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Abstract

Minimum Spanning Trees of weighted graphs are funda-
mental objects in numerous applications. In particular
in distributed networks, the minimum spanning tree of
the network is often used to route messages between net-
work nodes. Unfortunately, while being most efficient
in the total cost of connecting all nodes, minimum span-
ning trees fail miserably in the desired property of ap-
proximately preserving distances between pairs. While
known lower bounds exclude the possibility of the worst
case distortion of a tree being small, it was shown in [4]
that there exists a spanning tree with constant average
distortion. Yet, the weight of such a tree may be sig-
nificantly larger than that of the MST. In this paper,
we show that any weighted undirected graph admits a
spanning tree whose weight is at most (1 + ρ) times
that of the MST, providing constant average distortion
O(1/ρ2).1

The constant average distortion bound is implied by
a stronger property of scaling distortion, i.e., improved
distortion for smaller fractions of the pairs. The result
is achieved by first showing the existence of a low weight
spanner with small prioritized distortion, a property al-
lowing to prioritize the nodes whose associated distor-
tions will be improved. We show that prioritized distor-
tion is essentially equivalent to coarse scaling distortion
via a general transformation, which has further implica-
tions and may be of independent interest. In particular,
we obtain an embedding for arbitrary metrics into Eu-
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1Recently we improved the average distortion to an optimal

O(1/ρ), see Section 7.

clidean space with optimal prioritized distortion.

1 Introduction

One of the fundamental problems in graph theory is
that of constructing a Minimum Spanning Tree (MST)
of a given weighted graph G = (V,E). This problem
and its variants received much attention, and has found
numerous applications. In many of these applications,
one may desire not only minimizing the weight of the
spanning tree, but also other desirable properties, at
the price of losing a small factor in the weight of the
tree compared to that of the MST. Define the lightness
of T to be the total weight of T (the sum of its edge
weights) divided by the weight of an MST. One well
known example is that of a Shallow Light Tree (SLT)
[20, 8], which is a rooted spanning tree having near
optimal (1+ρ) lightness, while approximately preserving
all distances from the root to the other vertices.

It is natural to ask that the spanning tree will pre-
serve well all pairwise distances in the graph. However,
it is easy to see that no spanning tree can maintain such
a requirement. In particular, even in the case of the un-
weighted cycle graph on n vertices, for every spanning
tree there is a pair of neighboring vertices whose dis-
tance increases by a factor of n−1. A natural relaxation
of this demand is that the spanning tree approximates
all pairwise distances on average. Formally, the distor-

tion of the pair u, v ∈ V in T is defined as dT (u,v)
dG(u,v) , and

the average distortion is 1

(n
2)

∑
{u,v}∈(V

2)
dT (u,v)
dG(u,v) , where

dG (respectively dT ) is the shortest-path metric in G
(resp. T ).2 In [4], it was shown that for every weighted
graph, it is possible to find a spanning tree which has
constant average distortion.

In this paper, we devise a spanning tree of near
optimal (1 + ρ) lightness that has O(1/ρ2) average
distortion over all pairwise distances. One may wonder
if it is indeed necessary to pay the slight extra cost in
weight in order to preserve the average distortion. We
show that it is indeed the case by exhibiting a lower
bound on the tradeoff between lightness and average
distortion, showing that the average distortion must

2Distortion is sometimes referred to as stretch.



be Ω(1/ρ) (this holds even if the spanning subgraph
is not necessarily a tree), and in particular the average
distortion for an MST is as bad as Ω(n).

Our main result may be of interest for network ap-
plications. It is extremely common in the area of dis-
tributed computing that an MST is used for communi-
cation between the network nodes. This allows easy cen-
tralization of computing processes and an efficient way
of broadcasting through the network, allowing commu-
nication to all nodes at a minimum cost. Yet, as already
mentioned above, when communication is required be-
tween specific pairs of nodes, the cost of routing through
the MST may be extremely high, even when their real
distance is small. However, in practice it is the aver-
age distortion, rather than the worst-case distortion,
that is often used as a practical measure of quality, as
has been a major motivation behind the initial work of
[21, 3, 4]. As noted above, the MST still fails even in this
relaxed measure. Our result overcomes this by promis-
ing small routing cost between nodes on average, while
still possessing the low cost of broadcasting through the
tree, thereby maintaining the standard advantages of
the MST.

Our main result on a low average distortion embed-
ding follows from analyzing the scaling distortion of the
embedding. This notion, first introduced in [21]3, re-
quires that for every 0 < ε < 1, the distortion of all
but an ε-fraction of the pairs is bounded by the appro-
priate function of ε. In [3] it was shown that one may
obtain bounds on the average distortion, as well as on
higher moments of the distortion function, from bounds
on the scaling distortion. Our scaling distortion bound
for the constructed spanning tree is4 Õ(1/

√
ε)/ρ2, which

is nearly tight as a function of ε [4].
We also obtain a probabilistic embedding devis-

ing a distribution over (light) spanning trees with
polylog(1/ε)/ρ2 scaling distortion, thus providing con-
stant bounds on all fixed moments of the distortion (i.e.,
the lq-distortion [3] for fixed q).

Our main technical contribution, en route to this
result, may be of its own interest: We devise a spanner
(a subgraph of G) with 1+ρ lightness and low prioritized
distortion. This notion, introduced recently in [16],
means that for every given ranking v1, . . . , vn of the
vertices of the graph, there is an embedding where
the distortion of pairs including vj is bounded as
a function of the rank j. Here we show a light
spanner construction with prioritized distortion at most
Õ(log2 j)/ρ2. We then show a connection between the
notions of prioritized distortion and scaling distortion

3Originally coined gracefully degrading embedding.
4By Õ(f(n)) we mean O(f(n) · polylog(f(n))).

(discussed further below), and use this to argue that
our spanner has scaling distortion Õ(log2(1/ε))/ρ2, and
thus average distortion O(1/ρ2). Although we do not
obtain a spanning tree here, this result has a few
advantages, as we get constant bounds on all fixed
moments of the distortion function (also called the `q-
distortion). Moreover, the worst-case distortion is only
polylogarithmic in n. We note that all of our results
admit deterministic polynomial time algorithms.

Prioritized vs. Scaling Distortion As men-
tioned above, one of the ingredients of our work is a gen-
eral reduction relating the notions of prioritized distor-
tion and scaling distortion. In fact, we show that priori-
tized distortion is essentially equivalent to a strong ver-
sion of scaling distortion called coarse scaling distortion,
in which for every point, the 1−ε fraction of the farthest
points from it are preserved with the desired distortion.
We prove that any embedding with a given prioritized
distortion α has coarse scaling distortion bounded by
O(α(8/ε)). This result could be of independent inter-
est; in particular, it shows that the results of [16] on
distance oracles and embeddings have their scaling dis-
tortion counterparts (some of which were not known
before). We further show a reduction in the opposite di-
rection, informally, that given an embedding with coarse
scaling distortion γ there exists an embedding with pri-
oritized distortion γ(µ(j)), where µ is a function such
that

∑
i µ(i) = 1 (e.g. µ(j) = 6

(π·j)2 ). This result im-

plies that all existing coarse scaling distortion results
have priority distortion counterparts, thus improving
few of the results of [16]. In particular, by applying
a theorem of [3] we obtain prioritized embedding of ar-
bitrary metric spaces into lp in dimension O(log n) and
prioritized distortion O(log j), which is best possible.

Outline and Techniques. Our proof has the fol-
lowing high level approach; Given a graph and a rank-
ing of its vertices, we first find a low weight spanner
with prioritized distortion Õ(log2 j)/ρ2. We then apply
the general reduction from prioritized distortion to scal-
ing distortion to find a spanner with scaling distortion
Õ(log2(1/ε))/ρ2. Finally, we use the result of [4] to find
a spanning tree of this spanner with scaling distortion
O(1/

√
ε). We then conclude that the scaling distortion

of the concatenated embeddings is roughly their prod-
uct, which implies our main result of a spanning tree
with lightness 1 + ρ and scaling distortion Õ(1/

√
ε)/ρ2.

Similarly, we can apply the probabilistic embedding
of [4] to get a light counterpart, devising a distribution
over spanning trees, each with lightness 1 + ρ, with
(expected) scaling distotion polylog(1/ε)/ρ2.

The main technical part of the paper is finding a
light prioritized spanner. In [13] it was shown that
any graph on n vertices admits a spanner with (worst-



case) distortion O(log2 n) and with constant lightness.
This result was recently improved by [18] to distortion
O(log2 n/ log log n). However, these constructions have
no bound on the more refined notions of distortion.
To obtain a prioritized distortion, we use a technique
similar in spirit to [16]: group the vertices into log log n
sets according to their priority, the set Ki will contain
vertices with priority up to 22i

. We then build a low
weight spanner for each of these sets. As prioritized
distortion guarantees a bound for every pair containing
a high ranking vertex, we must augment the spanner
of Ki with shortest paths to all other vertices. Such a
shortest path tree may have large weight, so we use an
idea from [12] and apply an SLT rooted at Ki, which
balances between the weight and the distortion from Ki.

The main issue with the construction described
above is that the weight of each spanner and each SLT
can be proportional to that of the MST, but we have
log log n of those. Obtaining constant lightness, com-
pletely independent of n, requires a subtler argument.
We use the fact that the weight of the light spanners
and SLT’s come ”mostly” from the MST, and then some
additional weight. First we change the constructions to
ensure that each spanner and each SLT will have the
same MST (a priori every set Ki may have a different
MST spanning it, and each of the SLT’s rooted at Ki

may use different edges). Then we select the parameters
carefully, so that the additional weights will be small
enough to form converging sequences, without affecting
the distortion by too much.

1.1 Related Work

Partial and scaling embeddings5 have been studied
in several papers [21, 1, 3, 12, 4, 5]. Some of the
notable results are embedding arbitrary metrics into a
distribution over trees [1] or into Euclidean space [3]
with tight O(log(1/ε)) scaling distortion. These results
imply constant average distortion and O(q) bound on
the `q-distortion. In [4], an embedding into a single
spanning tree with tight O(1/

√
ε) scaling distortion is

shown, which implies constant average distortion, but
there is no guarantee on the weight of the tree.

Prioritized distortion embeddings were studied in
[16], for instance they give an embedding of arbitrary
metrics into a distribution over trees with prioritized
distortion O(log j) and into Euclidean space with prior-
itized distortion Õ(log j).

Probabilistic embedding into trees [9, 10, 11, 19] and

5A partial embedding (introduced by [21] under the name
embedding with slack) requires that for a fixed 0 < ε < 1, the

distortion of all but an ε-fraction of the pairs is bounded by the
appropriate function of ε.

spanning trees [7, 15, 2, 6] has been intensively studied,
and found numerous applications to approximation and
online algorithms, and to fast linear system solvers.
While our distortion guarantee does not match the
best known worst-case bounds, which are O(log n) for
arbitrary trees and Õ(log n) for spanning trees, we give
the first probabilisitc embeddings into spanning trees
with polylogarithmic scaling distortion in which all the
spanning trees in the support of the distribution are
light.

The paper [12] considers partial and scaling embed-
ding into spanners, and show a general transformation
from worst-case distortion to partial and scaling distor-
tion. In particular, they show a spanner withO(n) edges
and O(log(1/ε)) scaling distortion. For a fixed ε > 0,
they also obtain a spanner with O(n) edges, O(log(1/ε))
partial distortion and lightness O(log(1/ε)).6 Note that
these results fall short of achieving both constant aver-
age distortion and constant lightness.

2 Preliminaries

All the graphs G = (V,E,w) we consider are undirected
and weighted with nonnegative weights. We shall
assume w.l.o.g that all edge weights are different. If it
is not the case, then one can break ties in an arbitrary
(but consistent) way. Note that under this assumption,
the MST T of G is unique. The weight of a graph
G is w(G) =

∑
e∈E w(e). Let dG be the shortest

path metric on G. For a subset K ⊆ V and v ∈ V
let dG(v,K) = minu∈K{dG(u, v)}. For r ≥ 0 let
BG(v, r) = {u ∈ V : dG(u, v) ≤ r} (we often omit
the subscript when clear from context).

For a graph G = (V,E) on n vertices, a subgraph
H = (V,E′) where E′ ⊆ E (with the induced weights)
is called a spanner of G. We say that a pair u, v ∈ V
has distortion at most t if

dH(v, u) ≤ t · dG(v, u) ,

(note that always dG(v, u) ≤ dH(v, u)). If every pair
u, v ∈ V has distortion at most t, we say that the
spanner H has distortion t. Let T be the (unique) MST
of G, the lightness of H is the ratio between the weight

of H and the weight of the MST, that is Ψ(H) = w(H)
w(T ) .

We sometimes abuse notation and identify a spanner or
a spanning tree with its set of edges.

Prioritized Distortion. Let π = v1, . . . , vn be a
priority ranking (an ordering) of the vertices of V , and
let α : N → R+ be some monotone non-decreasing
function. We say that H has prioritized distortion α

6The original paper claims lightness O(log2(1/ε)), but their
proof in fact gives the improved bound.
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(w.r.t π), if for all 1 ≤ j < i ≤ n, the pair vj , vi has
distortion at most α(j).

Scaling Distortion. For v ∈ V and ε ∈ (0, 1) let
R(v, ε) = min {r : |B(v, r)| ≥ εn}. A vertex u is called
ε-far from v if d(u, v) ≥ R(v, ε). Given a function
γ : (0, 1)→ R+, we say that H has scaling distortion γ,

if for every ε ∈ (0, 1), there are at least (1− ε)
(|V |

2

)
pairs

that have distortion at most γ(ε). We say that H has
coarse scaling distortion γ, if every pair v, u ∈ V such
that both u, v are ε/2-far from each other, has distortion
at most γ(ε).7

Moments of Distortion. For 1 ≤ q ≤ ∞, define
the `q-distortion of a spanner H of G as:

distq(H,G) = E
[(

dH(u, v)

dG(u, v)

)q]1/q

,

where the expectation is taken according to the uniform
distribution over

(
V
2

)
. The classic notion of distortion

is expressed by the `∞-distortion and the average dis-
tortion is expressed by the `1-distortion. The following
was proved in [4].

Lemma 2.1. ([4]) Given a weighted graph G = (V,E)
on n vertices, if a spanner H has scaling distortion γ
then

distq(H,G) ≤

(
2

∫ 1

1
2 (n

2)
−1
γ(x)qdx

)1/q

.

These notions of distortion apply for embedding of
general metric spaces as well.

3 Light Spanner with Prioritized Distortion

In this section we prove that every graph admits a light
spanner with bounded prioritized distortion.

Theorem 3.1. (Prioritized Spanner) Given a
graph G = (V,E), a parameter 0 < ρ < 1 and any
priority ranking v1, v2, . . . , vn of V , there exists a span-
ner H with lightness 1 + ρ and prioritized distortion
Õ
(
log2 j

)
/ρ2.

The main technical lemma is the following.

Lemma 3.1. Given a graph G = (V,E), a subset K ⊆
V of size k, and a parameter 0 < δ < 1, there exists
a spanner H that 1) contains the MST of G, 2) has
lightness 1+δ, and 3) every pair in K×V has distortion

O
(

log2 k
δ2 log log k

)
.

Before proving this lemma, we use it to prove
Theorem 3.1.

7It can be verified that coarse scaling distortion γ implies
scaling distortion γ.

Algorithm 1 Greedy Spanner(G = (V,E), t)

1: H = (V, ∅).
2: for each edge {u, v} ∈ E, in non-decreasing order

of weight, do
3: if dH(u, v) > t · w(u, v) then
4: Add the edge {u, v} to E(H).
5: end if
6: end for

Proof. (of Theorem 3.1) For every 1 ≤ i ≤ dlog log ne
let Ki =

{
vj : j ≤ 22i

}
. Let Hi be the spanner given

by Lemma 3.1 with respect to the set Ki and the
parameter δi = ρ/i2. Hence Hi has 1 + ρ/i2 lightness

and O
(

log2 |Ki|
δ2i log log |Ki|

)
= O(22i ·i3/ρ2) distortion for pairs

in Ki × V . Let H =
⋃
iHi be the union of all these

spanners (that is, the graph containing every edge of
every one of these spanners). As each Hi contains the
unique MST of G, it holds that

Ψ(H) ≤ 1 +
∑
i≥1

ρ/i2 = 1 +O (ρ) .

To see the prioritized distortion, let vj , vr ∈ V be
such that j < r, and let 1 ≤ i ≤ dlog log ne be the

minimal index such that vj ∈ Ki. Note that 22i−1 ≤ j,
and in particular 2i−1 ≤ log j (with the exception
of j = 1, which we may ignore). This implies that
22i ≤ 4 log2 j, and we conclude that

dH(vj , vr) ≤ dHi
(vj , vr) ≤ O(22i · i3/ρ2) · dG(vj , vr)

≤ Õ
(
log2 j

)
/ρ2 · dG(vj , vr) .

as required. 2

3.1 Proof of Lemma 3.1

We begin by devising a spanner with the required prop-
erties, but with distortion guarantee only for pairs in
K×K. Our construction is based on the simple greedy
spanner algorithm (see Algorithm 1) on a modified ver-
sion of the graph. Given a graph G and a parameter
t, the greedy algorithm iterates over all the edges in
increasing order of weights, and adds an edge to the
spanner iff the current distortion (in the subgraph that
consists of all the edges already added to the spanner)
between its endpoints is greater than t. It can be veri-
fied that the spanner returned by the Greedy Spanner

algorithm has distortion at most t, and also contains the
MST of G (see [13]).

Let T be the unique MST of G. Let G′ =
(
V, T ∪(

K
2

))
be a graph that contains the MST, and in addition,

the complete graph on the vertices of K. For u, v ∈ K



the edge {u, v} will have weight dG(u, v) in G′. Note
that each e ∈ T is not the heaviest edge in any cycle
of G′, so T is the unique MST of G′. Let H ′ be the
spanner returned by the greedy spanner algorithm on

input G′ with parameter t = 4 log2 k
δ log log k . (Note that H ′

contains T .)
Let E = H ′ \ T and s = log k. For any i ≥ 1 let

Ei =

{
e ∈ E : w(e) ∈

(
si−1, si

]
· δ · w(T )

k2

}
,

and E0 = E \ (
⋃
i≥1Ei). The following lemma is

essentially given in [18, Theorem 2] (obtained by picking
ε = s

δ log s in that paper, and using that our distortion

t ≥ (2s− 1)(1 + ε)).8

Lemma 3.2. ([18])

w(Ei) ≤ O(w(T )) · δ log s

s1+(i−1)/s
.

As E0 ⊆
(
K
2

)
, and every edge in E0 has weight at most

δ · w(T )/k2, it holds that

w (E0) ≤ |E0| · δ · w(T )/k2 ≤ δ · w(T ) .

By Lemma 3.2, the contribution of the other edges to
the weight of E is at most

∞∑
i=1

O(w(T )) · δ log s

s1+(i−1)/s

≤ O(w(T )) · δ log s

s

∞∑
i=0

e−(i ln s)/s

= O(w(T )) · δ log s

s
· 1

1− e−(ln s)/s

= O(δ · w(T )) .

We conclude that Ψ (H ′) ≤ 1 + O(δ). Observe
that H ′ is not a subgraph of G, but this could easily
be mended by replacing every edge in E with the
corresponding shortest path in G. Clearly this will not
increase the lightness of H ′. Moreover, for any u, v ∈ K,
it holds that

(3.1) dH′ (u, v) ≤ t · dG′ (u, v) = t · dG (u, v) .

Observe that the spanner H ′ already implies the
following result, obtained by choosing K = V . The
dependence on δ is tight as shown in Section 6.

8Our definition of the Ei is slightly different than that of [18],
we replaced n (recall that n = |V |) by k2/δ. An inspection of

their proof shows that such a change may be done, and results in
having this factor in the lightness bound, instead of n.

Corollary 3.1. For every 0 < δ < 1, every graph
G on n vertices admits a spanner with (worst-case)

distortion O
(

log2 n
δ log logn

)
and lightness 1 + δ.

It remains to extend H ′ so that every pair in K×V
will suffer distortion at most O(t/δ). To this end, we
use the following lemma which is a variation of shallow
light trees [20, 8]. The proof can be found in Section 3.2.

Lemma 3.3. Given a graph G = (V,E), a parameter
α > 1, and a subset K ⊆ V , there exists a spanner S of
G that 1) contains the MST, 2) has lightness 1 + 2

α−1 ,
and 3) for any vertex u ∈ V , dS(u,K) ≤ α · dG(u,K).

We proceed with the proof of Lemma 3.1. Let S
be the spanner of Lemma 3.3 with respect to the set
K and with α = 1 + 1/δ. Define our final spanner H
as the union of H ′ and S. Note both H ′ and S have
lightness 1 + O(δ) and contain the same MST, so H
has lightness 1 +O(δ) as well. It remains to bound the
distortion of a pair v ∈ K and u ∈ V . Let ku ∈ K be the
closest vertex to u among the vertices in K with respect
to the distances in the spanner S. By the assertion of
Lemma 3.3,

dS(u, ku) = dS(u,K) ≤ α · dG(u,K)(3.2)

≤ α · dG(u, v) .

Using the triangle inequality,

dG(v, ku) ≤ dG(v, u) + dG(u, ku)(3.3)

≤ dG(v, u) + dS(u, ku)

(3.2)

≤ (α+ 1) · dG(v, u) .

Since both v, ku ∈ K it follows that

dH′(v, ku)
(3.1)

≤ t · dG(v, ku)(3.4)

(3.3)

≤ t (α+ 1) · dG(v, u) .

We conclude that

dH (v, u) ≤ dH′ (v, ku) + dS (ku, u)

(3.2)∧(3.4)

≤ (t (α+ 1) + α) · dG(v, u)

= O(t/δ) · dG(v, u) ,

as required.

3.2 Proof of Lemma 3.3

The following lemma is implicit in [20].

5



Lemma 3.4. ([20]) Given a weighted graph G =
(V,E,w), a parameter α > 1 and a vertex v ∈ V , there
exists a spanner H of G that 1) contains the MST, 2)
has lightness 1 + 2

α−1 , and 3) for any vertex u ∈ V ,
dH(u, v) ≤ α · dG(u, v).

The only difference between Lemma 3.3 and Lemma 3.4
is the replacement of the single vertex v by a set K. The
standard way to handle multiple sources is to contract
them to a single vertex, and grow the SLT from that
vertex. Here one must be careful, since the MST of the
resulting graph can be different than that of G.

Let G′ =
(
V,E ∪

(
K
2

))
be a graph in which we add

an edge of weight 0 between any two vertices in K (if
such an edge already exists, reduce its weight to 0). We
denote the new weights by w′. Let T be the unique
MST of G, and let T ′ be an arbitrary MST of G′. Note
that all the edges in T ′ \ T must be from

(
K
2

)
, as any

other edge is still the heaviest edge in a cycle of G′.
Fix any v ∈ K, and let H ′ be the spanner of

Lemma 3.4 with respect to the graph G′, the parameter
α, and v. Let E = H ′ \T ′. Note that the distance in T ′

between any two vertices in K is 0, so when bounding
the weight of E we may assume that E ⊆ E \

(
K
2

)
.

Hence for any edge e ∈ E , w(e) = w(e′), which implies
that w′ (E) = w (E). Since w′(T ′) + w′(E) = w′(H ′) ≤(

1 + 2
α−1

)
· w′(T ′), it holds that

(3.5) w(E) = w′(E) ≤ 2w′(T ′)

α− 1
≤ 2w(T )

α− 1
.

Let H = T ∪ E . By (3.5) H has the desired lightness,
and it remains to show the bound on the distortion from
K. For any vertex u ∈ V , the shortest path in H ′ from
u to K does not contain edges from

(
K
2

)
, and since all

distances in H ′ among pairs in
(
K
2

)
are 0, we have that

dH(u,K) = dH′(u,K) = dH′(u, v)

≤ α · dG′(u, v) = α · dG(u,K) ,

which concludes the proof of the lemma.

4 Prioritized Distortion vs. Coarse Scaling
Distortion

In this section we study the relationship between the no-
tions of prioritized and scaling distortion. We show that
there is a reduction that allows to transform embeddings
with prioritized distortion into embeddings with coarse
scaling distortion, and vice versa. We start with the
direction that is used for our main result, showing that
prioritized distortion implies scaling distortion.

For two metric spaces (X, dX), (Y, dY ) and a non-
contractive embedding f : X → Y ,9 the distortion of a

9An embedding f is non-contractive if for every x, y ∈ X,

pair x, y ∈ X under f is defined as dY (f(x),f(y))
dX(x,y) .

Theorem 4.1. Let (X, dX), (Y, dY ) be metric spaces,
then there exists a priority ranking x1, . . . , xn of the
points of X such that the following holds: If there exists
a non-contractive embedding f : X → Y with (mono-
tone non-decreasing) prioritized distortion α, then f has
coarse scaling distortion O(α(8/ε)).

The basic idea of the proof is to choose the priorities
so that for every ε, every v ∈ X has a representative v′

of sufficiently high priority within distance ≈ R(v, ε).
Then for any u ∈ X which is ε-far from v, we can use
the low distortion guarantee of v′ with both v and u
via the triangle inequality. To this end, we employ the
notion of a density net due to [12], who showed that a
greedy construction provides such a net.

Definition 1. (Density Net) Given a metric space
(X, d) and a parameter 0 < ε < 1, an ε-density-net is
a set N ⊆ X such that: 1) for all v ∈ X there exists
u ∈ N with d(v, u) ≤ 2R(v, ε) and 2) |N | ≤ 1

ε .

Proof. (of Theorem 4.1) We begin by describing the
desired priority ranking of X. For every integer 1 ≤ i ≤
dlog ne let εi = 2−i, and let Ni ⊆ X be an εi-density-net
in X. Take any priority ranking of X satisfying that

every point v ∈ Ni has priority at most
∣∣∣⋃ij=1Nj

∣∣∣ ≤∑i
j=1 |Nj |. As for any j, |Nj | ≤ 1

εj
= 2j , each point in

Ni has priority at most
∑i
j=1

1
εj
≤
∑i
j=1 2j < 2i+1.

Let f : X → Y be some non-contractive embed-
ding with prioritized distortion α with respect to the
priorities we defined. Fix some ε ∈ (0, 1) and a pair
v, u ∈ V so that u is ε-far from v. Let i be the mini-
mal integer such that εi ≤ ε (note that we may assume
1 ≤ i ≤ dlog ne, because there is nothing to prove for
ε < 1/n). By Definition 1 we can take v′ ∈ Ni such that
d(v, v′) ≤ 2R(v, εi). As u is ε-far from v, it holds that

(4.6) dX(v, v′) ≤ 2R (v, εi) ≤ 2R (v, ε) ≤ 2dX(v, u) .

In particular, by the triangle inequality,

(4.7) dX(u, v′) ≤ dX(u, v) + dX(v, v′)
(4.6)

≤ 3dX(u, v) .

The priority of v′ is at most 2i+1, hence

dY (f(v), f(u))

≤ dY (f(v), f(v′)) + dY (f(v′), f(u))

≤ α(2i+1) · dX(v, v′) + α(2i+1) · dX(v′, u)

(4.6)∧(4.7)

≤ 5α(2/εi) · dX(v, u) .

dY (f(x), f(y)) ≥ dX(x, y).



By the minimality of i it follows that 1/εi ≤ 2/ε,
and since α is monotone

dY (f(v), f(u)) ≤ 5α(2/εi)·dX(v, u) ≤ 5α(4/ε)·dX(v, u) ,

as required. Since we desire distortion guarantee for
pairs that are ε/2-far, the distortion becomes O(α(8/ε)).

2

Combining Theorem 3.1 and Theorem 4.1 we obtain
the following.

Theorem 4.2. For any parameter 0 < ρ < 1, any
graph contains a spanner with coarse scaling distortion
Õ
(
log2 (1/ε)

)
/ρ2 and lightness 1 + ρ.

Remark: By Lemma 2.1 it follows that this spanner
has `q-distortion Õ(q2)/ρ2 for any 1 ≤ q <∞.
We can also obtain a spanner with both scaling dis-
tortion and prioritized distortion simultaneously, where
the priority is with respect to an arbitrary ranking
π = v1, . . . , vn. To achieve this, one may define a rank-
ing which interleaves π with the ranking generated in
the proof of Theorem 4.1. We leave the details to the
reader.

We now turn to show that coarse scaling distortion
implies prioritized distortion.

Theorem 4.3. Let µ : N → R+ be a non-increasing
function such that

∑
i≥1 µ(i) = 1. Let Y be a family

of finite metric spaces, and assume that for every
finite metric space (Z, dZ) there exists a non-contractive
embedding fZ : Z → YZ , where (YZ , dYZ

) ∈ Y, with
(monotone non-increasing) coarse scaling distortion γ.
Then, given a finite metric space (X, dX) and a priority
ranking x1, . . . , xn of the points of X, there exists an
embedding f : X → Y , for some (Y, dY ) ∈ Y,
with (monotone non-decreasing) prioritized distortion
γ(µ(i)).

Proof. Given the metric space (X, dX) and a prior-
ity ranking x1, . . . , xn of the points of X, let δ =
mini 6=j dX(xi, xj)/2. We define a new metric space
(Z, dZ) as follows. For every 1 ≤ i ≤ n, every point
xi is replaced by a set Xi of |Xi| = dµ(i)ne points, and
let Z =

⋃n
i=1Xi. For every u ∈ Xi and v ∈ Xj define

dZ(u, v) = dX(xi, xj) when i 6= j, and dZ(u, v) = δ oth-
erwise. Observe that |Z| =

∑n
i=1 |Xi| ≤

∑n
i=1(µ(i)n +

1) ≤ 2n.
We now use the embedding fZ : Z → YZ with

coarse scaling distortion γ, to define an embedding
f : X → YZ , by letting for every 1 ≤ i ≤ n,
f(xi) = fZ(ui) for some (arbitrary) point ui ∈ Xi.
By construction of Z, for every j > i, we have that

Xi ⊆ B(ui, dZ(ui, uj)) ∩ B(uj , dZ(ui, uj)). As |Xi| ≥
µ(i)n ≥ µ(i)

2 |Z|, it holds that ui, uj are ε/2-far from each

other for ε = µ(i). This implies that
dYZ

(f(xi),f(xj))

dX(xi,xj) =
dYZ

(fZ(ui),fZ(uj))

dZ(ui,uj) ≤ γ(µ(i)). 2

It follows from a result of [16] that the convergence
condition on µ in the above theorem is necessary. We
note that this reduction can also be applied to cases
where the coarse scaling embedding is only known for a
class of metric spaces (rather than all metrics), as long
as the transformation needed for the proof can be made
so that the resulting new space is still in the class. This
holds for most natural classes. We leave the details for
the full version of the paper.

The reduction implies that all existing coarse scal-
ing distortion results have priority distortion counter-
parts, thus improving few of the results of [16]10. In
particular, by applying a theorem of [3] we get the fol-
lowing:

Theorem 4.4. For every 1 ≤ p ≤ ∞ and every finite
metric space (X, dX) and priority ranking of X, there
exists an embedding with prioritized distortion O(log j)

into l
O(log |X|)
p .

Remark: The proof of Theorem 4.1 provides an
even stronger conclusion, that any pair u, v ∈ X such
that one is ε/2-far from the other, has the claimed
distortion bound. While the orginial definition of coarse
scaling, both points are required to be ε/2-far from
each other, it is often the case that we acheive the
stronger property. Yet, in some of the cases in previous
work the weaker definition seemed to be of importance.
Combining Theorem 4.1 and Theorem 4.3, we infer that
essentially any coarse scaling embedding can have such
a one-sided guarantee, with a slightly worse dependence
on ε, as claimed in the following corollary.

Corollary 4.1. Fix a metric space (X, d) on n points.
Let Y be a family of finite metric spaces as in Theo-
rem 4.3. Then there exists an embedding f : X → Y ,
for some (Y, dY ) ∈ Y, with (monotone non-decreasing)
one-sided coarse scaling distortion O(γ(µ(8/ε))), where
µ : N → R+ is a non-increasing function such that∑
i≥1 µ(i) = 1. .

Proof. By the condition of Theorem 4.3, there exists
(Y, dY ) ∈ Y so that X embeds to Y with coarse scaling
distortion γ(ε). According to Theorem 4.3, there is an
embedding f with prioritized distortion γ(µ(i))) (w.r.t

10It is also worth noting that the reduction also implies that

coarse partial embedding results can be translated into bounds
on terminal distortion [17].
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to any fixed priority ranking π). We pick π to be the
ordering required by Theorem 4.1, and conclude that f
has strong coarse scaling distortion O(γ(µ(8/ε))). 2

5 A Light Tree with Constant Average
Distortion

Here we prove our main theorem on finding a light
spanning tree with constant average distortion. Later
on we show a probabilistic embedding into a distribution
of light spanning trees with improved bound on higher
moments of the distortion.

Theorem 5.1. For any parameter 0 < ρ < 1, any
graph contains a spanning tree with scaling distortion
Õ(
√

1/ε)/ρ2 and lightness 1 + ρ.

It follows from Lemma 2.1 that the average distor-
tion of the spanning tree obtained is O(1/ρ2). Moreover,
the `q-distortion is O(1/ρ2) for any fixed 1 ≤ q < 2,

Õ
(
log2.5 n

)
/ρ2 for q = 2, and Õ(n1−2/q)/ρ2 for any

fixed 2 < q <∞.
We will need the following simple lemma, that

asserts the scaling distortion of a composition of two
maps is essentially the product of the scaling distortions
of these maps.11

Lemma 5.1. Let (X, dX), (Y, dY ) and (Z, dZ) be metric
spaces. Let f : X → Y (respectively, g : Y →
Z) be a non-contractive onto embedding with scaling
distortion α (resp., β). Then g◦f has scaling distortion
α(ε/2) · β(ε/2).

Proof. Let n = |X|. Let distf (v, u) = dY (f(v),f(u))
dX(v,u)

be the distortion of the pair u, v ∈ X under f , and

similarly let distg(v, u) = dZ(g(f(v)),g(f(u)))
dY (f(v),f(u)) . Fix some

ε ∈ (0, 1). We would like to show that at most ε ·
(
n
2

)
pairs suffer distortion greater than α(ε/2) · β(ε/2) by

g ◦ f . Let A =
{
{v, u} ∈

(
X
2

)
: distf (v, u) > α(ε/2)

}
and B =

{
{v, u} ∈

(
X
2

)
: distg(v, u) > β(ε/2)

}
. By the

bound on the scaling distortions of f and g, it holds that
|A∪B| ≤ |A|+ |B| ≤ ε ·

(
n
2

)
. Note that if {v, u} /∈ A∪B

then

dZ (g(f(v)), g(f(u)))

dX (v, u)
= distf (v, u) · distg(v, u)

≤ α(ε/2) · β(ε/2) ,

which concludes the proof. 2

We will also need the following result, that was
proved in [4].

11Note that this is not true for the average distortion – one may

compose two maps with constant average distortion and obtain a
map with Ω(n) average distortion.

Theorem 5.2. ([4]) Any graph contains a spanning
tree with scaling distortion O(

√
1/ε).

Now we can prove the main result.

Proof. (of Theorem 5.1) Let H be the spanner given by
Theorem 4.2. Let T be a spanning tree of H constructed
according to Theorem 5.2. By Lemma 5.1, T has scaling
distortion O(

√
1/ε) · Õ(log2(1/ε))/ρ2 = Õ(

√
1/ε)/ρ2

with respect to the distances in G. The lightness follows
as Ψ(T ) ≤ Ψ(H) ≤ 1 + ρ.

2

Random Tree Embedding. We also derive a re-
sult on probabilistic embedding into light spanning trees
with scaling distortion. That is the embedding con-
struct a distribution over spanning tree so that each tree
in the support of the distribution is light. In such proba-
bilistic embeddings [9] into a family Y, each embedding
f = fY : X → Y (for some (Y, dY ) ∈ Y) in the support
of the distribution is non-contractive, and the distortion

of the pair u, v ∈ X is defined as EY
[dY (f(u),f(v))

dX(u,v)

]
. The

prioritized and scaling distortions are defined accord-
ingly. We make use of the following result from [4].12

Theorem 5.3. ([4]) Every weighted graph G embeds
into a distribution over spanning trees with coarse scal-
ing distortion Õ(log2(1/ε)).

We note that the distortion bound on the composition of
maps in Lemma 5.1 also holds whenever g is a random
embedding, and we measure the scaling expected dis-
tortion. Thus, following the same lines as in the proof
of Theorem 5.1, (while using Theorem 5.3 instead of
Theorem 5.2), we obtain the following.

Theorem 5.4. For any parameter 0 < ρ < 1 and any
weighted graph G, there is an embedding of G into a
distribution over spanning trees with scaling distortion
Õ(log4(1/ε))/ρ2, such that every tree T in the support
has lightness 1 + ρ.

It follows from Lemma 2.1 that the `q-distortion is
O(1/ρ2), for every fixed q ≥ 1.

6 Lower Bound on the Trade-off between
Lightness and Average Distortion

In this section, we give an example of a graph for which
any spanner with lightness 1 + ρ has average distortion
Ω(1/ρ) (of course this bound holds for the `q-distortion
as well). This shows that in the results of Theorem 5.1

12The fact the embedding yields coarse scaling distortion is
implicit in their proof.



and Theorem 4.2 the average distortion must depend on
ρ.13

Lemma 6.1. For any n ≥ 32 and ρ ∈ [1/n, 1/32], there
is a graph G on n+ 1 vertices such that any spanner H
of G with lightness at most 1 + ρ has average distortion
at least Ω (1/ρ).

Proof. We define the graph G = (V,E) as follows.
Denote V = {v0, v1, . . . , vn}, E =

(
V
2

)
, and the weight

function w is defined as follows.

w({vi, vj}) =

{
1 if |i− j| = 1

2 otherwise .

I.e., G is a complete graph of size n + 1, where the
edges {vi, vi+1} have unit weight and induce a path of
length n, and all non-path edges have weight 2. Clearly,
the path is the MST of G of weight n. Let k = dρne.
Let H be some spanner of G with lightness at most
1 + ρ ≤ n+k

n , in particular, w(H) ≤ n + k. Clearly
H has at least n edges (to be connected). Let q be
the number of edges of weight 2 contained in H. Then
w(H) ≥ (n− q) · 1 + q · 2 = n+ q. Therefore q ≤ k.

Let S be the set of vertices which are incident on
an edge of weight 2 in H. Then |S| ≤ 2q ≤ 2k.
Let δ = 1

32ρ . For any v ∈ S, let Nv ⊆ V be the
set of vertices that are connected to v via a path of
length at most δ in H, such that this path consists
of weight 1 edges only. Necessarily, for any v ∈ S,
|Nv| ≤ 2δ + 1. Let N =

⋃
v∈S Nv, it holds that

|N | ≤ 2k · (2δ + 1) ≤ 4ρn( 1
16ρ + 1) ≤ n

4 + n
8 = 3n

8 .

Let N̄ = V \N .
Consider u ∈ N̄ . By definition of N every weight 2

edge is further than δ steps away from u in H. It follows
that there are at most 2δ+ 1 vertices within distance at
most δ from u (in H). Let Fu = {v ∈ V : dH(u, v) >
δ}. It follows that |Fu| ≥ n− 2δ − 1. Note that for any
v ∈ Fu, the distortion of the pair {u, v} is at least δ

2 .
Hence, we obtain that∑

{v,u}∈(V
2)

dH (v, u)

dG (v, u)
≥ 1

2

∑
u∈N̄

∑
v∈Fu

dH (v, u)

dG (v, u)

≥ 5n

16
· (n− 2δ − 1) · δ

2

≥ 5n

16
· 7n

8
· 1

64ρ
.

13We also mention that in general the average distortion of a
spanner cannot be arbitrarily close to 1, unless the spanner is
extremely dense. E.g., when G is a complete graph, any spanner

with lightness at most n/2 will have average distortion at least
3/2.

Finally,

dist1(H,G) =
1(
n+1

2

) ∑
{v,u}∈(V

2)

dH (v, u)

dG (v, u)

≥ n

n+ 1
· 35

64
· 1

64ρ

≥ 1

128ρ
.

2

7 Improvements and Future Directions

In a subsequent work, we improve the dependence
of the distortion on ρ in Theorem 3.1 (and thus in
Theorem 4.2, Theorem 5.1 and Theorem 5.4 as well),
from 1/ρ2 to the optimal 1/ρ. The main change in the
construction is replacing Lemma 3.3 by the following.

Lemma 7.1. Given a graph G = (V,E), a subset K ⊆
V of size k, and a parameter ρ ≥ 1, there is a polynomial
time algorithm that returns a spanner H of G which
contains the MST, such that H has lightness 1 + ρ and

∀v ∈ V, dH(v, kv) ≤ O
(
log2 k / ρ

)
· dG(v, kv) .

(Recall that kv is the closest vertex of K to v.)

Another, perhaps more ambitious, open problem
rising from our work, would be to improve the bound in
the prioritized distortion of Theorem 3.1 to Õ(log j/ρ).
A possible approach would be to further improve the
bound in Lemma 7.1 to Õ(log k/ρ), combined with an
improved light spanner construction. In a very recent
work (published in these proceedings), [14] construct a
spanner with (2t − 1) · (1 + ε) distortion and Oε(n

1/t)
lightness. Choosing t = log n and ε = O(1), they
obtain a spanner with distortion O(log n) and constant
lightness. Thus, it may be possible to obtain a 1 + ρ
lightness version of their result, combined with an
appropriate improved version of Lemma 7.1.
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