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Abstract

The design principle of restricting local autonomy only
where necessary for global robustness has led to a scal-
able Internet. Unfortunately, this scalability and capacity
for distributed control has not been achieved in the mech-
anisms for specifying and enforcing security policies. This
shortcoming must be overcome if end-to-end security mech-
anisms (such as IPsec or TLS) are to ever replace solutions
of short-term convenience such as firewalls.

The STRONGMAN (for Scalable TRust Of Next Gener-
ation MANagement) system offers three new approaches to
scalability, applying the principle of local policy enforce-
ment complying with global security policies. First is the
use of a compliance checker to provide great local auton-
omy within the constraints of a global security policy. Sec-
ond is a mechanism to compose policy rules into a coherent
enforceable set, e.g., at the boundaries of two locally au-
tonomous application domains. Third is the “lazy instan-
tiation” of policies to reduce the amount of state that en-
forcement points need to maintain.

We demonstrate the use of these approaches in the de-
sign, implementation, and measurements of a distributed
firewall. Our experiments show that, under certain cir-
cumstances, performance can improve over the traditional-
firewall approach.

1 Introduction

Much of the Internet’s scalability has been achieved as a
byproduct of intelligent application of the end-to-end de-
sign principle ([20, 6]), where properties that must hold
end-to-end are provided by mechanisms at the end points.
The resulting design keeps the network simple and allows
great local autonomy in implementing these mechanisms.
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Figure 1. A firewall’s bottleneck topology.

Security for distributed applications is arguably an end-
to-end property. By the end-to-end argument hostsshould
be responsible for the perceived security of “the internet.”
However, several factors currently argue against this place-
ment of functionality. First, policies must typically be spec-
ified at the granularity of administrative domains (e.g., a
corporate network), and not only at the granularity of in-
dividual hosts. Second, some operating systems have been
designed under the assumption that network security is
mostly handled by third parties (firewalls), thus lacking en-
forcement mechanisms. Third, many security policies adopt
the “hard shell, soft interior” approach, by granting more
rights to “local” (and, by implication, trusted) machines and
entities.

This situation has led, for example, to the pervasive use
of firewalls, which enforce a single security policy at net-
work boundaries to protect multiple hosts behind the bound-
aries from certain classes of security problems. To imple-
ment the policy globally, the network topology must be re-
stricted to pass all traffic through the firewall, as shown in
Figure 1. Unfortunately, these firewalls have many negative
consequences for Internet routing, flow control, and perfor-
mance. Furthermore, when the firewall fails or is otherwise
bypassed, the entire internal network is at the mercy of the
intruder (as was evidenced by the recent cases of corporate-
network infections by multi-vectored worms).

Any alternative that attempts to avoid the performance



bottleneck of a centralized firewall must support a simple
(andconsistent) specification of security policy for an en-
tire administrative domain. In other words, there must be
means of ensuring that the local enforcement actually con-
forms to the larger (“global”) policy. Since manual or semi-
automatic configuration of nodes and protocols to conform
to a global policy has been shown to be problematic and
error-prone [13], automatic techniques relying on a single
method of specification are desirable.

To further complicate matters, experience has shown that
no single mechanism exists that can address the security
requirements of all applications and protocols. Therefore,
multiple security mechanisms (with overlapping scopes,
such as IPSec and SSL) are typically in use simultaneously
in many networks. These multiple security mechanisms
must present a single consistent system image to the admin-
istrator, else complexity of configuration will again result in
errors.

It may seem natural to generalize the solution proposed
by distributed firewalls ([2, 14]) and design a “universal”
high-level policy specification language. Such a language
would, ideally, specify global policies that must be enforced
across multiple heterogeneous domains. However, security
policies are often application-dependent. “Universal” high-
level policy languages tend to be feature-rich and complex,
and are therefore clumsy and lead to mistakes. Further-
more, such languages often presume homogeneity, and can-
not handle mixtures of multiple mechanisms/languages for
different parts of the same network.

Therefore, we argue that the correct approach is an
architecture that ties together multiple security mecha-
nisms within a single system image, that supports many
application-specific policy languages, that automatically
distributes and uniformly enforces the single security policy
across all enforcement points, and that allows enforcement
points to be chosen appropriately to meet both security and
performance requirements. Further, this architecture must
scale with the growth of the network in several dimensions
(number of users, hosts, protocols/applications, and secu-
rity policies tying all these together).

In this paper we propose an architecture, STRONG-
MAN, and argue that it meets these requirements. The
main components of our architecture are the use of a policy
compliance checker to provide great local autonomy within
the constraints of a global security policy, a mechanism for
composing policy rules into a coherent enforceable set, and
“lazy instantiation” of policies to reduce the amount of state
that enforcement points need to maintain.

In the following sections we describe these three com-
ponents and their use in the STRONGMAN architecture in
more detail, discuss its instantiation in the form of a dis-
tributed firewall, and present some preliminary measure-
ments which show that performance can improve in certain

scenarios, relative to the traditional firewall approach. We
then compare our approach with other work, and conclude
the paper with some discussion on future directions.

2 Our Approach

Following our previous discussion, we have set certain
requirements for our proposed system. First, it must handle
growth in the number of users, applications, enforcement
points, and rules pertaining to these. A corollary to this is
that the most common operations (i.e.,policy updates) must
be very cheap. Second, security policies for a particular
application should be specifiable in an application-specific
language or application-specific extension. Third, adminis-
trators should be able to independently specify policies over
their own domain: this should be true whether the adminis-
trator manages particular applications within a security do-
main, or manages a sub-domain of a larger administrative
domain. In other words, the system must support privilege
delegation and hierarchical management.

These requirements shape our design of the STRONG-
MAN architecture. An overview of the policy flow in our
architecture is shown in Figure 2. It should be immediately
clear that there is a distinction between high and low level
policy. In particular, we envision a multiplicity of high-
level policy specification mechanisms (different languages,
GUIs, etc.), all translating to the same lower-level policy
expression language. A powerful, flexible, and extensible
low-level mechanism that is used as a common “policy in-
teroperability layer” allows us to use the same policy model
across different applications, without mandating the use of
any particular policy front-end. This architecture has an in-
tentional resemblance to the IP “hourglass”, and resolves
heterogeneity in similar ways,e.g.,the mapping of the in-
teroperability layer onto a particular enforcement device, or
the servicing of multiple applications with a policylingua
franca.

As the figure also implies, policy is enforced in a de-
centralized manner. STRONGMAN shifts as much of the
operational burden as possible to the end users’ systems
because traditional enforcement points are generally over-
loaded with processing requests and mediating access. In
our architecture, we can have an arbitrary number of en-
forcement points, deployed at the granularity necessary to
enforce very fine-grained access control. This, however,
can lead to excessively large numbers of policy rules (in
the worst case, the cross-product of the number of users,
number of nodes, and number of services per node). In or-
der to minimize the resources consumed by policy storage
and processing at each enforcement point, the low-level pol-
icy system supports “lazy instantiation” of policy. In other
words, an enforcement point should only learn those parts
of the global policy that it actually has to enforce as a re-
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Figure 2. KeyNote used as a policy interoperability layer. Policy composition in STRONGMAN does not depend on using
the same compiler to process all the high-level policies.

sult of user service access patterns. A further benefit of this
approach is that policy may be treated as “soft state,” and
thus be discarded by the enforcement point when resources
are running low, and recovered when space permits or after
a crash.

Other important aspects of our architecture, not shown
in Figure 2, include:

• Independent policy specifications can be composed in
a manner which does not violate any of them, because
multiple independently-specified policies may be man-
aged at a single enforcement point.

• Users are identified by their public keys (each
user may have multiple keys, for different pur-
poses/applications). These public keys are used in the
context of various protocols to authenticate the users
to specific services. This also helps prevent malicious
users from tampering with policies provided to en-
forcement points via “lazy policy instantiation”.

• The low-level policy system allows for decentralized
and hierarchical management and supports privilege
delegation to other users. Note that delegation allows
any user to be treated as an “administrator” of her dele-
gatees; conversely, administrators in such a system can
simply be viewed as users with very broad privileges.
This permits both decentralized management (different
administrators/users are made responsible for delegat-
ing and potentially refining different sets of privileges),

and collaborative networking (by treating the remote
administrator as a local user with specific privileges
she can then delegate to her users). Limited privileges
can be conferred to administrators of other domains,
who can then delegate these to their users appropri-
ately; this allows for Intranet-style collaborations.

Our architecture implements these design principles by us-
ing the KeyNote [3] trust-management system as a basis for
expressing and distributing low-level security policy. In the
next few subsections we give an overview of KeyNote, de-
scribe the policy translation and composition mechanisms,
and discuss how policy is distributed (and how “lazy instan-
tiation” is implemented) in our system.

2.1 KeyNote

KeyNote is a simple trust-management system and lan-
guage developed to support a variety of applications. Al-
though it is beyond the scope of this paper to give a com-
plete tutorial or reference on KeyNote syntax and semantics
(for which the reader is referred to [3]), we review a few ba-
sic concepts to give the reader a taste of what is going on.

The basic service provided by the KeyNote system is
compliance checking;that is, checking whether a proposed
action conforms to localpolicy. Actions in KeyNote are
specified as a set of name-value pairs, called anAction At-
tribute Set. Policies are written in the KeyNoteassertion
languageand either accept or reject action attribute sets



permit KEY1 if
using strong encryption and
target in 192.168.1.0/24

permit USERGROUP4 if
using authentication and
origin in LOCALNET and
target in WEBSERVERS

Figure 3. A high-level IPsec policy, enforced at the net-
work layer.

allow USERGROUP5 if file "/foo/bar.html"

allow ANGELOS if
directory "/confidential" and
source in LOCALNETWORK

Figure 4. A high-level web access policy, enforced by
the web server.

presented to it. Policies can be broken up and distributed
via credentials, which are signed assertions that can be sent
over a network and to which a local policy can defer in
making its decisions. The credential mechanism allows for
complex graphs of trust, in which credentials signed by sev-
eral entities are considered when authorizing actions. Users
have a variety of credentials, for the different services and
nodes they need to access.

Each service that needs to mediate access, queries its lo-
cal compliance checker on a per-request basis (what consti-
tutes a “request” depends on the specific service and pro-
tocol). The compliance checker can be implemented as a
library that is linked against every service, as a daemon that
serves all processes in a host, or as a network service (this
latter case requires provisions for secure communications
between the policy enforcer and the compliance checker).

2.2 Policy Translation and Composition

In our architecture, policy for different network appli-
cations can be expressed in various high-level policy lan-
guages or systems, each fine-tuned to the particular appli-
cation. Each such language is processed by a specialized
compiler that can take into consideration such information
as network topology or a user database and produces a set
of KeyNote credentials. At the absolute minimum, such a
compiler needs a knowledge of the public keys identifying
the users in the system. Other information is necessary on
a per-application basis. For example, knowledge of the net-
work topology is typically useful in specifying packet fil-

tering policy; for web content access control, on the other
hand, the web servers’ contents and directory layout are
probably more useful. Our proof-of-concept languages (ex-
amples are shown in Figures 3 and 4) use a template-based
mechanism for generating KeyNote credentials.

This decoupling of high and low level policy specifica-
tion permits a more modular and extensible approach, since
languages may be replaced, modified, or created without af-
fecting the underlying system.

Our architecture requires each high-level language or
GUI to include a “referral” primitive. A referral is
simply a reference to a decision made by another lan-
guage/enforcement point (typically lower in the protocol
stack). This primitive allows us to perform policy com-
position at enforcement time; decisions made by one en-
forcement mechanism (e.g., IPsec) are made available to
higher-level enforcement mechanisms and can be taken into
consideration when making an access control decision. An
example of this is shown in Figure 5. The only needed coor-
dination between two policy domains is determining what
kind of information (encoded in the referrals) needs to be
generated and consumed respectively.

To complete the composition discussion, all that is nec-
essary is a channel to propagate this information across en-
forcement layers. In our system, this is done on a case-by-
case basis. For example, IPsec information can be propa-
gated higher in the protocol stack by suitably modifying the
Unix getsockopt(2) system call; in the case of a web
server and SSL, the information is readily available through
the SSL data structures (since the SSL and the web access
control enforcement are both done in the context of a single
process address space). This approach is sufficient for pol-
icy interaction across network layers, but would not work
for arbitrary policy domain interaction.

2.3 Credential Management

Following our design decision of shifting as much as
possible of the operational burden away from the enforce-
ment points and to the users’ systems, we make the users re-
sponsible for presenting the necessary credentials to the en-
forcement points they access. Thus, the enforcement points
dynamically “learn” those parts of the global policy that are
relevant to a particular request. It is in the interest of the user
to present the correct credentials, in order to obtain service.

Compiled credentials are available to users through pol-
icy repositories. These credentials are signed by the ad-
ministrator’s key and contain the various conditions under
which a specific user (as identified by her key in the creden-
tial) is allowed to access a service. The translation of the
policy rule in Figure 5 is shown in Figure 6.

Users who wish to gain access to some service first need
to acquire a fresh credential from one of the repositories. It



allow USER_ROOT if
directory "/confidential" and
source in LOCALNETWORK and
(application IPsec says

"strong encryption" or
application SSL says

"very strong encryption")

Figure 5. Web access policy taking into consideration
decisions made by the IPsec and SSL protocols. The
information on USER ROOT and LOCALNETWORK
are specified in separate databases, which the compiler
takes into consideration when compiling these rules to
KeyNote credentials.

is not necessary to protect the credentials as they are trans-
ferred over the network, since they are self-protected by
virtue of being signed1. Users then provide these credentials
to the relevant service (web server, firewall,etc.) through
a protocol-specific mechanism. For example, in the case
of IPsec, these credentials are passed on to the local key
management daemon which then establishes cryptographic
context with the remote firewall or end system. In the case
of firewalls in particular, the user’s system can either de-
pend on a signaling mechanism (as is being developed at
the IETF IP Security Policy Working Group) to detect their
existence, or can statically analyze the KeyNote credentials
to determine what actions need to be taken when trying to
access specific services, networks, or end-systems.

It is also possible to pass KeyNote credentials in the TLS
protocol. For protocols where this is not possible (e.g.,
SSHv1), an out-of-band mechanism can be used instead.
We have used a simple web server script interface for sub-
mitting credentials to be considered in the context of an ac-
cess control decision; credentials are passed as arguments
to a CGI script that makes them available to the web server
access control mechanism. To avoid DoS attacks, entries
submitted in this manner are periodically purged (in an LRU
manner).

Since policy is expressed is terms of credentials issued
to users, it need not be distributed synchronously to the en-
forcement points. As noted above, enforcement points do
not need to store all credentials and rules; rather, they learn
rules through “lazy policy instantiation” as users try to gain
access to controlled resources. If needed credentials were
discarded because of resource scarcity, the affected users
will simply have to re-submit them with their next access.

Adding a new user or granting more privileges to an ex-
isting user is simply a matter of issuing a new credential
(note that both operations are equivalent). The inverse op-

1It is possible to provide credential-confidentiality by encrypting each
credential with the public key of the intended recipient.

Authorizer: ADMINISTRATOR_KEY
Licensees: USER_ROOT_KEY
Conditions: app_domain == "web access" &&

directory ˜= "ˆ/confidential/.*" &&
(source_address <= "192.168.001.255" &&

source_address >= "192.168.001.000") &&
(ipsec_result == "strong encryption" ||

ssl_result ==
"very strong encryption");

Signature: ...

Figure 6. Translation of the policy rule from Figure 5
to a KeyNote credential. The public keys and the digital
signature are omitted in the interests of readability.

eration, removing a user or revoking issued privilege, can
be more expensive: in the simple case, a user’s credentials
can be allowed to expire; this permits a window of access,
between the time the decision is taken to revoke a user’s
privileges and the time the relevant credentials expire. For
those cases where this is adequate, there is no additional
overhead. This argues for relatively short-lived credentials,
which the users (rather, software on their systems) will have
to re-acquire periodically. While this may place additional
burden on the repositories, it is possible to arrange for cre-
dentials to expire at different times from each other, thus
mitigating the effect on the infrastructure of multiple users
(re-)acquiring their credentials at the same time, if the cre-
dentials are relatively long-lived. Given that a large number
of digital signatures will have to be computed as a result of
periodically issuing credentials, this is also desirable from a
policy-generation point of view.

For more aggressive credential revocation, other mecha-
nisms have to be used. Although no single revocation mech-
anism exists that can be used in all possible systems, we
note that any such mechanism should not increase the load
or storage requirements on enforcement points. Thus, the
most attractive approach is proofs of validity (acquired by
the user from a “refresher” server, and provided to the en-
forcement point along with the credentials). The proofs of
validity can be encoded as KeyNote credentials that are in-
jected in the delegation chain, as shown in Figure 7. While
this approach is architecturally attractive, it places high load
on the refresher servers. The validity verification mecha-
nism may be specified on a per-credential basis, depending
on the perceived risk of compromise and the potential dam-
age done if that occurs.

Finally, since KeyNote allows arbitrary levels of delega-
tion (through chains of credentials), it is possible for users
to act as lower-level administrators and issue credentials
to others. In this way, we can build a hierarchical and
decentralized management scheme wherein the corporate



Proof of validity of one day

(a)

Authorizer: REVOCATION_KEY
Licensees: USER_ALICE_KEY
Conditions: ...

User credential conveying actual privilege

(b)

Licensees: REVOCATION_KEY
Authorizer: REVOCATION_KEY

Licensees: REVOCATION_KEY
Conditions:

      datetime < "20010101235959";
      datetime >= "20010101000000" &&

Proof of validity of one day

Authorizer: ADMIN_KEY

Licensees: REVOKE_KEY_ALICE ||
                     REVOKE_KEY_BOB ||
                     ....
                     REVOKE_KEY_ZULU
Conditions:

      datetime >= "20010101000000" &&
      datetime < "20010101235959";

Authorizer: ADMIN_KEY

Licensees: USER_ALICE_KEY
Conditions: ...

Authorizer: REVOKE_KEY_ALICE

Conditions: ...

Authorizer: REVOKE_KEY_BOB
Licensees: USER_BOB_KEY

User credential conveying actual privilege User credential conveying actual privilege

Figure 7. Proof of validity in the form of KeyNote credentials that delegate to the actual user, shown in (a). This approach
requires no changes in the compliance checking mechanism or credential distribution. Furthermore, by using a proof of va-
lidity that applies to large numbers of users simultaneously, as shown in (b), we can greatly reduce the number of credentials
that need to be periodically re-issued.

network administrator authorizes branch administrators to
manage their networks under some constraints. More inter-
estingly, it is possible to view the administrator of another
network as a local user; that administrator can handle access
to the shared resources for the remote network users, under
the constraints specified in their credential, making easy the
formation of so-called “extranets.”

3 The Distributed Firewall

To validate our design choices and experiment with the
different aspects of our architecture, we implemented it in
the context of a distributed firewall. A distributed firewall
(as described in [14]) enforces a single central security pol-
icy at everyendpoint. The policy specifies what connectiv-
ity, both inbound and outbound, is permitted. This policy
is distributed to all endpoints where it is authenticated and
then enforced, thus making security an end-to-end property.

Distributed firewalls do not rely on the topological no-
tions of “inside” and “outside” as do traditional firewalls.
Rather, a distributed firewall grants specific rights to ma-
chines that possess the credentials specified by the central
policy. A laptop connected to the “outside” Internet has the
same level of protection as does a desktop in the organiza-
tion’s facility. Conversely, a laptop connected to the corpo-

rate net by a visitor would not have the proper credentials,
and hence would be denied access, even though it is topo-
logically “inside.”

In the example STRONGMAN distributed firewall, end-
points are characterized by their public keys and the creden-
tials they possess. Thus, the right to connect to thehttp
port on a company’s internal Web server is only granted to
those machines having the appropriate credentials, rather
than those machines that happen to be connected to an in-
ternal wire. With the advent of wireless LANs, such con-
siderations are becoming extremely relevant.

In our prototype, end hosts (as identified by their IP ad-
dress) are also considered principals when IPsec is not used
to secure communications. This allows local policies or cre-
dentials issued by administrators to specify policies similar
to current packet-filtering rules. Such policies or creden-
tials have no option but to implicitly trust the validity of an
IP address as an identifier. In that respect, they are equiv-
alent to standard packet filtering. The only known solution
to this is the use of cryptographic protocols to secure com-
munications.

We should point out that the notions of a traditional and
a distributed firewall are not incompatible. Traditional fire-
walls have an advantage over the distributed firewall in that
they offer convenient aggregation points for network traf-
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fic, on which services such as denial of service detection
(or, more generally, intrusion detection) are easier to de-
ploy and operate. Furthermore, a combination of traditional
and distributed firewalls offers “defense in depth”, a well-
established principle in physical security and the military
world.

3.1 Implementation

Our OpenBSD-based implementation is composed of
three components:(1) a set of kernel extensions, which
implement the enforcement mechanisms;(2) a user level
daemon process, which implements the distributed firewall
policies; and(3) a device driver, which is used for two-way
communication between the kernel and the policy daemon.
Our prototype implementation totals approximately 1150
lines ofCcode, split equally among the three components.

Figure 8 shows a graphical representation of the system,
with all its components. The core of the enforcement mech-
anism lives in kernel space and comprises the filtering rou-
tines and the rule cache. The policy specification and pro-
cessing unit lives in user space, inside the policy daemon
process. Any incoming or outgoing IP packets go through
the filter and are subject to the policy rules. If none of the
rules match, a request is generated and inserted in thepolicy
context queue.From there, via the device driver, the policy
daemon can get the request and respond accordingly.

In the following three subsections, we briefly describe
the various parts of the architecture, their functionality, and
how they interact with each other.

3.1.1 Kernel Extensions

In the UNIX operating system, users create outgoing and al-
low incoming connections using a number of provided sys-

tem calls. Since any user has access to these system calls,
some “filtering” mechanism is needed. This filtering should
be based on a policy that is set by the administrator, and any
incoming or outgoing packet should be subject to it.

In order to enforce our policy over every packet and yet
have a simple and elegant design, we decided to filter IP
traffic. To achieve this we added hooks in theip input()
andip output() routines of the protocol stack (so poli-
cies can be enforced on both incoming and outgoing traffic)
that will execute our filtering code. We created two data
structures to assist us in this process.

The first data structure, therules cache, contains a set of
rules that packets are compared against. If a match is found,
the rule is followed to either accept or drop the packet. The
second data structure is thepolicy context queue. A pol-
icy context is a container for all the information related to
a specific packet. We associate a sequence number to each
such context and then start filling it with all the informa-
tion thepolicy daemonwill need to make an access control
decision. A request to the policy daemon comprises the fol-
lowing fields: a sequence number uniquely identifying the
request, the ID of the user the connection request belongs
to, the number of information fields that will be included
in the request, the lengths of those fields, and finally the
fields themselves. This can include source and destination
addresses, transport protocol and ports,etc. Any credentials
acquired through IPsec may also be added to the context at
this stage. There is no limit as to the kind or amount of in-
formation we can associate with a context. We can, for ex-
ample, include the time of day or the number of other open
connections of that user, if we want them to be considered
by our decision–making strategy.

Every packet is intercepted at the IP layer and checked
against therules cache.If a match is found, the rule is en-
forced. If no match is found, we enqueue a new request
to thepolicy context queue. If we have already enqueued
a request for the same class of packets, no further action is
necessary. Each entry in the context queue also contains the
last packet from that packet flow; if a positive decision is
received from the policy daemon, the packet is re-queued
for processing by the IP stack.

3.1.2 Policy Device

To maximize the flexibility of our system and allow for easy
experimentation, we decided to make the policy daemon a
user level process. To support this architecture, we imple-
mented apseudo device driver, /dev/policy , that serves
as a communication path between the user–space policy
daemon, and the modified system calls in the kernel.

The policy daemon reads the device for pending requests
in the policy context queue. It then handles the request and
returns a new rule to the kernel by writing it to the device,



as a result of which the appropriate entry is entered in the
rules cache.

It is possible to flush the rules cache. This is useful when
the policy that needs to be enforced by the policy daemon
is reloaded by the administrator; once the kernel cache is
flushed, the new policies will take affect as applicable traffic
(incoming or outgoing) is encountered.

3.1.3 Policy Daemon

The last component of our system is the policy daemon. It
is a user-level process responsible for making decisions on
whether to allow or deny connections. These decisions are
based on policies that are specified by an administrator and
credentials retrieved remotely or provided by the kernel.

Local policies are initially read in from a file. Policies
can be added and removed dynamically. The daemon can
simply flush one or more entries from the rules cache in
the kernel. This way subsequent packets will not match the
existing rule set and the policy daemon will be queried for
the new policy. In typical configurations however, the local
policies will simply specify the public key(s) of the admin-
istrator(s); any specific policies will have to be provided by
the user, or (optionally) retrieved from a remote repository.

The daemon receives each request from the kernel by
reading thepolicy device. The request contains all the
information relevant to that connection. The daemon acts
as a front-end for the KeyNote library, which is used to de-
cide whether a request should be granted or not (as well as
the “referral”). The decision is sent to the kernel, and the
daemon waits for the next request. While the information
received in a particular message is application-dependent
(in our case, relevant to the distributed firewall), the daemon
itself has no awareness of the specific application. Thus, it
can be used to provide policy resolution services for many
different applications, literally without any modifications.

The “referral” can be provided through thegetsock-
opt(2) API to any applications (such as a web server)
that may need to make a decision based on the network
layer’s security properties. We have implemented a mod-
ule for Apache that does per-HTTP request access control,
based on a different set of policies and credentials (issued
by the web administrator), demonstrating the feasibility of
the “referral” approach.

3.2 Experimental Evaluation

While the architectural discussion is largely qualitative,
some estimates of system performance are useful. We per-
formed several experiments, both of comparable node soft-
ware (using IPF, a packet-filtering package implemented
completely inside the kernel, used in many open-source sys-
tems) and of varied topologies which demonstrate the value
of maintaining consistent global security properties.

Our test machines are x86 architecture machines running
OpenBSD, and interconnected by 100 Mbps ethernet. More
specifically, in the two-host tests (source to sink), Alice is
an 850 Mhz PIII and serves as the traffic source. Bob, the
traffic sink, runs the distributed firewall (DF) code and is a
400 Mhz PII.

In the following tables,insecuremeans there is neither
DF nor IPF running, IPF means we have IPF activated,cold
cachemeans that we have DF running but the rules cache is
empty and we must go to the daemon every time to get the
rules; this last scenario is useful in determining the cost of
cache misses such as might be experienced in the case of a
highly utilized service (e.g.,an intranet web server with a
small ratio of packets per independent user request).Warm
cachemeans that the rules are in the cache (except for the
first reference).

Insecure 50.4 ms
Cold cache 61.7 ms
Warm cache 51.8 ms
IPF 63.1 ms

Figure 9. Average connection overhead for 100 TCP
connections between Alice and Bob.

Insecure 109.1 ms
IPF 134.2ms

Figure 10. Average connection overhead measured for
100 TCP connections between hosts through a firewall.

Insecure 0.273± 0.091 ms
Cold cache 0.283± 0.089 ms
Warm cache 0.282± 0.077 ms
IPF 0.283± 0.124 ms

Figure 11. Average roundtrip time for 200 ICMP
ECHO REQUEST messages.

In Figure 9 we have a server application running on Alice;
Bob runs a client which connects to the server 100 times
using different TCP ports. This generates 200 rules (2 per
connection, for incoming and outgoing packets). In the IPF
case, those 200 rules are pre-loaded in the filter list. In the
second experiment, Bob sent 200 ICMP ECHOREQUEST
messages to Alice; the results are shown in Figure 11. We
include the standard deviation, as the measurements did
vary slightly. These two experiments show us that the cost



of compliance checking in our architecture is very small
(within 3% of an insecure system, except for the TCP cold
cache case which is 20% more expensive), and typically
better than IPF. This means that an architecture with de-
centralized enforcement does not unduly affect end-system
latency.

The measurements of Figure 12 have a server application
running on Alice; a client running on Bob connects to Alice
and transfers 100MB. It is clear that our system does not
significantly affect network throughput (the difference is on
the order of 0.5%).

Insecure 11,131 ms
Cold cache 11,196 ms
Warm cache 11,178 ms
IPF 11,151 ms

Figure 12. 100MB file transfer over TCP.

In the experiment of Figure 13, we configured 4 (300 MHz)
PII systems interconnected via a 100Mbps ethernet hub.
One of the four machines is connected to the “outside
world” with 100 Mbps ethernet. In the outside world there
is an 850 MHz machine (Alice). The “inside” 3 machines
run a simple server accepting connections. The outside ma-
chine, through the gateway, makes 100 connections in a
round robin fashion to the 3 machines. Measurements are
given in the table of Figure 10.
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Figure 13. Test topology with intermediate firewall.

Using the same end-hosts, we eliminate the gateway ma-
chine, with each of the client machines running the dis-
tributed firewall and enforcing policy locally (see Figure
14). The ethernet hub is connected directly to the outside
world; the rest of the configuration remains as in the pre-
vious experiment. To test the scalability of the distributed
firewall we varied the number of hosts that participate in
the connection setup. As in the previous experiment, we
formed 100 connections to the machines running the dis-
tributed firewall in a round robin fashion, each time varying
the number of participating hosts. We make the assump-

tion that every protected host inside a firewall contributes
roughly the same number of rules, and in the classic central-
ized case the firewall will have to enforce the sum of those
rules. Therefore individual machines will have a smaller
rule base than a central control point.
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Figure 14. Test topology without intermediate fire-
wall.

The measurements and the percentile overheads are given in
Figures 15 and 16. We have kept the total number of rules
constant as in the IPF case, and spread them over an increas-
ing number of machines. This experiment clearly demon-
strates the benefit of eliminating intermediate enforcement
points, and pushing security functions to the endpoints: a
two-fold improvementin performance compared to the cen-
tralized approach, in addition to the increased flexibility and
scalability offered by our architecture.

1 Host 2 Hosts 3 Hosts
Insecure 56.1 ms 53.1 ms 48.6 ms
Cold cache 84.3 ms 62.1 ms 53.7 ms
Warm cache 66.3 ms 58.0 ms 50.5 ms

Figure 15. Average connection overhead for 100 TCP
connections spread over one, two and three hosts respec-
tively, using the distributed firewall.

1 Host 2 Hosts 3 Hosts
Cold cache 50.3% 17.0% 10.4%
Warm cache 23.0% 9.3% 3.8%

Figure 16. Reduction of processing overhead of the
distributed firewall as the number of hosts increases.
The percentages represent the additional cost of the dis-
tributed firewall over the insecure case and are derived
from Figure 15.

In the IPF firewall experiments, the rules must be preloaded;
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Figure 17. Performance degradation of traditional
packet–filtering firewalls as the number of rules in-
creases.

in an experimental configuration such as we described (with
ca. 200 rules) this is a non-issue. In large installations how-
ever, the number of rules can easily reach 4,000 - 5,000
(e.g., for a financial institution we are familiar with). In
an environment where simple IP address checking is insuffi-
cient, each such rule has other information associated with it
(e.g.,user public keys, acceptable encryption/authentication
algorithms, other conditions for access). Thus, the storage
requirements for network layer security policy could vary
from 4MB to 100MB or more. This requirement would
be imposed on all enforcement points of the same network,
which would then be required to have persistent storage (so
the policy survives crashes or power cycling). Furthermore,
the enforcement points would have to sort through a large
number of policies in trying to determine the access rights
of any particular user.

Figure 17 shows the performance degradation of IPF and
PF (two other packet-filtering packages) as the number of
total rules increases. This degradation is independent of the
number ofactive rules in traditional firewalls, and occurs
because all the policies have to be present at the firewall. In
STRONGMAN, the number of rules the enforcement point
has to consider at any time is independent of the number of
rules it may potentially have to enforce.

The key observation here is that not all users can (or do)
access the same enforcement points at the same time; our
architecture takes advantage of this fact, by only instanti-
ating rules as-needed at an enforcement point. The rules
are limited in our system to those needed to grant access to
users actually requesting access. Thus, the security-related
expended resources follow more closely the actual commu-
nication and transaction patterns of the network. Further-
more, only a small subset of rules (those provided by the
user) need to be considered with each independent request,
making processing cheaper than otherwise.

4 Related Work

Traditional firewall work ([5, 17, 21, 16, 7, 19]) has fo-
cused on nodes and enforcement mechanisms rather than
overall network protection and policy coordination.

In OASIS[11], policy coordination is achieved with a
role-based system where each principal may be issued with
a name by one service, on the condition that it has already
been issued with some specified name of another service.
Event notification is used to revoke names when the issu-
ing conditions are not satisfied, thus revoking access to ser-
vices that depended on that name. Credentials are limited to
verifying membership to a group or role, and OASIS uses
delegation in a very limited way, limiting decentralization.

Firmato’s[1] “network grouping” language is locally
customized to each managed firewall. The language is
portable, but limited to packet filtering. It does not han-
dle delegation or different, interacting application domains.
Policy updates force complete reloads of the rulesets at the
affected enforcement points, and the entire relevant policy
ruleset must be available at an enforcement point. This
causes scaling problems with respect to the number of users,
peer nodes, and policy entries. A similar system [12] cov-
ers additional configuration domains (such as QoS). Differ-
ences are the policy description language and the method by
which the rule set is pruned for any particular device. Other
work in the same vein is described in [8] and [18].

Another approach to policy coordination [9] proposes a
ticket-based architecture using mediators to coordinate pol-
icy between different information enclaves. Policy relevant
to an object is retrieved by a central repository by the con-
trolling mediator. Mediators also map foreign principals
to local entities, assign local proxies to act as trusted dele-
gates of foreign principals, and perform other authorization-
related duties. Coordination policy must be explicitly de-
fined by the security administrator of a system, and is sepa-
rate from access policy.

[4] proposes an algebra that allows combination of au-
thorization policies specified in different languages and is-
sued by different authorities. The main disadvantage is the
assumption that all policies and (more importantly) all nec-
essary supporting information is available at a single deci-
sion point, a difficult proposition even within the bounds of
an operating system. Our observation here is that in fact the
decision made by a policy engine can be cached and reused
higher in the stack. Although the authors briefly discuss
partial evaluation of composition policies, they do so only
in the context of their generation and not on enforcement.

The NESTOR architecture [15] defines a framework for
automated configuration of networks and their components.
NESTOR uses a set of tools for managing a network topol-
ogy database. It then translates high-level network configu-
ration directives into device-specific commands through an



adaptation layer. Policy constraints are enforced by ded-
icated manager processes, which pose scaling problems.
This approach has difficulty with decentralized administra-
tion and separation-of-duty concerns, due to its view of the
network through a central configuration depository.

5 Concluding Remarks

STRONGMAN is a new security policy management ar-
chitecture. Its approach to scaling is local enforcement of
global security policies. The local autonomy provided by
compliance checking permits the architecture to scale com-
fortably with the Internet infrastructure.

Our distributed firewall implementation on OpenBSD
was used to quantify some benefits of STRONGMAN. As
we have shown in Section 3.2, this implementation has
higher throughput and better scalability than a baseline fire-
wall constructed using IPF. It accommodates considerable
complexity in policies: the policy compliance checker com-
poses policy rules into a coherent enforceable set for each
enforcement point, and lazy instantiation reduces the state
required at enforcement points. The removal of topologi-
cal constraints in firewall placement facilitates other Inter-
net protocols and mechanisms.

STRONGMAN is the first architecture for providing
scalable access control services. Security enforcement is
pushed to the endpoints, consistent with end-to-end design
principles. Since the enforcement points are coupled only
by their use of a common global policy, they possess local
autonomy which can be exploited for scaling.

Among our goals for future work are experiments with
a larger scale deployment, validating lazy evaluation on
real traffic, and extending the uses of our system with new
application-specific policy languages.
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