(√
n + D

)
· poly(ϵ−1) rounds.

Initially we will assume that ϵ ∈ (0, 1). Afterwards, we will

show how to generalize our result to ϵ ≥ 1. Intuitively, in order

to construct an SLT, one should combine the MST tree T of G
with a shortest path tree rooted at rt . Unfortunately, currently
existing algorithms for constructing exact shortest path tree [26,

39] require more than Õ(
√
n + D) rounds. Instead, we will use an

approximate shortest path tree of [13]. Specifically, they show that

given a root vertex rt and a parameter ϵ ∈ (0, 1], one can compute an

approximate shortest path tree Tr t in Õ((
√
n + D)/poly(ϵ)) rounds.

The approximation here is in the sense that for every vertex v ,

dG (rt,v) ≤ dTr t (rt,v) ≤ (1 + ϵ) · dG (rt,v) . (1)

Our strategy to construct the SLT is similar to the framework

of [8, 44]. First, construct an MST T and an approximate shortest

path Tr t (rooted at rt). Next, choose a subset of vertices BP called

Break Points. An intermediate graph H will be constructed as a

union of T , and the paths in Tr t from rt to all the vertices in BP.

We will argue that H has lightnessO(1ϵ), and approximate distance

to rt up to a 1 + O(ϵ) factor. Our final SLT will be constructed

as yet another approximate shortest path tree in H (rooted at rt).
The pseudo-code of the algorithm appears in the full version. The

main difference from previous works is that a refined selection of

breakpoints is required, in order to ensure efficient implementation

in the CONGEST model. In previous algorithms BP was chosen

sequentially, i.e., break points were determined one after another.

In contrast, we have two phases. In the first phase we choose the

BP locally, while in the second phase we somewhat sparsify the set

BP using a global computation.

We remark that [44] gave an efficient implementation of their

algorithm in the PRAM CREW model with n processors inO(logn)
rounds. However, this implementation uses pointer jumping tech-

niques which cannot be translated to the CONGEST model.

4.1 Break Points Selection
Before picking the break points, we create traversal L of the MST

T (rooted at rt) as in Section 3, such that each vertex v ∈ V knows

its appearances L(v) and visiting times Rx for any x ∈ L(v). We

will treat vertices with duplications according to their appearances

on L. That is, v will simulate different vertices in L (and even

can be chosen to BP several times). Note that every neighbor u
of v in G is a neighbor of exactly two vertices in L(v) (w.r.t L),

and therefore v indeed can act in several roles without congestion

issues. In addition, each vertex xi ∈ L will know its index i (i.e.,
how many vertices precede him in L and not only the weighted

visiting time Rxi). This information can be obtained by running the

same algorithm that finds visiting times, ignoring the weights.

Setα =
⌈√

n
⌉
. Wewill construct BP in several steps. The initial set

of break points will be BP
′ = {x0, xα , x2α , x3α , . . . }, i.e., all the ver-

tices whose index is a multiple of α . Next, we create a break point set
BP1 from L \ BP′. In each interval Ii = {xiα , xiα+1, . . . , x(i+1)α−1}
in parallel we will add points to BP1. Initially, for every i , xiα sends

a message to xiα+1 with the information

(
xiα ,Rxiα

)
. Generally,

each vertex x j ∈ Ii will get at some point a message

(
y,Ry

)
from

x j−1. The interpretation is that y is the most recent addition to BP1,

with the additional information of Ry . Now, x j will join BP1 if the

following condition holds:

dL(x j ,y) = Rx j − Ry > ϵ · dTr t (rt, x j) . (2)

Note thatdTr t (rt, x j) is information locally known to x j from the ap-

proximate shortest path computation. Now, x j will send a message

to x j+1. If x j joined BP1, the message will be

(
x j ,Rx j

)
. Otherwise

the message will be

(
y,Ry

)
. After α − 1 rounds this procedure ends,

and each internal vertex x < BP
′
knows whether it joins BP1 or

not.

We cannot allow all the vertices in BP
′
to become break points

(as we have no bound on the weight of all the shortest paths from

rt towards them). Filtering which vertices among BP
′
will actually

join BP will be done in a centralized fashion. All the vertices xiα ∈

BP
′
will broadcast to rt the message

(
xiα ,Rxiα

)
. By Lemma 1 this

can be done in O(
√
n + D) rounds (since there are at most 2

√
n

relevant indices 0 < i ≤ 2n − 2). The root rt locally creates the set

BP2 ⊆ BP
′
as follows. Initially rt = x0 joins BP2. Next, sequentially,

for xiα where y ∈ BP
′
was the last vertex to join BP2, xiα will

join BP2 if dL(xiα ,y) = Rxiα − Ry > ϵ · dTr t (rt, xiα). After this
local computation, rt will broadcast to the entire graph the set

BP2 in O(
√
n + D) rounds (using Lemma 1). Define the final set of

breakpoints as BP = BP1 ∪ BP2. (Intuitively, this step computes

an SLT for the submetric of the original metric, induced by the set

BP
′
.)

4.2 The Creation of H
For a point b ∈ BP, let Pb be the unique path from rt to b in Tr t .
Let H = T ∪

⋃
b ∈BP Pb . Denote by ABP the set of vertices whose

subtree in Tr t contains a vertex of BP. Each vertex knows whether

487

PODC ’20, August 3–7, 2020, Virtual Event, Italy Michael Elkin, Arnold Filtser, and Ofer Neiman

it belongs to BP, and we would like to ensure that every v ∈ ABP

will add an edge to its parent in Tr t . Then adding the MST edges

will conclude the construction of H . In the remaining part of this

sub-section we show the computation of ABP.

We start by creating a set F of O(
√
n) fragments, which are sub-

trees ofTr t of hop-diameterO(
√
n) (this could be done by applying

the first phase of the MST algorithm of [46], more details appear

in the full version). Each fragment can locally (in parallel) com-

pute in O(
√
n) rounds whether it contains a break point, since it

has bounded hop-diameter. Next, each fragment sends to rt its id,
whether it contains a break point, and all of its outgoing edges in

Tr t . Note there is a total of O(
√
n) messages in this broadcast, so

by Lemma 1 this will take O(
√
n + D) rounds (in fact, all vertices

will receive all these messages). Now, rt can form a virtual tree T ′

whose vertices are the fragments F = {F1, F2, . . . }, and its edges

connect fragments Fi , Fj if there is an edge of Tr t between a vertex

of Fi to a vertex of Fj . Now, we can also assign roots r1, r2, . . .
(where ri ∈ Fi and r1 = rt), so that ri is the vertex with an edge

in Tr t to a vertex in the parent of Fi in T
′
. (See Section 3 for more

details and a picture of the virtual tree and its roots.)

Then, rt is able to compute locally for every root ri ∈ Fi whether
ri ∈ ABP (i.e. its subtree contains a break point), simply by inspect-

ing whether Fi has a descendant in T ′
with a break point. Then

broadcast this information on all roots in O(
√
n + D) rounds. Note

that now every local leafv ∈ Fi knows whether its subtree contains
a break point. Finally, locally in parallel in O(

√
n) rounds, in all

the fragments Fi we can compute for every vertex v ∈ Fi whether
v ∈ ABP.

4.3 Stretch and Lightness Analysis
In this subsection we argue that H has the desired lightness and

stretch. We name the break points BP1 = {b0, b1, . . . }, BP2 =

{ ˜b0, ˜b1, . . . } according to the order of their appearance in L. It

is clear by construction that for every pair of consecutive break

points
˜bj−1, ˜bj ∈ BP2, dL(˜bj , ˜bj−1) > ϵ · dTr t (rt,

˜bj). We claim that

this property remain true also for every consecutive break points

bj−1,bj ∈ BP1. Indeed, let i such that bj ∈ Ii . If bj−1 ∈ Ii then it

follows by construction. Otherwise, bj is the first break point in Ii ,
and by (2) it holds that dL(bj ,bj−1) > dL(bj , xiα) > ϵ · dTr t (rt,bj).

Corollary 3. w(H) ≤ (1 + 4

ϵ) ·w(T).

Proof. The graph H consists of three parts, w(H) ≤ w(T) +∑
b ∈BP1 w(Pb) +

∑
˜b ∈BP2

w(P
˜b). We first bound the weight of the

edges added due to BP1:∑
j≥1

w(Pbj) =
∑
j≥1

dTr t (rt,bj)

<
∑
j≥1

1

ϵ
· dL(bj−1,bj) ≤

1

ϵ
·w(L) =

2

ϵ
·w(T) .

Similarly for BP2,

∑
j≥1w(P

˜bj
) ≤ 2

ϵ ·w(T). The corollary follows.

□

Lemma 4. For every v ∈ V , dH (rt,v) ≤ (1 + 25ϵ) · dG (rt,v).

Proof. Consider a vertex v ∈ V . Let x be an arbitrary vertex

from L(v). By construction there is a point y ∈ BP
′∪BP1 such that

dL(x,y) ≤ ϵ · dTr t (rt, x) . (3)

Moreover, for y there is a point y′ ∈ BP such that

dL(y,y
′) ≤ ϵ · dTr t (rt,y) , (4)

(it might be that x = y or y = y′). We first bound dL(x,y
′), using

that dG ≤ dL and the assumption ϵ ≤ 1.

dL(x,y
′) = dL(x,y) + dL(y,y

′)

(4)

≤ dL(x,y) + ϵ · dTr t (rt,y)

(1)

≤ dL(x,y) + ϵ · (1 + ϵ) · dG (rt,y)

≤ dL(x,y) + 2ϵ · (dG (x,y) + dG (rt, x))

≤ (1 + 2ϵ) · dL(x,y) + 2ϵ · dG (rt, x)

(3)

≤ (1 + 2ϵ) · ϵ · dTr t (rt, x) + 2ϵ · dG (rt, x)

(1)

≤ (1 + 2ϵ) · ϵ · (1 + ϵ) · dG (rt, x) + 2ϵ · dG (rt, x)

≤ 8ϵ · dG (rt, x) .

We conclude,

dH (rt, x) ≤ dTr t (rt,y
′) + dL(x,y

′)

≤ (1 + ϵ) ·
(
dG (rt, x) + dG (x,y

′)
)
+ dL(x,y

′)

≤ (1 + ϵ) · dG (rt, x) + 3 · dL(x,y
′) ≤ (1 + 25ϵ) · dG (rt, x) .

□

4.4 Finishing the Construction and
Generalization to ϵ > 1

After creating the subgraphH , we create a (1+ϵ)-shortest path tree

TSLT (using [13]) of H rooted at rt in Õ(
√
n + D)/poly(ϵ) rounds.

The treeTSLT has weight at mostw(TSLT) ≤ w(H) ≤ (1 + 4

ϵ) ·w(T)
by Corollary 3. Moreover, by Lemma 4 for every vertex v ∈ V it

holds that

dTSLT (rt,v) ≤ (1 + ϵ) · dH (rt,v)

≤ (1 + ϵ) · (1 + 25ϵ) · dG (rt,v) ≤ (1 + 51ϵ) · dG (rt,v) .

By rescaling ϵ , we conclude that for every ϵ ∈ (0, 1) we can con-

struct an (1+ϵ,O(1ϵ))-SLT. This is the right behavior (up to constant
factors) when the distortion is small, as shown in [44]. We would

like to obtain the inverse tradeoff, when the lightness is close to 1,

say 1 + γ for 0 < γ < 1. If we will directly apply our construction

for large 1 < ϵ = 1/γ , then it can be checked that we will get

distortionO(1/γ 2) and lightness 1+γ , instead of the desiredO(1/γ)
distortion (roughly speaking, this is because a breakpoint in BP ′

may have been removed, so in the analysis we applied a chain of

two breakpoints). Fortunately, we can use a reduction due to [11].

Lemma 5 ([11]). Let G = (V , E) be a graph, 0 < δ < 1 a parameter
and t :

(V
2

)
→ R+ some function. Suppose that we have an algorithm

that for any given weight functionw : E → R+ constructs a spanner
H with lightness ℓ such that every pair u,v ∈ V suffers distortion at
most t(u,v). Then for every weight functionw there exists a spanner
H with lightness 1+δℓ and such that every pair u,v suffers distortion
at most t(u,v)/δ .

488

Distributed Construction of Light Networks PODC ’20, August 3–7, 2020, Virtual Event, Italy

The reduction algorithmworks by first changing the edgeweights,

and then executing the original algorithm. To compute the new

weight of an edge e ∈ E, we only need to know the parameter δ ,
the original weightw(e) and whether e belongs the MST. Thus we

can easily use this reduction in the CONGEST model as well.

We presented an algorithm that constructs a subgraph H with

constant lightness (say c) and distortion 2 from rt . We will use

distortion function below,

t(u,v) =

{
2 rt ∈ {u,v}

∞ otherwise

.

Thus, given any 0 < γ < 1, we can apply Lemma 5 with the

parameter δ = γ/c , and obtain lightness 1+γ and distortionO(1/γ).
Theorem 1 now follows.

5 DISTRIBUTED LIGHT SPANNER
In this section we devise an efficient distributed algorithm for light

spanners in general graphs. In particular, we prove the following:

Theorem 2 (Light Spanner). There is a randomized distributed
algorithm in the CONGEST model, that given a weighted graph G =
(V , E,w) with n vertices and hop-diameter D, and parameters k ∈ N,

ϵ ∈ (0, 1), in Õϵ

(
n

1

2
+ 1

4k+2 + D
)
rounds, w.h.p. returns a (2k−1)(1+ϵ)

spanner H with Oϵ (k · n1+
1

k) edges and lightness Oϵ (k · n
1

k).

Our algorithm is similar in spirit to the algorithms of [17, 31, 33].

The pseudo-code of the algorithm appears in the full version. It

begins by computing a traversal L = {rt = x0, x1, . . . , x2n−2} of
the MST T , as in Section 3. In particular, every vertex v knows

the set of its appearances L(v), and the visiting times and indices

of every x ∈ L(v). Let L = w(L) = 2w(T) denote the length of

L. Note that the value L is known to all the vertices (or can be

broadcasted in O(D) rounds).
Set E ′ = {e ∈ E : w(e) ≤ L/n}, and for every i ∈

{0, 1, . . . ,
⌈
log

1+ϵ n
⌉
} set Ei = {e ∈ E :

L
(1+ϵ)i+1 < w(e) ≤ L

(1+ϵ)i }.

The algorithm constructs a different spanner for each edge set, and

the final spanner will be a union of all these spanners. First, build

a spanner H ′
for the low weight edges E ′. This is done using the

algorithm of Baswana and Sen [12]. Specifically we run [12] on the

graphG ′ = (V , E ′). InO(k) rounds10 we get a (2k−1)-spannerH ′
of

G ′
, where the expected number of edges is bounded byO(k ·n1+1/k).
Next, for every i ∈ {0, 1, . . . ,

⌈
log

1+ϵ n
⌉
} we will define a cluster

graph Gi , on which we will simulate a spanner for unweighted

graphs. For each i , we partition V into clusters Ci . Let Gi be an

unweighted graph with Ci as its vertex set, and there is an edge

between two clusters A,B if there are vertices a ∈ A, b ∈ B such

that {a,b} ∈ Ei .
In [31, 33] the greedy spanner was applied on each Gi . How-

ever, we cannot do so efficiently in a distributed setting. Instead,

we will use the randomized algorithm of [30] on each Gi . For an

unweighted graph with N vertices, that algorithm provides (with

constant probability) a (2k−1)-spanner withO(N 1+1/k) edges, com-

puted in k rounds. Even though [30] gave an efficient distributed

implementation, the input graphGi is not the communication graph

10
The original paper claimedO (k2) rounds, but it has been observed that their algo-

rithm can be implemented inO (k) rounds.

G. Our main technical contribution in this section is an adaptation

of that algorithm for the cluster graphs Gi , which also requires

some changes in the partition that generates these graphs.

The algorithm of [30] runs in k rounds. Initially, every vertex x
independently samples a value r (x) from some distribution. In the

first round x initializesm(x) = r (x), s(x) = x and sends (s(x),m(x)−
1) to all its neighbors. In each following round, every vertex x
that received messages {(s(v),m(v))}v ∈N (x) from its neighbors in

the previous round, computes u = argmax
v∈N+(x){m(v)}, updates

m(x) = m(u) and s(x) = s(u), and sends (s(x),m(x) − 1) to all its

neighbors. After k rounds, each vertex x adds to the spanner edges:

for every vertex y, add one edge to an arbitrary vertex in the set

{v ∈ N (x) : m(v) ≥ m(x) − 1∧ s(v) = y}, if exists (in other words,

for every source y whose message reached x with value at least

m(x) − 1, we add 1 edge to the spanner, from x to a neighbor v that

sent x the message on y). A useful property of the algorithm is that

the stretch is guaranteed
11

while the number of edges is bounded

in expectation.

In order to implement this algorithm in Gi , the vertices in each

cluster C ∈ Ci need to compute the maximum over all the values

they received from their neighbors in the previous round, and then

send this value. Finally, we need to make sure that for every pair

of clusters we want to connect, only one edge is added. We will

distinguish between two cases, as long as the hop diameter of

clusters is not too large, they can compute locally the maximum

value. When the hop diameter is too large, we will ensure that there

are few clusters, and all the relevant information will be broadcasted

to the entire graph.

Case 1: i ≤ log
1+ϵ (ϵ · n

k
2k+1). Setwi =

L
(1+ϵ)i . We now describe

the partition of V into clusters Ci . Each cluster C ∈ Ci has a name

in {0, 1, 2, . . . , L
ϵ ·wi

}, and its weak diameter is at most ϵ ·wi w.r.t

the MST metric (i.e. for any u,v ∈ C , dT (u,v) ≤ ϵ ·wi). Let v ∈ V ,
and x ∈ L(v) be an arbitrary appearance. Then v will belong to

the cluster

⌈
Rx
ϵ ·wi

⌉
(recall that Rx = dL(rt, x)). The weak diameter

is indeed bounded, as for every v,u ∈ V which both belong to the

same cluster j, it holds that there are x ′ ∈ L(v), x ′′ ∈ L(u) such
that |Rx ′ − Rx ′′ | ≤ ϵ · wi , hence dT (u,v) ≤ dL(x

′, x ′′) ≤ ϵ · wi .

Note that each vertex belongs to a single cluster. The number of

clusters is bounded by

⌈
L

ϵ ·wi

⌉
+ 1 =

⌈
(1+ϵ)i
ϵ

⌉
+ 1 ≤

⌈
n

k
2k+1

⌉
+ 1.

Before the rounds simulations, each vertex v ∈ V sends the

identity of its cluster to all its neighbors. Additionally, rt samples a

value rA for every cluster A ∈ Ci , and broadcasts all these values

to all the vertices in O(|Ci | + D) rounds, using Lemma 1. Next,

we describe how to implement a single round. In the beginning

of the round, each vertex knows the message (s(A),m(A)) that all
clustersA ∈ Ci sent in the previous round. The simulation has three

phases: (1) Local phase: each vertex v ∈ A, computes the maximum

m(B) over all neighboring clusters B. No communication required,

as v knows the clusters of its neighbors and their messages. (2)

Convergecast phase: we convergecast (s(A),m(A)) towards rt on the
BFS tree τ . Each vertexv that received all messages from its children

in τ for a cluster A, will only forward the one with maximumm(A).

11
For the stretch bound, the random samples r (x) need to satisfy r (x) < k , which

can be verified locally. The stretch analysis in [30] is conditioned on the event ∀x ∈

V : r (x) < k .

489

PODC ’20, August 3–7, 2020, Virtual Event, Italy Michael Elkin, Arnold Filtser, and Ofer Neiman

Therefore each vertex will forward only |Ci | messages, and we can

pipeline all the messages of the second phase inO(|Ci | +D) rounds.
(3) Broadcast phase: the root rt broadcasts all the new messages

(s(A),m(A)) for all clusters A ∈ Ci to all the graph in O(|Ci | + D)
rounds.

After k such rounds we add edges to the spanner by a converge-

cast of all the spanner edges towards rt using τ . LetHi be the span-

ner of Gi . In [30] it is shown that in expectation |Hi | = O(|Ci |
1+ 1

k).

Consider a vertex v ∈ A. For every cluster B such that {A,B} ∈ Hi
and there is a neighbor u ∈ B of v , v will send ((u,v), (A,B)) to-
wards rt . On the other hand, each vertex receiving edges fromA×B,

will forward only a single such edge. After O(|Ci |
1+ 1

k + D) rounds
the center rt knows Hi , and for every edge (A,B) ∈ Hi it knows a

representative (a,b) ∈ A × B. In additional O(|Ci |
1+ 1

k + D) rounds
rt broadcasts all these edges and Hi is created accordingly. The

total number of rounds to implement each iteration of [30] is

O(|Ci |
1+ 1

k + D) ≤ O

((
n

k
2k+1

) k+1
k
+ D

)
= O

(
n

1

2
+ 1

4k+2 + D
)
.

Case 2: log
1+ϵ (ϵ · n

k
2k+1) < i ≤ log

1+ϵ (n). Setwi =
L

(1+ϵ)i . Simi-

larly to the previous regime, wewill partition the graph into clusters

Ci with weak diameter ϵ ·wi . However, as the number of clusters

will be large, computations will be done locally in the clusters. In

order to make the local computations efficient, we will refine the

partition into clusters such that each cluster will have bounded

(weak) hop-diameter . We start by choosing cluster centers. A ver-

tex x j ∈ L is a cluster center if one of the following conditions is

fulfilled:

(1) There is an integer s such that Rx j−1 < s · (ϵ ·wi) ≤ Rx j .

(2) j is a multiple of

⌈
ϵ ·n

(1+ϵ)i

⌉
(that is, there is an integer q such

that j = q ·

⌈
ϵ ·n

(1+ϵ)i

⌉
).

Note that x0 is a center. For every vertex xb ∈ L, consider the clos-

est center xa left of xb (w.r.t L). It holds that Rxb −Rxa < ϵ ·wi and

b − a < ϵ ·n
(1+ϵ)i . Moreover, the total number of centers is bounded

by
L

ϵ ·wi
+ n

ϵ ·n
(1+ϵ)i

=
2·(1+ϵ)i

ϵ . In particular, each vertex can compute

whether it is a center locally. For every vertex v ∈ V , pick an ar-

bitrary x j ∈ L(v), and let j ′ ≤ j be the largest such that x j′ is a
center. Then v joins the cluster C(x j′) of x j′ . If xa, xb are two con-

secutive cluster centers, then I (xa) = {xa, xa+1, xa+2, . . . , xb−1}
will be the communication interval for the cluster C(xa). Note that
C(xa) ⊆ I (xa) (they need not be equal, since each vertex u ∈ V has

several possible representatives in L(u)).
Note that the hop-diameter of I (xa) is bounded by

ϵ ·n
(1+ϵ)i ≤

n
1

2
+ 1

4k+2 , and also for any u,v ∈ C(xa) we have dT (u,v) ≤ ϵ · wi .

Each vertex v ∈ V belongs to a single cluster. However, v might

belong to many communication intervals. Nevertheless, every MST

edge appears twice in L, and therefore it belongs to at most two

communication intervals.

In order to enable the partition to clusters, each cluster center xa
declares itself via I (xa). That is, it sends to the right neighbor (on

L) a message declaring itself, which is forwarded until it reaches

the next center xb . This declaration takes
ϵ ·n

(1+ϵ)i rounds. At the end,

each vertex chooses to which cluster it joins, becomes aware of all

the communication intervals it belongs to, and sends its cluster i.d.

to all its neighbors.

Now that we have defined the clustering, the simulation of

each iteration of [30] is done in essentially the same manner as

the previous case, with the communication interval taking the

role of the global BFS tree τ . That is, in parallel for every clus-

ter C(xa) we find the maximum over the m(v) by convergecast

in I (xa). In the last round we convergecast the spanner edges

touching the cluster C(xa), so we need a bound on that number.

In [30] it is shown that w.h.p. every vertex (cluster) adds at most

O(|Ci |
1/k

logn) = O(n1/k logn) edges to the spanner. So the num-

ber of rounds required for a simulation of a single iteration is at

most

O(n
1

k logn + n
1

2
+ 1

4k+2) = O(n
1

2
+ 1

4k+2) ,

(assuming k > 1.) The total number of rounds (for each i in this

range) is thus O
(
k · n

1

2
+ 1

4k+2

)
. This concludes the second case.

Our final spanner H will be a union of the MSTT , with the span-

ner H ′
of G ′

, and with the spanners Hi for all 0 ≤ i ≤ ⌈log
1+ϵ n⌉.

As the there are O(log
1+ϵ n) different scales, we conclude that the

total construction of the spanner H of G takes Õ(n
1

2
+ 1

4k+2 + D)
rounds.

5.1 Analysis
In this section we finish the proof of Theorem 2 by analyzing the

stretch, lightness, and sparsity of the spanner H .

Stretch. By the triangle inequality, it suffices to show that for

every edge {u,v} = e ∈ E, it holds that dH (u,v) ≤ (2k − 1)(1 +

ϵ)w(e). In fact, we will show a bound of (2k − 1)(1 + O(ϵ)) on
the stretch. This can be fixed later by rescaling ϵ . Fix {u,v} =
e ∈ E. We can assume that w(e) ≤ L, as otherwise we fulfill the
requirement using the MST edges only. If e ∈ E ′, then dH (u,v) ≤
dH ′(u,v) ≤ (2k − 1) · w(e). Otherwise, let i ≥ 0 such that e ∈ Ei ,
that is

wi
(1+ϵ) < w(e) ≤ wi for wi =

L
(1+ϵ)i . Let Au ,Av ∈ Ci be the

clusters containing u,v respectively. If Au = Av , then dH (u,v) ≤
dT (u,v) ≤ ϵ · wi ≤ w(e) (assuming ϵ < 1/2, say). Otherwise,

{Au ,Av } is an edge of Gi , and therefore there is a path Au =
A0,A1, . . . ,At = Av between Au ,Av in Hi where t ≤ 2k − 1. In

particular, for every 0 ≤ j < t , we added some edge {vj ,uj+1} ∈

Aj ×Aj+1∩Ei toHi . Letu0 = u andvt = v . As the distance between
every pair of vertices in any cluster is bounded by ϵ ·wi and the

weight of all the edges in Hi is bounded bywi we conclude

dH (u,v) ≤ dHi∪T (u0,vt)

≤ dT (u0,v0) +
t−1∑
j=0

(
w(vj ,uj+1) + dT (uj+1,vj+1)

)
≤ (t + 1) · ϵ ·wi + t ·wi

≤ (2k − 1) · (1 +O(ϵ)) ·w(e) .

Lightness. We bound the lightness ofH ′
and each of the spanners

Hi . First consider H
′
. Since the weight of every edge e ∈ E ′ is at

most L/n, we have

w(H ′) ≤ |H ′ | ·
L

n
= O(k · n1+

1

k ·
L

n
) = O(k · n

1

k · L) .

490

Distributed Construction of Light Networks PODC ’20, August 3–7, 2020, Virtual Event, Italy

Next consider Hi , which has expected O(|Ci |
1+ 1

k) =

O

((
(1+ϵ)i
ϵ

)
1+ 1

k
)
edges, all of weight bounded by wi =

L
(1+ϵ)i . So

the expected weight of all these Hi together is

⌈log
1+ϵ n⌉∑
i=0

E [w(Hi)] ≤

⌈log
1+ϵ n⌉∑
i=0

E[|Hi |] ·wi

=

⌈log
1+ϵ n⌉∑
i=0

O

((
(1 + ϵ)i

ϵ

)
1+ 1

k
)
·

L

(1 + ϵ)i

= O

(
L

ϵ1+1/k

)
·

⌈log
1+ϵ n⌉∑
i=0

(1 + ϵ)
i
k

= O

(
L

ϵ1+1/k

)
·
(1 + ϵ)

⌈log1+ϵ n⌉+1
k − 1

(1 + ϵ)1/k − 1

= O

(
L · k · n1/k

ϵ2+1/k

)
,

where the last equality follows as (1 + ϵ)
1

k − 1 ≥ e
ϵ
2
· 1k − 1 ≥ ϵ

2k .

We conclude that the expected weight of H is

E[w(H)] ≤ w(T) +w(H ′) +

⌈log
1+ϵ n⌉∑
i=0

E[w(Hi)] = Oϵ

(
k · n

1

k · L
)
.

Sparsity. Following the analysis of the lightness, we have

⌈log
1+ϵ n⌉∑
i=0

E[|Hi |] ≤

⌈log
1+ϵ n⌉∑
i=0

O

((
(1 + ϵ)i

ϵ

)
1+ 1

k
)

= O

(
1

ϵ1+
1

k

·
n1+

1

k

(1 + ϵ)1+
1

k − 1

)
= O

(
n1+

1

k

ϵ2+
1

k

)
,

We conclude,

E[|H |] ≤ |T | + |H ′ | +

⌈log
1+ϵ n⌉∑
i=0

E[|Hi |] = Oϵ

(
k · n1+

1

k

)
.

Remark 1. We note that the number of edges mostly comes from the
spanner H ′. We can in fact use the techniques developed here in order
to efficiently implement the algorithm of [30] for weighted graphs
in the CONGEST model, which provides a (2k − 1) · (1 + ϵ)-spanner
with Oϵ (logk · n1+1/k) edges. That algorithm partitions the edges
E to ≈ logk sets, and for each set, applies the unweighted version
on a cluster graph. Since we already have an efficient distributed
implementation of that unweighted algorithm, we conclude that our
sparsity bound may be improved to Oϵ (logk · n1+1/k). We leave the
details to the full version.

Successes Probability. Note that once the computation concludes,

we can easily compute the size and lightness of the spanner inO(D)
rounds via the BFS tree τ . Thus we can repeat the computation for

H ′
and each Hi until they meet the required bounds, which will

happen w.h.p. after at most O(logn) tries. Recall that the stretch
bound is guaranteed to hold.

REFERENCES
[1] Amir Abboud and Greg Bodwin. 2016. The 4/3 additive spanner exponent is

tight. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 351–361. https:

//doi.org/10.1145/2897518.2897555

[2] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. 1999.

Fast Estimation of Diameter and Shortest Paths (Without Matrix Multiplica-

tion). SIAM J. Comput. 28, 4 (1999), 1167–1181. https://doi.org/10.1137/

S0097539796303421

[3] Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian

Wulff-Nilsen. 2017. Constructing Light Spanners Deterministically in Near-Linear

Time. CoRR abs/1709.01960 (2017). arXiv:1709.01960 http://arxiv.org/abs/1709.

01960

[4] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares.

1993. On Sparse Spanners of Weighted Graphs. Discrete & Computational Geom-
etry 9 (1993), 81–100. https://doi.org/10.1007/BF02189308

[5] P. Assouad. 1983. Plongements lipschitziens dans Rn . Bull. Soc. Math. France
111, 4 (1983), 429–448. http://eudml.org/doc/87452.

[6] Baruch Awerbuch. 1985. Complexity of network synchronization. J. ACM 32, 4

(Oct. 1985), 804–823. https://doi.org/10.1145/4221.4227

[7] Baruch Awerbuch, Alan E. Baratz, and David Peleg. 1990. Cost-Sensitive Analysis

of Communication Protocols. In Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, August 22-24,
1990. 177–187. https://doi.org/10.1145/93385.93417

[8] Baruch Awerbuch, Alan E. Baratz, and David Peleg. 1992. Efficient broadcast and
light-weight spanners. Technical Report CS92-22. The Weizmann Institute of

Science, Rehovot, Israel.

[9] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin.

1989. Network Decomposition and Locality in Distributed Computation. In 30th
Annual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989. 364–369. https://doi.org/10.

1109/SFCS.1989.63504

[10] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2012. The

Locality of Distributed Symmetry Breaking. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012. 321–330. https://doi.org/10.1109/FOCS.2012.60

[11] Yair Bartal, Arnold Filtser, and Ofer Neiman. 2019. On notions of distortion and

an almost minimum spanning tree with constant average distortion. J. Comput.
System Sci. (2019). https://doi.org/10.1016/j.jcss.2019.04.006 Preliminary version

appeared in SODA16.

[12] Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized

algorithm for computing sparse spanners in weighted graphs. Random Struct.
Algorithms 30, 4 (2007), 532–563. https://doi.org/10.1002/rsa.20130

[13] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.

2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-

tributed and Streaming Models. In 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria. 7:1–7:16. https:

//doi.org/10.4230/LIPIcs.DISC.2017.7

[14] Yehuda Ben-Shimol, Amit Dvir, and Michael Segal. 2004. SPLAST: a novel

approach for multicasting in mobile wireless ad hoc networks. In Proceedings
of the IEEE 15th International Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC 2004, 5-8 September 2004, Barcelona, Spain. 1011–1015.
https://doi.org/10.1109/PIMRC.2004.1373851

[15] Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. 2017. Minor-Free

Graphs Have Light Spanners. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 767–778.
https://doi.org/10.1109/FOCS.2017.76

[16] Glencora Borradaile, Hung Le, and ChristianWulff-Nilsen. 2019. Greedy spanners

are optimal in doubling metrics. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019. 2371–2379. https://doi.org/10.1137/1.9781611975482.145

[17] Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. 1995. New

sparseness results on graph spanners. Int. J. Comput. Geometry Appl. 5 (1995),
125–144. https://doi.org/10.1142/S0218195995000088

[18] Shiri Chechik and Christian Wulff-Nilsen. 2018. Near-Optimal Light Spanners.

ACM Trans. Algorithms 14, 3 (2018), 33:1–33:15. https://doi.org/10.1145/3199607

[19] Edith Cohen. 1997. Size-Estimation Framework with Applications to Transitive

Closure and Reachability. J. Comput. Syst. Sci. 55, 3 (1997), 441–453. https:

//doi.org/10.1006/jcss.1997.1534

[20] Edith Cohen. 1998. Fast Algorithms for Constructing t-Spanners and Paths

with Stretch t. SIAM J. Comput. 28, 1 (1998), 210–236. https://doi.org/10.1137/

S0097539794261295

[21] Mirela Damian, Saurav Pandit, and Sriram Pemmaraju. 2006. Distributed Spanner

Construction in Doubling Metric Spaces. In Proceedings of the 10th International
Conference on Principles of Distributed Systems (Bordeaux, France) (OPODIS’06).
Springer-Verlag, Berlin, Heidelberg, 157–171. https://doi.org/10.1007/11945529_

12

491

https://doi.org/10.1145/2897518.2897555
https://doi.org/10.1145/2897518.2897555
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://arxiv.org/abs/1709.01960
http://arxiv.org/abs/1709.01960
http://arxiv.org/abs/1709.01960
https://doi.org/10.1007/BF02189308
http://eudml.org/doc/87452
https://doi.org/10.1145/4221.4227
https://doi.org/10.1145/93385.93417
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1016/j.jcss.2019.04.006
https://doi.org/10.1002/rsa.20130
https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.1109/PIMRC.2004.1373851
https://doi.org/10.1109/FOCS.2017.76
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1142/S0218195995000088
https://doi.org/10.1145/3199607
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.1006/jcss.1997.1534
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1007/11945529_12
https://doi.org/10.1007/11945529_12

PODC ’20, August 3–7, 2020, Virtual Event, Italy Michael Elkin, Arnold Filtser, and Ofer Neiman

[22] Gautam Das, Paul J. Heffernan, and Giri Narasimhan. 1993. Optimally Sparse

Spanners in 3-Dimensional Euclidean Space. In Proceedings of the Ninth Annual
Symposium on Computational GeometrySan Diego, CA, USA, May 19-21, 1993.
53–62. https://doi.org/10.1145/160985.160998

[23] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. 2008. On the

locality of distributed sparse spanner construction. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC
2008, Toronto, Canada, August 18-21, 2008. 273–282. https://doi.org/10.1145/

1400751.1400788

[24] Michael Elkin. 2004. Unconditional lower bounds on the time-approximation

tradeoffs for the distributed minimum spanning tree problem. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June
13-16, 2004. 331–340. https://doi.org/10.1145/1007352.1007407

[25] Michael Elkin. 2007. A near-optimal distributed fully dynamic algorithm for

maintaining sparse spanners. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2007, Portland, Oregon,
USA, August 12-15, 2007. 185–194. https://doi.org/10.1145/1281100.1281128

[26] Michael Elkin. 2017. Distributed exact shortest paths in sublinear time. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. 757–770. https:

//doi.org/10.1145/3055399.3055452

[27] Michael Elkin and Ofer Neiman. 2016. Hopsets with Constant Hopbound, and

Applications to Approximate Shortest Paths. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA. 128–137. https://doi.org/10.1109/FOCS.2016.22

[28] Michael Elkin and Ofer Neiman. 2017. Linear-Size Hopsets with Small Hop-

bound, and Distributed Routing with Low Memory. CoRR abs/1704.08468 (2017).

arXiv:1704.08468 http://arxiv.org/abs/1704.08468

[29] Michael Elkin and Ofer Neiman. 2018. Near-Optimal Distributed Routing with

Low Memory. In Proceedings of the 2018 ACM Symposium on Principles of Dis-
tributed Computing (Egham, United Kingdom) (PODC ’18). ACM, New York, NY,

USA, 207–216. https://doi.org/10.1145/3212734.3212761

[30] Michael Elkin and Ofer Neiman. 2019. Efficient Algorithms for Constructing Very

Sparse Spanners and Emulators. ACM Trans. Algorithms 15, 1 (2019), 4:1–4:29.
https://doi.org/10.1145/3274651 Preliminary version appeared in SODA17.

[31] Michael Elkin, Ofer Neiman, and Shay Solomon. 2015. Light Spanners. SIAM J.
Discrete Math. 29, 3 (2015), 1312–1321. https://doi.org/10.1137/140979538

[32] Michael Elkin and David Peleg. 2001. (1+epsilon, beta)-spanner constructions

for general graphs. In Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece. 173–182. https://doi.org/10.

1145/380752.380797

[33] Michael Elkin and Shay Solomon. 2016. Fast Constructions of Lightweight

Spanners for General Graphs. ACM Trans. Algorithms 12, 3 (2016), 29:1–29:21.
https://doi.org/10.1145/2836167 See also SODA’13.

[34] Michael Elkin and Jian Zhang. 2006. Efficient algorithms for constructing (1+ep-

silon, beta)-spanners in the distributed and streaming models. Distributed Com-
puting 18, 5 (2006), 375–385. https://doi.org/10.1007/s00446-005-0147-2

[35] Arnold Filtser and Ofer Neiman. 2018. Light Spanners for High Dimensional

Norms via Stochastic Decompositions. In 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland. 29:1–29:15. https:

//doi.org/10.4230/LIPIcs.ESA.2018.29

[36] Arnold Filtser and Shay Solomon. 2016. The Greedy Spanner is Existentially

Optimal. In PODC 2016. 9–17. https://doi.org/10.1145/2933057.2933114

[37] Stephan Friedrichs and Christoph Lenzen. 2016. Parallel Metric Tree Embedding

based on an Algebraic View on Moore-Bellman-Ford. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. 455–466. https:

//doi.org/10.1145/2935764.2935777

[38] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm forMaximal Indepen-

dent Set. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 270–277.
https://doi.org/10.1137/1.9781611974331.ch20

[39] Mohsen Ghaffari and Jason Li. 2018. Improved distributed algorithms for exact

shortest paths. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 431–444.
https://doi.org/10.1145/3188745.3188948

[40] Lee-Ad Gottlieb. 2015. A Light Metric Spanner. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015. 759–772. https://doi.org/10.1109/FOCS.2015.52

[41] Anupam Gupta, Robert Krauthgamer, and James R. Lee. 2003. Bounded Geome-

tries, Fractals, and Low-Distortion Embeddings. In 44th Symposium on Founda-
tions of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings. 534–543. https://doi.org/10.1109/SFCS.2003.1238226

[42] Sariel Har-Peled and Manor Mendel. 2006. Fast Construction of Nets in Low-

Dimensional Metrics and Their Applications. SIAM J. Comput. 35, 5 (2006),

1148–1184. https://doi.org/10.1137/S0097539704446281

[43] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A

deterministic almost-tight distributed algorithm for approximating single-source

shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 489–498.
https://doi.org/10.1145/2897518.2897638

[44] Samir Khuller, Balaji Raghavachari, and Neal E. Young. 1995. Balancing Minimum

Spanning Trees and Shortest-Path Trees. Algorithmica 14, 4 (1995), 305–321.

https://doi.org/10.1007/BF01294129

[45] Philip N. Klein. 2005. A linear-time approximation scheme for planar weighted

TSP. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings. 647–657. https:

//doi.org/10.1109/SFCS.2005.7

[46] Shay Kutten and David Peleg. 1998. Fast Distributed Construction of Small

k-Dominating Sets and Applications. J. Algorithms 28, 1 (1998), 40–66. https:

//doi.org/10.1006/jagm.1998.0929

[47] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (Nov. 1986), 1036–1055. https://doi.org/10.

1137/0215074

[48] Yishay Mansour and David Peleg. 1998. An Approximation Algorithm for
Minimum-Cost Network Design. Technical Report. Weizmann Institute of Science,

Rehovot.

[49] Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and Akka Zem-

mari. 2011. An optimal bit complexity randomized distributed MIS algorithm.

Distributed Computing 23, 5-6 (2011), 331–340. https://doi.org/10.1007/s00446-

010-0121-5

[50] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved

Parallel Algorithms for Spanners and Hopsets. In Proc. of 27th SPAA. 192–201.
https://doi.org/10.1145/2755573.2755574

[51] T. S. Eugene Ng and Hui Zhang. 2002. Predicting Internet Network Distance

with Coordinates-Based Approaches. In 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM). 178–187. https://doi.org/

10.1109/INFCOM.2002.1019258

[52] D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for

Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719772

[53] David Peleg and Alejandro A. Schäffer. 1989. Graph spanners. Journal of Graph
Theory 13, 1 (1989), 99–116. https://doi.org/10.1002/jgt.3190130114

[54] David Peleg and Jeffrey D. Ullman. 1989. An Optimal Synchronizer for the

Hypercube. SIAM J. Comput. 18, 4 (1989), 740–747. https://doi.org/10.1137/

0218050

[55] Paolo Penna and Carmine Ventre. 2004. Energy-efficient broadcasting in ad-hoc

networks: combining MSTs with shortest-path trees. In Proceedings of the 1st
ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor,
and Ubiquitous Networks, PE-WASUN 2004, Venezia, Italy, October 4, 2004. 61–68.
https://doi.org/10.1145/1023756.1023769

[56] Seth Pettie. 2009. Low distortion spanners. ACM Trans. Algorithms 6, 1 (2009),
7:1–7:22. https://doi.org/10.1145/1644015.1644022

[57] Seth Pettie. 2010. Distributed algorithms for ultrasparse spanners and linear size

skeletons. Distributed Computing 22, 3 (2010), 147–166. https://doi.org/10.1007/

s00446-009-0091-7

[58] Václav Rozhon and Mohsen Ghaffari. 2019. Polylogarithmic-Time Deterministic

Network Decomposition and Distributed Derandomization. CoRR abs/1907.10937

(2019). arXiv:1907.10937 http://arxiv.org/abs/1907.10937

[59] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and S. Subramanian. 2001. Approximat-

ing the Single-Sink Link-Installation Problem in Network Design. SIAM Journal
on Optimization 11, 3 (2001), 595–610. https://doi.org/10.1137/S1052623497321432

[60] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed

Verification and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012), 1235–1265. https://doi.org/10.1137/11085178X

[61] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. 2013. Symmetry

breaking depending on the chromatic number or the neighborhood growth. Theor.
Comput. Sci. 509 (2013), 40–50. https://doi.org/10.1016/j.tcs.2012.09.004

[62] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global

Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,
5500 (2000), 2319–2323. https://doi.org/10.1126/science.290.5500.2319

[63] Mikkel Thorup and Uri Zwick. 2006. Spanners and emulators with sublinear

distance errors. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006.
802–809. http://dl.acm.org/citation.cfm?id=1109557.1109645 http://dl.acm.org/

citation.cfm?id=1109557.1109645.

[64] Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. 2002. Light graphs with small

routing cost. Networks 39, 3 (2002), 130–138. https://doi.org/10.1002/net.10019

[65] Jun Yu, Ling Chen, and Gencai Chen. 2006. Priority based Overlay Multicast

with Filtering Mechanism for Distributed Interactive Applications. In 10th IEEE
International Symposium on Distributed Simulation and Real-Time Applications
(DS-RT 2006), 2-4 October 2006, Malaga, Spain. 127–134. https://doi.org/10.1109/

DS-RT.2006.29

492

https://doi.org/10.1145/160985.160998
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/1007352.1007407
https://doi.org/10.1145/1281100.1281128
https://doi.org/10.1145/3055399.3055452
https://doi.org/10.1145/3055399.3055452
https://doi.org/10.1109/FOCS.2016.22
https://arxiv.org/abs/1704.08468
http://arxiv.org/abs/1704.08468
https://doi.org/10.1145/3212734.3212761
https://doi.org/10.1145/3274651
https://doi.org/10.1137/140979538
https://doi.org/10.1145/380752.380797
https://doi.org/10.1145/380752.380797
https://doi.org/10.1145/2836167
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.1145/2933057.2933114
https://doi.org/10.1145/2935764.2935777
https://doi.org/10.1145/2935764.2935777
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1145/3188745.3188948
https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1145/2897518.2897638
https://doi.org/10.1007/BF01294129
https://doi.org/10.1109/SFCS.2005.7
https://doi.org/10.1109/SFCS.2005.7
https://doi.org/10.1006/jagm.1998.0929
https://doi.org/10.1006/jagm.1998.0929
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0215074
https://doi.org/10.1007/s00446-010-0121-5
https://doi.org/10.1007/s00446-010-0121-5
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1109/INFCOM.2002.1019258
https://doi.org/10.1109/INFCOM.2002.1019258
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1137/0218050
https://doi.org/10.1137/0218050
https://doi.org/10.1145/1023756.1023769
https://doi.org/10.1145/1644015.1644022
https://doi.org/10.1007/s00446-009-0091-7
https://doi.org/10.1007/s00446-009-0091-7
https://arxiv.org/abs/1907.10937
http://arxiv.org/abs/1907.10937
https://doi.org/10.1137/S1052623497321432
https://doi.org/10.1137/11085178X
https://doi.org/10.1016/j.tcs.2012.09.004
https://doi.org/10.1126/science.290.5500.2319
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
https://doi.org/10.1002/net.10019
https://doi.org/10.1109/DS-RT.2006.29
https://doi.org/10.1109/DS-RT.2006.29

	Abstract
	1 Introduction
	1.1 Light Spanners for General Graphs
	1.2 Shallow-Light Trees
	1.3 Light Spanners for Doubling Graphs
	1.4 Overview of Techniques
	1.5 Related Work
	1.6 Organization

	2 Preliminaries
	3 Eulerian Tour of the MST
	4 Shallow Light Tree (SLT)
	4.1 Break Points Selection
	4.2 The Creation of H
	4.3 Stretch and Lightness Analysis
	4.4 Finishing the Construction and Generalization to >1

	5 Distributed Light Spanner
	5.1 Analysis

	References

