
Trust Management for IPsec

Matt Blaze

AT&T Labs - Research, mab@research.att.com

John Ioannidis

AT&T Labs - Research, ji@research.att.com

Angelos D. Keromytis

Columbia University, angelos@cs.columbia.edu

IPsec is the standard suite of protocols for network-layer con�dentiality and authentication of
Internet traÆc. The IPsec protocols, however, do not address the policies for how protected traÆc
should be handled at security endpoints. This paper introduces an eÆcient policy management
scheme for IPsec, based on the principles of trust management. A compliance check is added to
the IPsec architecture that tests packet �lters proposed when new security associations are created
for conformance with the local security policy, based on credentials presented by the peer host.
Security policies and credentials can be quite sophisticated (and speci�ed in the trust-management
language), while still allowing very eÆcient packet-�ltering for the actual IPsec traÆc. We present
a practical, portable implementation of this design, based on the KeyNote trust-management
language, that works with a variety of Unix-based IPsec implementations. Finally, we discuss
some applications of the enhanced IPsec architecture.

Categories and Subject Descriptors: C.2.0 [Computer-CommunicationNetworks]: General|
Security and protection

General Terms: Security,Languages

Additional Key Words and Phrases: Credentials, IPsec, KeyNote, network security, policy, trust
management.

1. INTRODUCTION

The IPsec protocol suite, which provides network-layer security for the Internet,
has recently been standardized in the IETF and is beginning to make its way
into commercial implementations of desktop, server, and router operating systems.
For many applications, security at the network layer has a number of advantages
over security provided elsewhere in the protocol stack. The details of network se-
mantics are usually hidden from applications, which therefore automatically and
transparently take advantage of whatever network-layer security services their en-
vironment provides. More importantly, IPsec o�ers a remarkable exibility not
possible at higher- or lower- layer abstractions: security can be con�gured end-to-
end (protecting traÆc between two hosts), route-to-route (protecting traÆc passing

This work was supported by DARPA under Contract F39502-99-1-0512-MOD P0001. A previous
version of this paper appeared as [Blaze et al. 2001].

2 � Blaze, Ioannidis, Keromytis

over a particular set of links), edge-to-edge (protecting traÆc as it passes between
\trusted" networks via an \untrusted" one), or in any other con�guration in which
network nodes can be identi�ed as appropriate security endpoints.
Despite this exibility, IPsec does not itself address the problem of managing the

policies governing the handling of traÆc entering or leaving a host running the pro-
tocol. By itself, the IPsec protocol can protect packets from external tampering and
eavesdropping, but does nothing to control which hosts are authorized for particular
kinds of sessions or to exchange particular kinds of traÆc. In many con�gurations,
especially when network-layer security is used to build �rewalls and virtual private
networks, such policies may necessarily be quite complex. There is no standard
interface or protocol for controlling IPsec tunnel creation, and most IPsec imple-
mentations provide only rudimentary, packet-�lter-based and ACL-based policy
mechanisms.
The crudeness of IPsec policy control, in turn, means that in spite of the avail-

ability of network-layer security, many applications are forced to duplicate at the
application or transport layer cryptographic functions already provided at the net-
work layer.
There are three main contributions in this paper: we introduce a new policy

management architecture for IPsec, based on the principles of trust management;
we present a design that integrates this architecture with the KeyNote Trust Man-
agement system; �nally, we present a practical, portable implementation of this
design, currently distributed in open-source form in OpenBSD.

1.1 IPsec Packet Filters and Security Associations

IPsec is based on the concept of datagram encapsulation. Cryptographically pro-
tected network-layer packets are placed inside, as the payload of, other network
packets, making the encryption transparent to any intermediate nodes that must
process packet headers for routing, etc. Outgoing packets are encapsulated, en-
crypted, and authenticated (as appropriate) just before being sent to the network,
and incoming packets are veri�ed, decrypted, and decapsulated immediately upon
receipt, as introduced in [Ioannidis and Blaze 1993] and standardized in [Kent and
Atkinson 1998b]. Key management in such a protocol is straightforward in the sim-
plest case. Two hosts can use any key-agreement protocol to negotiate keys with
one another, and use those keys as part of the encapsulating and decapsulating
packet transforms.
Let us examine the security policy decisions an IPsec processor must make. When

we discuss \policy" in this paper, we refer speci�cally to the network-layer security
policies that govern the ow of traÆc among networks, hosts, and applications.
Observe that policy must be enforced whenever packets arrive at or are about to
leave a network security endpoint (which could be an end host, a gateway, a router,
or a �rewall).
IPsec \connections" are described in a data structure called a security associ-

ation (SA). Encryption and authentication keys are contained in the SA at each
endpoint, and each IPsec-protected packet has an SA identi�er that indexes the SA
database of its destination host (note that not all SAs specify both encryption and
authentication; authentication-only SAs are commonly used, and encryption-only
SAs are possible albeit considered insecure).

Trust Management for IPsec � 3

When an incoming packet arrives from the network, the host �rst determines the
processing it requires:

|If the packet is not protected, should it be accepted? This is essentially the
\traditional" packet �ltering problem, as performed, e.g., by network �rewalls.

|If the packet is encapsulated under the security protocol:
|Is there correct key material (contained in the speci�ed SA) required to decap-
sulate it?

|Should the resulting packet (after decapsulation) be accepted? A second stage
of packet �ltering occurs at this point. A packet may be successfully decapsu-
lated and still not be acceptable (e.g., a decapsulated packet with an invalid
source address, or a packet attempting delivery to some port not permitted by
the receiver's policy).

A security endpoint makes similar decisions when an outgoing packet is ready to
be sent:

|Is there a security association (SA) that should be applied to this packet? If
there are several applicable SAs, which one should be selected?

|If there is no SA available, how should the packet be handled? It may be for-
warded to some network interface, dropped, or queued until an SA is made avail-
able, possibly after triggering some automated key management mechanism such
as IKE, the Internet Key Exchange protocol[Harkins and Carrel 1998].

Observe that because these questions are asked on packet-by-packet basis, packet-
based policy �ltering must be performed, and any related security transforms ap-
plied, quickly enough to keep up with network data rates. This implies that in all
but the slowest network environments there is insuÆcient time to process elaborate
security languages, perform public key operations, traverse large tables, or resolve
rule conicts in any sophisticated manner.
IPsec implementations (and most other network-layer entities that enforce secu-

rity policy, such as �rewalls), therefore, employ simple, �lter-based languages for
con�guring their packet-handling policies. In general, these languages specify rout-
ing rules for handling packets that match bit patterns in packet headers, based on
such parameters as incoming and outgoing addresses and ports, services, packet
options, etc.[McCanne and Jacobson 1993].
IPsec policy control need not be limited to packet �ltering, however. A great deal

of exibility is available in the control of when security associations are created and
what packet �lters are associated with them.
Most commonly however, in current implementations, the IPsec user or admin-

istrator is forced to provide \all or nothing" access, in which holders of a set of
keys (or those certi�ed by a particular authority) are allowed to create any kind of
security association they wish, and others can do nothing at all.
A further issue with IPsec policy control is the need for two hosts to discover

and negotiate the kind of traÆc they are willing to exchange. When two hosts
governed by their own policies want to communicate, they need some mechanism
for determining what, if any, kinds of traÆc the combined e�ects of one another's
policies are permitted. Again, IPsec itself does not provide such a mechanism;
when a host attempts to create an SA, it must know in advance that the policy on

4 � Blaze, Ioannidis, Keromytis

the remote host will accept it. The operation then either succeeds or fails. While
this may be suÆcient for small VPNs and other applications where both peers are
under the same administrative control, it does not scale to larger-scale applications
such as public servers.

1.2 Related Work

The IKE speci�cation [Harkins and Carrel 1998] makes use of the Subject Alternate
Name �eld in X.509 [CCITT 1989; Housley et al. 1999] certi�cates to encode the
packet selector the certi�cate holder may use during IKE Quick Mode. Beyond this,
no standard way has yet been de�ned for negotiating, exchanging, and otherwise
handling IPsec security policy.
[Sanchez and Condell 1998] de�nes a protocol for dynamically discovering, ac-

cessing, and processing security policy information. Hosts and networks belong to
security domains, and policy servers are responsible for servicing these domains.
The protocol used is similar in some ways to the DNS protocol. This protocol is
serving as the basis of the IETF IP Security Policy Working Group.
[Condell et al. 1999] describes a language for specifying communication security

policies, heavily oriented toward IPsec and IKE. SPSL is based on the Routing
Policy Speci�cation Language (RPSL) [Alaettinoglu et al. 1998]. While SPSL o�ers
considerable exibility in specifying IPsec security policies, it does not address
delegation of authority, nor is it easily extensible to accommodate other types of
applications. While it is possible to translate from SPSL policy statements directly
to KeyNote policies (and vice versa, for local host policies), it is not possible to
express trust relationships and re�ne the authority conferred to a principal (another
administrator or an end-user) in SPSL alone.
A number of other Internet Drafts have been published de�ning various directory

schemata for IPsec policy. Similar directory-based work has also started in the
context of the IETF Policy Framework Working Group. It is still too early to
determine what the results of that e�ort will be.
COPS [Boyle et al. 2000] de�nes a simple client/server protocol wherein a Policy

Enforcement Point (PEP) communicates with a Policy Decision Point (PDP) in
order to determine whether a requested action is permissible. COPS is mostly ori-
ented toward admission control for RSVP [Braden et al. 1997] or similar protocols.
It is not clear what its applicability to IPsec security policy would be.
RADIUS [Rigney et al. 1997] and its proposed successor, DIAMETER [Calhoun

et al. 1999], are similar in some ways to COPS. They require communication with
a policy server, which is supplied with all necessary information and is depended
upon to make a policy-based decision. Both protocols are oriented toward providing
Accounting, Authentication, and Authorization services for dial-up and roaming
users.
We �rst proposed the notion of using a trust management system for network-

layer security policy control in [Blaze et al. 1999].

2. TRUST MANAGEMENT FOR IPSEC

A basic parameter of the packet processing problems mentioned in the previous
section is the question of whether a packet falls under the scope of some Security
Association (SA). SAs contain and manage the key material required to perform

Trust Management for IPsec � 5

network-layer security protocol transforms. How then do SAs get created?
The obvious approach is to trigger the creation of a new SA whenever commu-

nication with a new host is attempted, if that attempt would fail the packet-level
security policy. The protocol could be based on a public-key or Needham-Schroeder
[Needham and Schroeder 1978] scheme.
Unfortunately, protocols that merely arrange for packets to be protected under

security associations do nothing to address the problem of enforcing a policy regard-
ing the ow of incoming or outgoing traÆc. Recall that policy control is a central
motivation for the use of network-layer security protocols in the �rst place.
In general, and rather surprisingly, security association policy is largely an open

problem { one with very important practical security implications and with the
potential to provide a solid framework for analysis of network security properties.
Fortunately, the problem of policy management for security associations can be

distinguished in several important ways from the problem of �ltering individual
packets:

|SAs tend to be rather long-lived; there is locality of reference insofar as hosts
that have exchanged one packet are very likely to also exchange others in the
near future.

|It is acceptable that policy controls on SA creation should require substantially
more resources than could be expended on processing every packet (e.g., public
key operations, several packet exchanges, policy evaluation, etc.).

|The result of negotiating an SA between two hosts can provide (among other
things) parameters for more eÆcient, lower-level packet policy (�ltering) opera-
tions.

The trust-management approach [Blaze et al. 1996] for checking compliance with
security policy provides exactly the interface and abstractions required.

2.1 The KeyNote Trust Management System

Because we make extensive use of the concepts of trust management, and especially
the KeyNote language, we provide a brief review of those concepts here.
The notion of trust management was introduced in [Blaze et al. 1996]. A trust-

management system provides a standard interface that applications can use to test
whether potentially dangerous actions comply with local security policies.
More formally, trust-management systems are characterized by:

|A method for describing actions, which are operations with security consequences
that are to be controlled by the system.

|A mechanism for identifying principals, which are entities that can be authorized
to perform actions.

|A language for specifying application policies, which govern the actions that
principals are authorized to perform.

|A language for specifying credentials, which allow principals to delegate autho-
rization to other principals

|A compliance checker, which provides a service for determining how an action
requested by principals should be handled, given a policy and a set of credentials.

6 � Blaze, Ioannidis, Keromytis

KeyNote is a simple and exible trust-management system designed to work well
for a variety of applications. In applications using KeyNote, policies and creden-
tials are written in the same language. The basic unit of KeyNote programming
is the assertion. Assertions contain programmable predicates that operate on the
requested attribute set and limit the actions that principals are allowed to per-
form. KeyNote assertions are small, highly-structured programs. Authority can
be delegated to others; a digitally signed assertion can be sent over an untrusted
network and serve the same role as traditional certi�cates. Unlike traditional policy
systems, policy in KeyNote is expressed as a combination of unsigned and signed
policy assertions (signed assertions are also called credentials). There is a wide
spectrum of possible combinations; on the one extreme, all system policy is ex-
pressed in terms of local (unsigned) assertions. On the other extreme, all policy is
expressed as signed assertions, with only one rule (the root of the policy) being an
unsigned assertion that delegates to one or more trusted entities. The integrity of
each signed assertion is guaranteed by its signature; therefore, there is no need for
these to be stored within the security perimeter of the system.
KeyNote allows the creation of arbitrarily sophisticated security policies, in which

entities (which can be identi�ed by cryptographic public keys) can be granted lim-
ited authorization to perform speci�c kinds of trusted actions.
When a \dangerous" action is requested of a KeyNote-based application, the

application submits a description of the action along with a copy of its local secu-
rity policy to the KeyNote interpreter. Applications describe actions to KeyNote
with a set of attribute/value pairs (called an action attribute set in KeyNote termi-
nology) that describe the context and consequences of security-critical operations.
KeyNote then \approves" or \rejects" the action according to the rules given in the
application's local policy.
KeyNote assertions are written in ASCII and contain a collection of structured

�elds that describe which principal is being authorized (the Licensee), who is doing
the authorizing (the Authorizer) and a predicate that tests the action attributes
(the Conditions). For example:

Authorizer: "POLICY"

Licensees: "Boris Yeltsin"

Conditions:

EmailAddress == "yeltsin@kremvax.ru"

means that the \POLICY" principal authorizes the \Boris Yeltsin" principal to
do any action in which the attribute called \EmailAddress" is equal to the string
\yeltsin@kremvax.ru". An action is authorized if assertions that approve the action
can link the \POLICY" principal with the principal that authorized the action.
Principals can be public keys, which provides a natural way to use KeyNote to
control operations over untrustworthy networks such as the Internet.
A complete description of the KeyNote language can be found in [Blaze et al.

1999].

Trust Management for IPsec � 7

2.2 KeyNote Control for IPsec

The problem of controlling IPsec SAs is easy to formulate as a trust-management
problem: the SA creation process (usually a daemon running IKE) needs to check
for compliance whenever an SA is to be created. Here, the actions represent the
packet �ltering rules required to allow two hosts to conform to each other's higher-
level policies.
This leads naturally to a framework for trust management for IPsec:

|Each host has its own KeyNote-speci�ed policy governing SA creation. This
policy describes the classes of packets and under what circumstances the host
will initiate SA creation with other hosts, and also what types of SAs it is willing
to allow other hosts to establish (for example, whether encryption will be used
and if so what algorithms are acceptable).

|When two hosts discover that they require an SA, they each propose to the other
the \least powerful" packet-�ltering rules that would enable them to accomplish
their communication objective. Each host sends proposed packet �lter rules,
along with credentials (certi�cates) that support the proposal. Any delegation
structure between these credentials is entirely implementation dependent, and
might include the arbitrary web-of-trust, globally trusted third-parties, such as
Certi�cation Authorities (CAs), or anything in between.

|Each host queries its KeyNote interpreter to determine whether the proposed
packet �lters comply with local policy and, if they do, creates the SA containing
the speci�ed �lters.

Other SA properties can also be subject to KeyNote-controlled policy. For exam-
ple, the SA policy may specify acceptable cryptographic algorithms and key sizes,
the lifetime of the SA, logging and accounting requirements.
Our architecture divides the problem of policy management into two components:

packet �ltering, based on rules applied to every packet, and trust management,
based on negotiating and deciding which of these rules (and related SA properties,
as noted above) are trustworthy enough to install.
This distinction makes it possible to perform the per-packet policy operations at

high data rates while e�ectively establishing more sophisticated trust-management-
based policy controls over the traÆc passing through a security endpoint. Having
such controls in place makes it easier to specify security policy for a large net-
work, and makes it especially natural to integrate automated policy distribution
mechanisms.

2.3 Policy Discovery

While the IPsec compliance-checking model described above can be used by itself
to provide security policy support for IPsec, there are two additional issues that
need to be addressed if such an architecture is to be deployed and used.
Recall that in a trust management system such as KeyNote, the rules governing

any given request might be contained not only in a local policy �le but might also
be contained in signed credentials, which, because they are signed, could be stored
anywhere. If a credential containing a relevant clause is not available to the machine
doing the compliance checking, a \legal" action might not be approved.

8 � Blaze, Ioannidis, Keromytis

It is therefore important to discover and acquire all the credentials required to
approve an action. Although users or hosts may be expected to manage locally
policies and credentials that directly refer to them, they may not know of interme-
diate credentials (e.g., those issued by administrative entities) that may be required
by the hosts with which they want to communicate. Consider the case of a large
organization, with two levels of administration; local policy on the �rewalls trusts
only the \corporate security" key. Users obtain their credentials from their local
administrators, who authorize them to connect to speci�c �rewalls. Thus, one or
more intermediate credentials delegating authority from corporate security to the
various administrators is also needed if a user is to be successfully authorized. Nat-
urally, in more complex network con�gurations (such as extranets) multiple levels
of administration may be present. Some method for determining what credentials
are relevant and how to acquire them is needed. The most straightforward solution
is top-to-bottom distribution of credentials: that is, each administrator passes to
the next level (be it end-users or another administration level) the necessary cre-
dentials it received from the higher level, along with the newly-minted credentials.
While this approach is simple and does not require any additional provisioning, it
does not work well if the various credentials in a \bundle" expire at di�erent times:
the end-user still needs some way of acquiring a fresh version of expired credentials.

One way of rectifying this is to have the host that intends to initiate an IKE
exchange use a simple protocol, which we call Policy Query Protocol (PQP), to
acquire or update credentials relevant to a speci�c intended IKE exchange. The
initiator presents a public key to the responder and asks for any credentials where
the key appears in the Licensees �eld. By starting from the initiator's own key
(or from some key that delegates to the initiator), it is possible to acquire all
credentials that the responder has knowledge of that may be of use to the initiator.
The responder can also provide pointers to other servers where the initiator may
�nd relevant credentials; in fact, the responder can just provide a pointer to some
other server that holds credentials for an administrative domain.

Since the credentials themselves are signed, there is no need to provide additional
security guarantees in the protocol itself. However, any local policies that the
responder discloses would have to be signed prior to being sent to the initiator; the
fact that a KeyNote policy \becomes" a credential simply by virtue of being signed
is very useful here. Also, the PQP server can have its own policy concerning which
hosts are allowed to query for credentials.

As described, the PQP protocol does not use encryption; thus, an eavesdrop-
per could collect potentially sensitive information encoded in the credentials (e.g.,
topology and services ran behind a �rewall, privileges of a user, etc.). Moreover,
an active attacker could determine all the privileges of a key simply by running the
PQP protocol against a �rewall or credential repository. To avoid this, the creden-
tials sent to the client can be encrypted under the �rst public key provided in a
PQP session; thus, only the key holder can see these credentials. This approach
works well with credential servers, where the credentials can be pre-encrypted and
simply served to clients. For �rewalls, or where the pre-computation or storage
requirements cannot be met, PQP can be ran over an IPsec-protected session; the
�rewall or credential server is con�gured to accept IPsec SAs that can only transfer
traÆc from the client to the server's PQP port; the PQP daemon can then extract

Trust Management for IPsec � 9

the public key used for the client authentication in IKE, and compare it to the
initial key used in the PQP session.

The second problem is determining our own capabilities based on the credentials
we hold. This is in some sense complementary to compliance checking; by analyzing
our credentials in the context of our peer's policy, it is possible to determine what
types of actions are accepted by that peer. That is, we can discover what kinds
of IPsec SA proposals are accepted by a remote IKE daemon. This can assist
in avoiding unnecessary IKE exchanges (if it is known in advance that no SAs
acceptable by both parties can be agreed upon), or narrow down the set of proposals
we send to our peer. Note that if a host reveals all the relevant credentials and
policies using the Policy Query Protocol, another host can determine in advance
and o�-line exactly what proposals that host will accept.

When the �rewall policies are deemed too sensitive for disclosure, the responder
can either insist on running PQP over IPsec (allowing for release of such policies
only to trusted clients), or can simply not reveal any sensitive information. In the
latter case, the capability determination process will compute capabilities based
on partial information; at worse, this can cause the initiation of IKE exchanges
that will ultimately fail (which, in any case, is the current state of a�airs). Two
factors work in our favor here: �rst, the \last" credential (that issued by the last
administrator in the hierarchy to an end-user) typically contains enough information
to determine many of the acceptable parameters for an exchange (for example, see
Figure 8); second, since these credentials are targeted to speci�c users, revealing
these does not have a signi�cant impact in revealing the overall system or network
policy. Lastly, there has been some recent work in the area of regulated policy
release[Bonatti and Samarati 2000] which may be relevant here, although we have
not yet investigated its applicability.

Credential composition is a fairly straightforward, if potentially expensive, op-
eration: we start by constructing a graph from the peer's policy to our key. We
then reduce each clause in the Conditions �eld of each credential to its Disjunctive
Normal Form (DNF). This can be an expensive operation: in the worst case sce-
nario, when a Conditions clause is in Conjunctive Normal Form (CNF) (as it is in
Figure 8), the algorithmic cost of this conversion can be quadratic in the number
of terms in the clause. While this would be prohibitive for large policies, it is envi-
sioned that most of the credentials would be fairly situation-speci�c, and thus small
in size and number of terms. Furthermore, it is possible to create the credentials
such that they are in DNF form to begin with, especially when some higher-level
tool, such as a GUI or a script, is used to generate the credentials.

To determine the authorization in a chain of two credentials, we need to compute
the intersection of their authorizations. This is a linear-cost operation over the
number of terms in the DNF expressions of the two credentials. For larger chains
(or, indeed, arbitrary graphs of credentials), we can apply the same algorithm
recursively. At the end of this operation, we have a list of acceptable proposals,
which the IKE daemon can then use to construct valid SA proposals for the remote
host.

Note that this operation is typically done by the initiator, and thus has no signif-
icant performance impact on the responder, which may be a busy security gateway.

10 � Blaze, Ioannidis, Keromytis

3. IMPLEMENTATION

To demonstrate our policy management scheme, we implemented the architecture
described in the previous section within the OpenBSD IPsec stack [Keromytis et al.
1997; Hallqvist and Keromytis 2000]. OpenBSD's IKE implementation (called
isakmpd) supports both passphrase and X.509 certi�cate authentication. We mod-
i�ed isakmpd to use KeyNote instead of the con�guration-�le based mechanism
that was used to validate new Security Associations. A host's local policy is given
in a text �le (/etc/isakmpd.policy) that contains KeyNote policy assertions.

3.1 The OpenBSD IPsec Architecture

In this section we examine how the (unmodi�ed) OpenBSD IPsec implementation
interacts with isakmpd and how policy decisions are handled and implemented.
Outgoing packets are processed in the ip output() routine. The Security Policy

Database (SPD)1 is consulted, using information retrieved from the packet itself
(e.g., source/destination addresses, transport protocol, ports, etc.) to determine
whether, and what kind of, IPsec processing is required. If no IPsec processing is
necessary or if the necessary SAs are available, the appropriate course of action is
taken, ultimately resulting in the packet being transmitted. If the SPD indicates
that the packet should be protected, but no SAs are available, isakmpd is noti�ed to
establish the relevant SAs with the remote host (or a security gateway, depending
on what the SPD entry speci�es). The information passed to isakmpd includes the
SPD �lter rule that matched the packet; this is used in the IKE protocol to propose
the packet selectors2, which describe the classes of packets that are acceptable for
transmission over the SA to be established. The same type of processing occurs for
incoming packets that are not IPsec-protected, to determine whether they should
be admitted; similar to the outgoing case, isakmpd may be noti�ed to establish
SAs with the remote host.
When an IPsec-protected packet is received, the relevant SA is located using

information extracted from the packet and the various protections are peeled o�.
The packet is then processed as if it had just been received. Note that the resulting,
de-IPsec-ed packet may still be subject to local policy, as determined by packet �lter
rules; that is, just because a packet arrived secured does not mean that it should
be accepted. We discuss this issue further below.

3.2 Adding KeyNote Policy Control

Because of the structure of the OpenBSD IPsec code, we were able to add KeyNote
policy control entirely by modifying the isakmpd daemon; no modi�cations to the
kernel were required.
Whenever a new IPsec security association is proposed by a remote host (with

the IKE protocol), our KeyNote-based isakmpd �rst collects security-related in-

1The SPD is part of all IPsec implementations[Kent and Atkinson 1998b], and is very similar in
form to packet �lters (and is typically implemented as one). The typical results of an SPD lookup
are accept, drop, and \IPsec-needed". In the latter case, more information may be provided, such
as what remote peer to establish the SA with, and what level of protection is needed (encryption,
authentication).
2These are a pair of network pre�x and netmask tuples that describe the types of packets that
are allowed to use the SA.

Trust Management for IPsec � 11

formation about the exchange (from its exchange and sa structures) and creates
KeyNote attributes that describe the proposed exchange. These attributes describe
what IPsec protocols are present, the encryption/authentication algorithms and pa-
rameters, the SA lifetime, time of day, special SA characteristics such as tunneling,
Perfect Forward Secrecy (PFS), etc., the address of the remote host, and the packet
selectors that generate the �lters that govern the SA's traÆc. All this information
is derived from what the remote host proposed to us (or what we proposed to the
remote host, depending on who initiated the IKE exchange).
Once passed to KeyNote, these attributes are available for use by policies (and

credentials) in determining whether a particular SA is acceptable or not. Recall
that the Conditions �eld of a KeyNote assertion contains an expression that tests
the attributes passed with the query. The IPsec KeyNote attributes were chosen
to allow reasonably natural, intuitive expression semantics. For example, to check
that the IKE exchange is being performed with the peer at IP address 192.168.1.1,
a policy would include the test:

remote_ike_address == "192.168.001.001"

while a policy that allows only the 3DES algorithm would test that

esp_enc_alg == "3des"

The KeyNote syntax provides the expected composition rules and boolean oper-
ators for creating complex expressions that test multiple attributes.
The particular collection of attributes we chose allows a wide range of possible

policies. We designed the implementation to make it easy to add other attributes,
should that be required by the policies of applications that we failed to anticipate.
A partial list of KeyNote attributes for IPsec is contained in the appendix. For the
full list, consult the OpenBSD manual pages.

3.3 Policies for Passphrase Authentication

If passphrases are used as the IKE authentication method, KeyNote policy control
may be used to directly authorize the holders of the passphrases. Passphrases are
encoded as KeyNote principals by taking the ASCII string corresponding to the
passphrase pre�xed with the string \passphrase:" Thus, the following policy would
allow anyone knowing the passphrase \foobar" to establish an SA with the ESP
[Kent and Atkinson 1998a] protocol.

Authorizer: "POLICY"

Licensees: "passphrase:foobar"

Conditions:

app domain == "IPsec Policy"

&& esp present == "yes" ;

12 � Blaze, Ioannidis, Keromytis

Authorizer: "POLICY"

Licensees: "DN:/CN=Certification Authority Foo/Email=ca@foo.com"

Conditions: ...

Fig. 1. Sample credential with X.509 DN as Licensee

Using the passphrase: tag requires policies to be kept private. To avoid
this, a hashed version of the passphrase may be used instead (e.g., using the
passphrase-sha1-hex: pre�x). In the previous example, this would be:

passphrase-sha1-hex:8843d7f92416211de9ebb963ff4ce28125932878

Since there are no restrictions on the length or format of the passphrases used,
salting (as is common in password schemes, to protect against dictionary attacks)
is not strictly necessary. However, salting can be used to increase the cost of
dictionary attacks against passphrases encoded in this manner.

3.4 Policies for X.509-based Authentication

More interesting is the interaction between KeyNote policy and X.509 public-key
certi�cates for authentication. Most IKE implementations (including ours) allow
the use of X.509 certi�cates for authentication. Furthermore, there exist a number
of commercial tools that let administrators manage large collections of users using
X.509. Allowing for interoperability with these implementations is a good test
of our architecture and can make transition to a KeyNote-based infrastructure
considerably smoother.
Implementing this interoperability is straightforward: KeyNote policies may be

used to delegate directly to X.509 certi�cates. The principals speci�ed may be the
certi�cates themselves (in pseudo-MIME format, using the x509-base64: pre�x),
the subject public key, or the Subject Canonical Name. An example is given in
Figure 1.
For each X.509 certi�cate received and veri�ed as part of an IKE exchange, an ad

hoc KeyNote credential is generated. This credential maps the Issuer/Subject keys
of the X.509 certi�cate (from the respective �elds) to Authorizer/Licensees keys in
KeyNote. Thus, as chains of X.509 certi�cates are formed during regular operation,
corresponding chains of KeyNote credentials are formed. This allows policies to
delegate to a CA, and have the same restrictions apply to all users certi�ed by that
CA. Speci�c users may be granted more privileges by direct authorization in the
host's policy.

3.5 Policies for KeyNote Credentials

KeyNote credentials may be passed directly during the IKE exchange, in the same
manner as X.509 certi�cates3. This method o�ers the most exibility in policy
speci�cation, as it allows principals to further delegate authority to others through
arbitrarily complex graphs of authorization. Any signed KeyNote credentials re-
ceived during the IKE exchange are passed to the KeyNote interpreter directly as
part of the query.

3More speci�cally, they are passed via the IKE CERT(IFICATE) payload.

Trust Management for IPsec � 13

KeyNote credentials are especially useful in the remote administration case,
where the policies of many IPsec endpoints are controlled by a central adminis-
trator. Here, the policy of each host would delegate all authority to the public key
of the central administrator. The administrator would then issue credentials that
contain the details of the policy under which they were issued. These credentials are
presented as part of each IKE exchange by any host requesting access. This elimi-
nates the need to update large numbers of machines as the details of organizational
policies change. Adding a new host is accomplished by having the administrator
issue a new credential for that host; that host may then use the newly-issued cre-
dential to communicate with any other host that obeys the above policy. No policy
changes are necessary to these hosts. Revoking access to a host is implemented
through short-lived credentials. New credentials are made available periodically
through a WWW or FTP server; clients can download them from there, without
any security implications (since the credentials are signed, their integrity is guaran-
teed). If credential con�dentiality is an issue, these credentials could be encrypted
with the public key of the user before they are made available.

Regardless of the authentication method in use, isakmpd calls KeyNote to de-
termine whether each proposed SA should be established. After taking into con-
sideration policies, credentials, and the attributes pertinent to the SA, KeyNote
returns a positive or negative answer. In the former case, the protocol exchange is
allowed to proceed as usual. In the latter, an informational message is sent to the
remote IKE daemon and the exchange is dropped. Note that, if an administrator
were to manually establish SPD rules (by directly manipulating the SPD), KeyNote
and the SPD might disagree; in that case, no SA would ever be established and
no packets would be sent out for that communication ow (since the SPD would
require an SA).

The basic data ows for KeyNote-controlled IPsec input and output processing
are given in Figures 2 and 3, respectively.

Input processing begins with a packet arriving at a network interface (#1 in
Figure 2). The Security Policy Database is consulted (#2) and one of three ac-
tions is followed. If the packet is an IPsec packet, it is sent (#3a) to the IPsec
processing code, which will consult the SA Database (#11) to process the packet;
the decapsulated packet is then fed back to the IP input queue (#12). If the SPD
says that the packet should just be accepted, it is sent (#3b) to the corresponding
higher-layer protocol, or forwarded, as appropriate. If the SPD says that the packet
should be dropped, no further processing is done. Otherwise (#3c), the Security
Association setup process is triggered. The SA Database is consulted (#4); if an
SA is found there, the packet is dropped because it should have already been sent
as an IPsec packet (and it was not, or path #3a would have been followed). Next,
the Policies and Credentials database is consulted (#5); this is done by calling
the KeyNote interpreter, supplying it the relevant details of the packet (addresses,
protocol, ports, etc.). The KeyNote interpreter, in turn, consults its database of
policies and credentials, and determines whether the packet should be just accepted,
dropped, or needs IPsec protection. If the latter is the case, the IKE daemon is
triggered (#6). It establishes SAs with its peer (#7), during which process it will
also need to consult the policy and credentials database (#8), and may also up-
date it with additional credentials acquired during the IKE exchange. The SA and

14 � Blaze, Ioannidis, Keromytis

IP Input routine

SA Database

IPSec Processing

3b: Send to
transport, route,
or discard. IKE Daemon

1: Packet arrives

2. Filters applied

SA Setup
3c: Trigger SA setup

4: Query SA Database

6: Initiate IKE

11: consult SA db

12: Feed back to input processing

User ModeKernel

10: update filter rules

5: Consult policy

8: consult policies/credentials

8a: update policies/credentials

9: update SA database

Policies&credentials

7: Do IKE exchange

(KeyNote Language)

3a: Process

SPD

KeyNote Interpreter

Fig. 2. KeyNote-Controlled IPsec Input Processing

SPD Databases are then updated (#9, #10) as necessary based on the information
negotiated by IKE. The unprotected packet that triggered the SA establishment is
dropped.
Output processing starts when a packet arrives (#1 in Figure 3) at the IP output

code from either a higher-level protocol or from the forwarding code. The Secu-
rity Policy Database is consulted (#2) to determine whether the packet should be
protected with IPsec or not; if no protection is needed, the packet is simply sent
out (#3a). Otherwise, it is sent to the IPsec processing code (#3b). A lookup
(#4) in the SA database determines whether an SA for this packet already exists;
if so, the appropriate transforms are applied and the resulting packet is output
(#5a). If an SA did not exist, the SA setup process is invoked (#5b). The system
policy (as contained in the SPD) is consulted (#6), and if policy relevant to this
packet is found, the IKE exchange is triggered (#7), otherwise the packet is sim-
ply dropped. During the IKE exchange (#8), the local policy and credentials are
consulted (#9), and any credentials fetched from the peer during the exchanged
are subsequently stored (#10) in the local database. If the IKE exchange results
in SAs being created, these are stored back in the SA database (#11). Finally, the
SPD is updated (#12) if necessary, and subsequent packets can be processed (the
original unprotected packet is dropped).
It should be obvious from the above that, in our architecture, the SPD has become

a policy cache; the \real" policy is expressed in terms of KeyNote assertions and
credentials. There are two ways of populating the cache. The �rst, described above,
is to populate it on-demand. If a �lter rule does not exist in the SPD, KeyNote is
invoked to determine what should be done with the packet; based on the response

Trust Management for IPsec � 15

SA Database

IKE Daemon

5a: SA fully set up,
process and output

SA Setup

User ModeKernel

12: update filter rules

9: consult policies/credentials

10: update policies/credentials

11: update SA database

Policies&credentials

(KeyNote Language)

IP Output routine

1: Packet arrives

IPSec Processing
4: consult SA db

3b: IPSec possible

5b: Trigger SA setup

6: Consult policy

7: Initiate IKE

SPD

8: Do IKE exchange

3a: No IPSec processing needed

2: Consult SPD

KeyNote Interpreter

Fig. 3. KeyNote-Controlled IPsec Output Processing

from KeyNote, a rule is installed in the SPD that makes further KeyNote queries
unnecessary. The second approach is to analyze all policies at startup time and
populate the SPD accordingly. This avoids the cost of a cross-domain call (from the
kernel to a user-space policy daemon) per cache miss, but requires re-initialization
of the SPD every time the policy changes.

3.6 Policy Updates

Changing policy in the simple case is straightforward: the new policies are placed
in isakmpd.policy. When existing IPsec SAs expire and are subsequently re-
negotiated, or when new IPsec SAs are established, the new policy will automati-
cally be taken into consideration. If we want new policy to be applied to existing
IPsec SAs, we can simply examine the existing SAs in the context of the new policy,
pretending we are now establishing them. If the updated policy permits the old
SAs, no further action is required; otherwise, they are deleted.

3.7 Performance

The overhead of KeyNote in the IKE exchanges is negligible compared to the cost of
performing public-key operations. Assertion evaluation (without any cryptographic
veri�cation) is approximately 120 microseconds on Pentium II at 450Mhz. Because
evaluating the base KeyNote policies themselves does not require the veri�cation
of digital signatures, the KeyNote compliance check is generally very fast: with
a small number of policy assertions, initialization and veri�cation overhead is ap-
proximately 130 microseconds. This number increases linearly with the size and
the number of policy assertions that are actually evaluated, each such assertion

16 � Blaze, Ioannidis, Keromytis

adding approximately 20 microseconds. The generation of the shadow delegation
tree is also very low cost. When using KeyNote credentials for both authentication
and policy speci�cation, the cost of public-key signature veri�cation is incurred.
This cost is identical to that of the standard X.509 case (and indeed to that of any
other public-key authentication mechanism). Signatures in KeyNote credentials are
veri�ed as needed and only the �rst time they are used | the veri�cation result
is cached and reused. Credential expiration is handled by the general KeyNote
processing, as part of the Conditions �eld; thus policies and credentials that have
expired do not contribute in authorizing an SA and no special handling is needed.
In all cases, the cost of KeyNote policy processing is several orders of magnitude
lower than the cost of performing the public-key operations that it is controlling.
KeyNote policy control contributed only a negligible increase in the code size

of the OpenBSD IPsec implementation. To add KeyNote support to isakmpd we
added about 1000 lines of \glue" code to isakmpd. Almost all of this code is related
to data structure management and formatting for communicating with the KeyNote
interpreter. For comparison, the rudimentary con�guration �le-based system that
the KeyNote-based scheme replaces took approximately 300 lines of code. The
entire original isakmpd itself was about 27000 lines of code (not including the
cryptographic libraries). The original isakmpd and the KeyNote extensions to it
are written in the C language.

4. OTHER APPLICATIONS OF TRUST MANAGEMENT IN IPSEC

In this section we illustrate some uses of the enhanced IPsec architecture we pre-
sented.

4.1 The Distributed Firewall

In [Ioannidis et al. 2000], the work presented in this paper implements a \dis-
tributed �rewall". Distributed �rewalls overcome several signi�cant shortcomings
of traditional �rewalls, which depend on arti�cial constraints in network topology
to enforce centrally-speci�ed security policies:

|Due to the increasing line speeds and the more computation-intensive protocols
that a �rewall must support (especially IPsec), �rewalls tend to become con-
gestion points. This gap between processing and networking speeds is likely to
increase, at least for the foreseeable future; while computers (and hence �rewalls)
are getting faster, the combination of more complex protocols and the tremen-
dous increase in the amount of data that must be passed through the �rewall has
been and likely will continue to outpace Moore's Law [Dahlin 1995].

|The assumption, inherent in traditional �rewall deployment, that all insiders are
equally trusted has not been valid for a long time. Speci�c individuals or remote
networks may be allowed access to all or parts of the protected infrastructure
(extranets, telecommuting, etc.). Consequently, the traditional notion of a secu-
rity perimeter can no longer hold unmodi�ed; for example, it is desirable that
telecommuters' systems comply with the corporate security policy.

|Large (and even not-so-large) networks today tend to have a large number of
entry points (for performance, failover, and other reasons). Furthermore, many
sites employ internal �rewalls to provide some form of compartmentalization.

Trust Management for IPsec � 17

This makes administration particularly diÆcult, both from a practical point of
view and with regard to policy consistency, since no uni�ed and comprehensive
management mechanism exists.

|End-to-end encryption can also be a threat to �rewalls [Bellovin 1999], as it
prevents them from looking at the packet �elds necessary to do �ltering. Allowing
end-to-end encryption through a �rewall implies considerable trust to the users
on behalf of the administrators.

|Finally, there is an increasing need for �ner-grained (and even application-speci�c)
access control which standard �rewalls cannot readily accommodate without
greatly increasing their complexity and processing requirements.

Despite these shortcomings, �rewalls o�er the advantage of enforcing centrally-
de�ned policy. Thus, the distributed �rewall work attempts to address all these
problems while allowing centralized policy speci�cation. The distributed �rewall
uses IPsec as a means for distributing policies, in the form of KeyNote credentials,
for various network applications; these policies are enforced by individual end-hosts
and servers, thus overcoming most of the problems outlined above. Enforcement
is done in a TCP-connection granularity, although more recently this has been
extended down to individual packets without unduly a�ecting performance.
The prototype system was implemented using OpenBSD, and is comprised of

three parts: a set of kernel extensions, which implement the enforcement mecha-
nism, a user-level daemon process, which implements the distributed �rewall poli-
cies, and a device driver, which is used for two-way communication between the
kernel and the policy daemon. The prototype implementation is approximately
1150 lines of C code, equally split among the three components.
Figure 4 shows a graphical representation of the system, with all its components.

For more details, see [Ioannidis et al. 2000].

4.2 STRONGMAN

The strongman architecture [Keromytis 2001] ties together multiple security pol-
icy mechanisms within a single system image. The architecture supports many
application-speci�c policy languages, and automatically distributes and uniformly
enforces the single security policy across all enforcement points. Furthermore,
strongman allows enforcement points to be chosen appropriately to meet both
security and performance requirements.
Other concerns strongman addresses are:

|Policy updates must be as cheap as possible, since these are common and often-
used operations in any system (adding/giving privileges to a user, removing/revo-
king privileges from a user).

|Security policies for a particular application should be speci�ed in an application-
speci�c language, and a single speci�cation should be able to control the behavior
of any needed security mechanism.

|Finally, administrators should be able to independently specify policies over their
own domain: this should be true whether the administrator manages particular
applications within a security domain, or manages a subdomain of a larger ad-
ministrative domain.

18 � Blaze, Ioannidis, Keromytis

ioctl()

Application

Library

User Space

Modified
System Calls

Kernel Space

accept()/connect()

Policy Daemon

open(), close(),
read(), write(),

/dev/policy
Context Q

Policy

Fig. 4. The Figure shows a graphical representation of the system, with all its components. The
core of the enforcement mechanism lives in kernel space and is comprised of the two modi�ed
system calls that interest us, connect(2) and accept(2). The policy speci�cation and processing
unit lives in user space inside the policy daemon process. The two units communicate via a
loadable pseudo device driver interface. Messages travel from the system call layer to the user
level daemon and back using the policy context queue.

The architecture can be described at the highest level by Figure 5.

At the lowest level, the system supports \lazy instantiation" of policy on the
enforcement points in order to minimize the resources consumed by policy storage.
In other words, an enforcement point should only learn those parts of its policy
that it actually has to enforce as a result of user service access patterns. A further
bene�t of this approach is that policy may be treated as \soft state," and thus be
discarded by the enforcement point when resources are running low and recovered
when space permits or after a crash.

strongman shifts as much of the operational burden as possible to the end
users' systems because enforcement points are generally overloaded with processing
requests and mediating access. As an example, in the context of \lazy policy instan-
tiation" described above, the users' systems can be made responsible for acquiring
the policies that apply to the users and for providing these to the enforcement
points.

There is a distinction between high and low level policy in strongman; in par-
ticular, there may be multiple high-level policy speci�cation mechanisms (di�erent
languages, GUIs, etc.), all translating to the same lower-level policy expression
language. A powerful, exible, and extensible low-level mechanism that is used as
a common \policy interoperability layer" allows us to use the same policy model
across di�erent applications, without mandating the use of any particular policy
front-end. This architecture has an intentional resemblance to the IP \hourglass",
and resolves heterogeneity in similar ways, e.g., the mapping of the interoperability
layer onto a particular enforcement device, or the servicing of multiple applications
with a policy lingua franca. In our prototype system, KeyNote serves the role of

Trust Management for IPsec � 19

Network etc.

KeyNote

Firewall

Global
Policy

Host
Router

Local
Enforcement

Compiler BCompiler A

information

High level policy
(Language A) (Language B)

High level policy

Fig. 5. KeyNote used as a policy interoperability layer. Policy composition in strongman does
not depend on using the same compiler to process all the high-level policies.

the policy interoperability layer.
Finally, using KeyNote as the low-level policy system allows for decentralized and

hierarchical management and supports privilege delegation to other users. Note
that delegation allows any user to be treated as an \administrator" of her dele-
gates; conversely, administrators in such a system can simply be viewed as users
with very broad privileges. This permits both decentralized management (di�erent
administrators/users are made responsible for delegating and potentially re�ning
di�erent sets of privileges), and collaborative networking (by treating the remote
administrator as a local user with speci�c privileges she can then delegate to her
users). Limited privileges can be conferred to administrators of other domains, who
can then delegate these to their users appropriately; this allows for Intranet-style
collaborations.

5. CONCLUSIONS, FUTURE WORK, AVAILABILITY

We have demonstrated a practical and useful approach to managing trust in network-
layer security. One of the most valuable features of trust management for IPsec
SA policy management is its handling of policy delegation, which essentially uni�es
remote administration with credential distribution.
Perhaps the most important contribution of this work is our use of a two level

policy speci�cation hierarchy to control IPsec traÆc. At the packet level, we use
a specialized, very eÆcient, but less expressive �ltering language that provides
the basic control of traÆc through the host. The installation of these packet �l-
ters, in turn, is controlled by a more expressive, general purpose, but less eÆcient
trust-management language. Our performance measurements provide encouraging

20 � Blaze, Ioannidis, Keromytis

evidence that this approach is quite viable, providing a very high degree of control
over traÆc without the performance impact normally associated with highly ex-
pressive, general purpose mechanisms. It is possible that this approach has merit
in applications beyond controlling network-layer security.
Because the KeyNote language on which this work is based is application-inde-

pendent, our scheme can be used as the basis for a more comprehensive policy
management architecture that ties together di�erent aspects of network security
with policies for IPsec and packet �ltering. For example, a general network security
policy might specify the acceptable mechanisms for remote access to a private
corporate network over the Internet; such a policy may, for example, allow the use
of clear-text passwords only if traÆc is protected with IPSEC or some transport-
layer security protocol (e.g., SSH [Ylonen et al. 1999]). Multi-application policies
would, of course, require embedding policy controls into either an intermediate
security enforcement node (such as a �rewall) or into the end applications and
hosts [Ioannidis et al. 2000]. This approach is the subject of ongoing research.
The KeyNote trust-management system is available in an open source toolkit;

see the KeyNote web page at

http://www.crypto.com/trustmgt/

for details. The KeyNote IPsec trust-management architecture is distributed with
OpenBSD 2.6 (and later), which is available from

http://www.openbsd.org/

Because the policy management functionality is implemented entirely in the user-
level isakmpd, the system is readily portable to other IPsec platforms (especially
those based on BSD implementations).

ACKNOWLEDGMENTS

The distributed �rewall is work done by Sotiris Ioannidis, Angelos Keromytis,
Jothathan Smith (University of Pennsylvania), and Steve Bellovin (AT&T Labs
{ Research). The strongman architecture is the subject of Angelos Keromytis'
PhD thesis, and Sotiris Ioannidis, Michael Greenwald, and Jonathan Smith (Uni-
versity of Pennsylvania) have all collaborated and contributed to that work.

REFERENCES

Alaettinoglu, C., Bates, T., Gerich, E., Karrenberg, D., Meyer, D., Terpstra, M.,

and Villamizer, C. 1998. Routing Policy Speci�cation Language (RPSL). Request for
Comments (Proposed Standard) 2280 (January), Internet Engineering Task Force.

Bellovin, S. M. 1999. Distributed Firewalls. ;login: magazine, special issue on secu-
rity special issue on security.

Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. D. 1999. The KeyNote
Trust Management System Version 2. Internet RFC 2704.

Blaze, M., Feigenbaum, J., and Lacy, J. 1996. Decentralized Trust Management. In
Proc. of the 17th Symposium on Security and Privacy (1996), pp. 164{173. IEEE Computer
Society Press, Los Alamitos.

Blaze, M., Ioannidis, J., and Keromytis, A. 1999. Trust Management and Network Layer
Security Protocols. In Proceedings of the 1999 Cambridge Security Protocols International
Workshop (1999).

Trust Management for IPsec � 21

Blaze, M., Ioannidis, J., and Keromytis, A. 2001. Trust Managent for IPsec. In Proc. of

Network and Distributed System Security Symposium (NDSS) (February 2001), pp. 139{
151.

Bonatti, P. and Samarati, P. 2000. Regulating Service Access and Information Release
on the Web. In Proc. of the Seventh ACM Conference on Computer and Communications
Security (Athens, Greece, 2000).

Boyle, J., Cohen, R., Durham, D., Herzog, S., Rajan, R., and Sastry, A. 2000. The
COPS (Common Open Policy Service) Protocol. Request for comments (proposed standard)
(January), Internet Engineering Task Force.

Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S. 1997. Resource ReSer-
Vation Protocol (RSVP) { Version 1 Functional Speci�cation. Internet RFC 2208.

Calhoun, P., Rubens, A., Akhtar, H., and Guttman, E. 1999. DIAMETER Base Pro-
tocol. Internet Draft (Dec.), Internet Engineering Task Force. Work in progress.

CCITT. 1989. X.509: The Directory Authentication Framework. Geneva: International
Telecommunications Union.

Condell, M., Lynn, C., and Zao, J. 1999. Security Policy Speci�cation Language. Internet
draft (July), Internet Engineering Task Force.

Dahlin, M. 1995. Serverless Network File Systems. Ph. D. thesis, University of California,
Berkeley.

Hallqvist, N. and Keromytis, A. D. 2000. Implementing Internet Key Exchange (IKE).
In Proceedings of the Annual USENIX Technical Conference, Freenix Track (June 2000),
pp. 201{214.

Harkins, D. and Carrel, D. 1998. The Internet Key Exchange (IKE). Request for Com-
ments (Proposed Standard) 2409 (Nov.), Internet Engineering Task Force.

Housley, R., Ford, W., Polk, W., and Solo, D. 1999. Internet X.509 public key infras-
tructure certi�cate and CRL pro�le. Request for Comments 2459 (Jan.), Internet Engineer-
ing Task Force.

Ioannidis, J. and Blaze, M. 1993. The Architecture and Implementation of Network-Layer
Security Under Unix. In Fourth Usenix Security Symposium Proceedings (October 1993).
USENIX.

Ioannidis, S., Keromytis, A., Bellovin, S., and Smith, J. 2000. Implementing a Dis-
tributed Firewall. In Proceedings of Computer and Communications Security (CCS) 2000
(November 2000), pp. 190{199.

Kent, S. and Atkinson, R. 1998a. IP Encapsulating Security Payload (ESP). Request for
Comments (Proposed Standard) 2406 (Nov.), Internet Engineering Task Force.

Kent, S. and Atkinson, R. 1998b. Security Architecture for the Internet Protocol. Request
for Comments (Proposed Standard) 2401 (Nov.), Internet Engineering Task Force.

Keromytis, A. D. 2001. STRONGMAN: A Scalable Solution to Trust Management in
Networks. Ph. D. thesis, University of Pennsylvania.

Keromytis, A. D., Ioannidis, J., and Smith, J. M. 1997. Implementing IPsec. In Pro-
ceedings of Global Internet (GlobeCom) '97 (November 1997), pp. 1948 { 1952.

McCanne, S. and Jacobson, V. 1993. A BSD Packet Filter: A New Architecture for User-
level Packet Capture. In Proceedings of USENIX Winter Technical Conference (San Diego,
California, Jan. 1993), pp. 259{269. Usenix.

Needham, R. and Schroeder, M. 1978. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM 21, 12 (December), 993{998.

Rigney, C., Rubens, A., Simpson, W., and Willens, S. 1997. Remote Authentication
Dial In User Service (RADIUS). Request for Comments (Proposed Standard) 2138 (April),
Internet Engineering Task Force.

Sanchez, L. and Condell, M. 1998. Security Policy System. Internet draft, work in
progress (November), Internet Engineering Task Force.

Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T., and Lehtinen, S. 1999. SSH Protocol
Architecture. Internet Draft (Feb.), Internet Engineering Task Force. Work in progress.

22 � Blaze, Ioannidis, Keromytis

Authorizer: "POLICY"

Licensees: "passphrase:pedomellonaminno"

Conditions: app_domain == "IPsec policy"

&& doi == "ipsec" && pfs == "yes"

&& esp_present == "yes" && esp_enc_alg != "null"

&& remote_filter == "135.207.000.000-135.207.255.255"

&& local_filter == "198.001.004.0-198.001.004.255"

&& remote_ike_address == "198.001.004.001" ;

Fig. 6. Policy for Firewall of 135.207.0.0/16 Network.

Appendix 1: KeyNote Action Attributes for IPsec

All the data in the �elds of IKE packets are passed to KeyNote as action at-
tributes; these attributes are available to the Conditions sections of the KeyNote
assertions. There are a number of attributes de�ned (the complete list appears in
the isakmpd.policy man page in OpenBSD 2.6 and later). The most important
attributes include:

app domain is always set to IPsec policy.

pfs is set to yes if a DiÆe-Hellman exchange will be performed during Quick Mode,
otherwise it is set to no.

ah present, esp present, comp present are set to yes if an AH, ESP, or com-
pression proposal was received in IKE (or other key management protocol), and
to no otherwise. Note that more than one of these may be set to yes, since it
is possible for an IKE proposal to specify \SA bundles" (combinations of ESP
and AH that must be applied together).

esp enc alg is set to one of des, des-iv64, 3des, rc4, idea and so on de-
pending on the proposed encryption algorithm to be used in ESP.

local ike address, remote ike address are set to the IPv4 or IPv6 address (ex-
pressed as a dotted-decimal notation with three-digit, zero-pre�xed octets (e.g.,
010.010.003.045)) of the local interface used in the IKE exchange, and the ad-
dress of the remote IKE daemon, respectively.

remote �lter, local �lter are set to the IPv4 or IPv6 addresses proposed as the
remote and local User Identities in Quick Mode. Host addresses, subnets, or
address ranges may be expressed (and thus controlled by policy).

Appendix 2: Con�guration Examples

Example 1: Setting up a VPN

In this example, two sites are connected over an encrypted tunnel. The authen-
tication is done by a simple passphrase. The policy in Figure 6 is present at one
of the �rewalls. It speci�es that packets between the 135.207.0.0/16 range of ad-
dresses and the 198.1.4.0/24 range of addresses have to be protected by ESP using
encryption. The remote gateway, with which IKE will negotiate, is 198.1.4.1.

Trust Management for IPsec � 23

Authorizer: POLICY

Licensees: RAS_ADMIN_Key

Comment: delegate authority to a Remote Access administrator.

Local-Constants:

RAS_ADMIN_Key_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\

Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

Conditions: app_domain == "IPsec policy"

&& doi == "ipsec"

&& pfs == "yes"

&& ah_present == "no"

&& esp_present == "yes"

&& esp_enc_alg == "3des" && esp_auth_alg == "hmac-sha"

&& esp_encapsulation == "tunnel"

&& local_filter == "139.091.000.000-139.91.255.255"

&& remote_ike_address == remote_filter ;

Fig. 7. Mobile host local policy.

Example 2: Remote Access

Authority to allow remote access through the site �rewall is controlled by several
security oÆcers, each one of whom is identi�ed by a public key. A policy entry such
as the one shown in Figure 7 exists for each individual security oÆcer, and is stored
in the isakmpd con�guration �le of the �rewall. Note the last line in the Conditions
�eld, which restricts remote users to negotiate only host-to-�rewall SAs, without
placing any restrictions to their actual address otherwise.
Each portable machine that is to be allowed in must hold a credential similar to

that shown in Figure 8; the credential is signed by a security administrator. When
weak encryption is used, the user can only read and send e-mail; when strong
encryption is used, all kinds of traÆc are allowed. During the IKE exchange,
the user's isakmpd provides this credential to the �rewall, which passes it on to
KeyNote. The policy and the credential, taken together, express the overall access
policy for the holder of key JIK. A similar policy (and a corresponding credential)
is issued to the user (and �rewall), to authorize the reverse direction (the �rewall
needs to prove to the user that it is authorized by the administrator to handle
traÆc to the 139.91.0.0/16 network).

24 � Blaze, Ioannidis, Keromytis

Authorizer: RAS_ADMIN_KEY_A

Licensees: JIK

Local-Constants:

RAS_ADMIN_KEY_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\

Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

JIK = "x509-base64:MIICGDCCAYGgAwIBAgIBADANBgkqhkiG9w0BAQQ\

FADBSMQswCQYDVQQGEwJHQjEOMAwGA1UEChMFQmVuQ28xETAPBg\

NVBAMTCEJlbkNvIENBMSAwHgYJKoZIhvcNAQkBFhFiZW5AYWxnc\

m91cC5jby51azAeFw05OTEwMTEyMzA2MjJaFw05OTExMTAyMzA2\

MjJaMFIxCzAJBgNVBAYTAkdCMQ4wDAYDVQQKEwVCZW5DbzERMA8\

GA1UEAxMIQmVuQ28gQ0ExIDAeBgkqhkiG9w0BCQEWEWJlbkBhbG\

dyb3VwLmNvLnVrMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBg\

QDaCs+JAB6YRKAVkoi1NkOpE1V3syApjBj0Ahjq5HqYAACo1JhM\

+QsPwuSWCNhBT51HX6G6UzfY3mOUz/vou6MJ/wor8EdeTX4nucx\

NSz/r6XI262aXezAp+GdBviuJZx3Q67ON/IWYrB4QtvihI4bMn5\

E55nF6TKtUMJTdATvs/wIDAQABMA0GCSqGSIb3DQEBBAUAA4GBA\

MaQOSkaiR8id0h6Zo0VSB4HpBnjpWqz1jNG8N4RPN0W8muRA2b9\

85GNP1bkC3fK1ZPpFTB0A76lLn11CfhAf/gV1iz3ELlUHo5J8nx\

Pu6XfsGJm3HsXJOuvOog8Aean4ODo4KInuAsnbLzpGl0d+Jqa5u\

TZUxsyg4QOBwYEU92H"

Conditions: app_domain == "IPsec policy" && doi == "ipsec"

&& pfs == "yes"

&& esp_present == "yes" && ah_present == "no"

&& ((esp_enc_alg == "des" && esp_auth_alg == "hmac-md5"

&& remote_filter_proto == "tcp"

&& local_filter_proto == "tcp"

&& (remote_filter_port == "25"

|| remote_filter_port == "110"))

|| (esp_enc_alg == "3des" && esp_aut_alg == "hmac-sha")) ;

Signature: "sig-rsa-sha1-base64:KhKUeJ6m1zF7kehwHb7W0xAQ8EkPNKbUqNhf/i+f\

ymBqjbzMy13OmH1itijbFLQJ"

Fig. 8. Mobile host credential.

