
The Price of Safety in an Active Network

D. Scott Alexander

Bell Laboratories, Lucent Technologies

and

Kostas G. Anagnostakis

University of Pennsylvania

and

William A. Arbaugh

Department of Defense

and

Angelos D. Keromytis and Jonathan M. Smith

University of Pennsylvania

This work was supported by DARPA under Contract #N66001-96-C-852, with additional support
from the Intel Corporation.
Name: D. Scott Alexander
A�liation: Bell Laboratories, Lucent Technologies
Address: salex@research.bell-labs.com
Biography: Scott Alexander is currently a Member of Technical Sta� at Bell Laboratories. He
earned his B.A. at Rice University and his M.S.E. and Ph.D. at the University of Pennsylvania.
Name: Kostas G. Anagnostakis
A�liation: University of Pennsylvania
Address: anagnost@dsl.cis.upenn.edu
Biography: Kostas G. Anagnostakis is working towards an M.Sc. in Computer and Information
Science at the University of Pennsylvania. He earned a B.S. from the CS Department, University
of Crete, Greece.
Name: William A. Arbaugh

A�liation: Department of Defense
Biography: William A. Arbaugh received his Ph.D. at the University of Pennsylvania. He has
served as a senior computer scientist with the Research Group of the U.S. Department of Defense,
and as a senior software engineer and a tactical communications platoon leader with the U.S.
Army. He earned a M.S. in computer science from Columbia University, and a B.S. from the
United States Military Academy. He is a member of the IEEE and ACM.
Name: Angelos Keromytis
A�liation: University of Pennsylvania
Address: angelos@dsl.cis.upenn.edu
Biography: Angelos D. Keromytis is a Ph.D. candidate at the University of Pennsylvania. He
earned a M.S. in computer science from University of Pennsylvania, and a B.S. from University
of Crete, Greece. He is a member of IEEE, ACM, USENIX, and IACR.
Name: Jonathan M. Smith
A�liation: University of Pennsylvania
Address: jms@central.cis.upenn.edu
Biography: Jonathan M. Smith is an Associate Professor in the Penn CIS Department. Jonathan
was previously at Bell Telephone Laboratories and Bellcore, where he focused on UNIX internals,
tools and distributed computing technology. He was also a member of a technology transfer team
on computer security. He is a member of ACM and Sigma Xi, a Senior Member of IEEE, and
has consulted extensively for industry and government. He has patented technology for key-agile
encryptors using asynchronous (ATM) networks and ultra high-speed ATM encryptors.



2 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

Lack of security is a major threat to \Active Networking," as programmability creates numerous
opportunities for mischief. The point at which programmability is exposed, e.g., through the
loading of code into network elements, must therefore be carefully crafted to ensure security.

This paper makes two contributions. First, it describes the implementation of a solution, the
Secure Active Network Environment (SANE), which is intended to operate on an active network
router. The SANE architecture provides a secure bootstrap process, which includes cryptographic
certi�cate exchange and results in execution of a module loader for introducing new code, as well as
a packet execution environment. SANE thus permits a direct comparison of security implications
of active packets (such as \capsules") with active extensions (used for \ows" of packets).

The second contribution of the paper is a performance study using a combination of execution
traces and end-to-end throughput measurements. The example code performs an \active ping" and
allows us to break down costs into categories such as authentication. In our SANE implementation
on 533 Mhz Alpha PCs, securing active packets e�ectively increases the time required to process a
packet by a third. This result implies that the majority of packets must remain unauthenticated in
high performance active networking solutions. We discuss some solutions which preserve security.

1. INTRODUCTION

Programmable network infrastructures o�er a variety of possibilities for changing
the processes of protocol development, network service deployment, and interop-
eration with host applications. Perhaps the most aggressive proposal for a pro-
grammable infrastructure is \active networks," where \programs" are loaded into
network elements on-the-y, providing rapid dynamic recon�guration of the net-
work infrastructure, on a per-user or a per-packet basis. The design space for ac-
tive networks has many dimensions, but the most important are exibility, security,
usability and performance.

Flexibility and usability derive from the choice of programming language and
programming environment. Among the available choices are Caml[Leroy 1995],
Java[Arnold and Gosling 1996] and purpose-built programming languages such as
PLAN[Hicks et al. 1998]. The portability and distributed programming support of
Java have made it a popular choice for active networking environments.

The remaining important elements of the design space, performance and security,
are both dependent on the language choice and have tradeo�s which are indepen-
dent of the language choice. For example, a typesafe language such as Caml will
preclude certain classes of errors from ever occurring (e.g., stray or intentionally
malicious memory references), increasing the security of Caml programs[Leroy and
Rouaix 1999]. Authenticating packets of code will require a performance overhead
independent of the properties of the language.

Before we discuss the performance versus security tradeo�s further, we will
present our security model. At a high level, information security consists of get-
ting the right information to the right person at the right time. At an appropriate
and greater level of detail, this statement becomes a statement of a security pol-

icy, leaving any deviation from the policy de�ned as insecure. The very exibility
of an active networking infrastructure, since it expands the possibilities for mis-
chief, expands the threat model posed to the network infrastructure. For example,



The Price of Safety in an Active Network � 3

\denial-of-service" attacks are possible against a multiplicity of resources such as
CPU cycles, storage and output link bandwidth, since these are used by loaded pro-
grams. The essence of security is controlled access to resources, and in the active
networking scheme, this means controlling the actions of loaded modules.
Since the programming languages and their support environments largely deter-

mine exibility and usability, and signi�cant performance increases will come from
optimizing these environments (e.g., [Hartman et al. 1996]), providing security ex-
pands the design space in a signi�cant and necessary way. The goal of this paper
is to outline the engineering tradeo�s between performance and security, and to
point out the implications of these tradeo�s to architects of programmable network
infrastructures.
Our approach was follows. We �rst outlined the threats, old and new, faced

by an active network infrastructure. These are discussed in Section 2. Using this
outline, we designed and implemented an infrastructure which provides the basic
elements required for security guarantees within and between network elements,
namely: a secure bootstrap; key exchange; authentication and identi�cation of net-
work entities; packet con�dentiality and integrity; resource and access control; and
name-space protection. Section 3 discusses this infrastructure, called the Secure
Active Network Environment, (SANE) and explains how SANE is realized in an
active networking model such as SwitchWare. Section 4 provides a detailed mea-
surement study of the implementation, with particular attention focused on a cost
breakdown for an example application, \active ping." We also report on another
experiment, the \active �rewall." Section 5 discusses those results and the various
costs in our system. Section 6 reviews our contributions and those of related work,
and Section 7 concludes the paper with a discussion of the implications of these
results for designers of active networks and other systems with mobile code.

2. THREATS

An active network infrastructure is very di�erent from the current Internet. In the
latter, the only resource consumed by a packet at a router is the memory needed to
temporarily store it and the CPU cycles necessary to �nd the correct route. Even if
IP [Postel 1981] option processing is needed, the CPU overhead is still quite small
compared to the cost of executing an active packet. In such an environment, strict
resource control in the intermediate routers was considered non-critical. Thus,
security policies [Atkinson 1995c] are enforced end-to-end. While this approach
has worked well in the past, there are several problems. First, denial-of-service
attacks are relatively easy to mount, due to this simple resource model. Attacks to
the infrastructure itself are possible, and result in major network connectivity loss.
Finally, it is very hard to provide enforceable quality of service guarantees [Braden
et al. 1997].
Active Networks, being more exible, considerably expand the threat possibili-

ties. The security threats faced by such elements are considerable. For example,
when a packet containing code to execute arrives, the system typically must:

|Identify the sending network element

|Identify the sending user

|Grant access to appropriate resources based on these identi�cations



4 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

|Allow execution based on the authorizations and security policy

In networking terminology, the �rst three steps comprise a form of admission
control, while the �nal step is a form of policing. Security violations occur when
a policy is violated, e.g., reading a private packet, or exceeding some speci�ed
resource usage. In the present-day Internet, intermediate network elements (e.g.,
routers) very rarely have to perform any of these checks. This is a result of the
best-e�ort resource allocation policies inherent in IP networking.
In an environment where a considerable fraction (and perhaps eventually a ma-

jority) of the tra�c will be continuous media tra�c, security must include resource
management and protection with an eye to preserving timing properties. In partic-
ular, a pernicious form of \attack" is the so-called \denial-of-service" attack. The
basic principle applied in such an attack is that while wresting control of the ser-
vice is desirable, the goal can be achieved if the opponent cannot use the service.
This principle has been used in military communications strategies, e.g., the use of
radio \jamming" to frustrate an opponent's communications, and most recently in
denying service to Internet Service Provider servers using a TCP SYN ood attack
[Panix 1996; Daemon9 et al. 1996]. Another very e�ective (even crippling) attack
on a computer system can occur due to scheduling algorithms which implicitly
embed design assumptions.
With an active network element, it is easy to imagine situations where user

programs (or errant system programs) run amok, and make the network elements
useless for basic tasks. The solution, we believe, is to constrain real resources
associated with active network programs. For example, if we limited the principal
(e.g., a \user") invoking the recursive shell script to 10% of the CPU time, or 10% of
the system memory, the process would either limit its e�ects on the CPU to a 10%
degradation, or fail to operate (since it could not invoke a new process) when it hit
the table space limitation. Fortunately, a number of new operating systems [Montz
et al. 1994; Leslie et al. 1996] have appeared which provide the services necessary
to contain one or more executing threads within a single scheduling domain.

3. OVERVIEW OF SANE

The following subsections present the components of SANE and explain how they
�t together. Figure 1 shows the various components of SANE and their depen-
dencies. SANE provides security from the moment that power is applied to an
active network node. This is done by using a secure bootstrap process that pro-
vides integrity guarantees for nodes �rmware and operating system components.
Once the operating system and active network environment have been veri�ed, the
static integrity guarantees of the system have been assured and we transition to
our dynamic integrity mechanisms.

3.1 AEGIS

All secure systems assume the integrity of the underlying �rmware, but typically
cannot identify when this assumption becomes invalid. This inability to detect
changes in the integrity state of the hardware and �rmware results in a signi�cant
security problem. The AEGIS Secure Bootstrap architecture reduces the severity
of this problem by providing static integrity guarantees of the bootstrap process.



The Price of Safety in an Active Network � 5

Linux Process V.M.

Loadable Modules

Module Checking

Caml Runtime/Loader

Memory Protection

Boundary

Secure Bootstrap

and Recovery, via

AEGIS

Integrity

Dependencies

Remote Authentication

of Modules

Trusted POST

POST2 and Exp. ROM

OS (e.g., Linux)

Fig. 1. SANE Architecture

We de�ne the static integrity property to mean that an object has not been altered
while in storage or transit.
AEGIS provides static integrity guarantees �rst by reducing the size of the

�rmware assumed as having the static integrity property down to the small sec-
tion that tests the proper operation of memory and the motherboard. AEGIS then
uses induction, digital signatures and modi�cations to the control transitions from
major modules, e.g. CALL and JUMP instructions, to ensure the static integrity
of the next module. We call the combination of these techniques Chaining Layered
Integrity Checks (CLIC).
The goal of AEGIS is to prevent tampering of components that are considered

trustworthy by the system administrator. AEGIS veri�es the integrity of already
trusted components. The nature of this trust is outside the scope of this paper.
A more extensive review of AEGIS and a comparison with other secure-bootstrap
e�orts can be found in [Arbaugh et al. 1997; Arbaugh et al. 1998].

3.2 Cryptographic Primitives

SANE provides access to various cryptographic primitives. These can be used by
other applications as-is or as building blocks for more complex protocols. These
primitives are also used by SANE's more advanced services. The primitives initially
provided are:

|symmetric key encryption (e.g., DES [NBS 1977])

|(keyed) hashes (e.g., SHA-1 [NIST 1995])

|public key signatures (e.g., DSA [NIST 1994])

This set of primitives may be enriched in the future. All the algorithms have
been implemented in Caml but due to performance degradation, we use a C ver-



6 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

sion of SHA-1. Access to this implementation of SHA-1 occurs through a Caml
interface, taking care to avoid potential bypassing of the type system. Support for
cryptographic hardware in SANE is being considered. For more details on SHA-1
performance, see Section 5.

3.3 Public Key Infrastructure

In our architecture, every network entity (active switch or user) owns at least
one private / public key pair. These keys (and the corresponding certi�cates) are
used to authenticate these entities and authorize their actions. Although SANE
depends on a public key infrastructure, it is not tied to a particular one. Certain
features, such as selective authorization delegation, user de�ned authorizations and
certi�cate revocation through expiration are desirable, but they can be simulated
in any of they proposed public key infrastructures. In our environment, we use an
attribute-based certi�cate format similar to the original SPKI[Ellison et al. 1997]
proposal. For more details on the certi�cate format, see [Arbaugh et al. 1998].

3.4 Key Establishment Protocol (KEP)

A key element of SANE is the key establishment protocol. The protocol itself is a
strengthened variation of the Station-to-Station [Di�e et al. 1992] protocol, which
uses Di�e-Hellman [Di�e and Hellman 1976] key exchange and public key signa-
ture authentication. The goal of the exchange is to establish a shared secret and
authenticate the two protocol participants (node-to-node or user-to-node). Once
the key is established, the authorizations of each party are determined, through
the exchange of the appropriate certi�cates. Examples of such authorization is
the amount of memory or CPU cycles a user is authorized to use on the active
switch. The derived shared key is used to authenticate and / or encrypt further
communications between the two parties. For more details on the protocol itself,
see [Arbaugh et al. 1998].

3.5 Packet Authentication and Encryption

Once two nodes have established a shared key, they can commence exchanging au-
thenticated and / or encrypted packets. In SANE, we use the ANEP [Alexander
et al. 1997] packet format over UDP. We have added an authentication header,
which is similar in form and purpose to the one used in the AH IP Security pro-
tocol[Atkinson 1995a]. The authentication header o�ers data integrity and replay
protection services. A similar header has been de�ned for encrypted packet ex-
change, again similar to the corresponding IPsec protocol[Atkinson 1995b].
It should be noted that the authentication o�ered by this service is end-to-end.

It is fairly straightforward to extend the service to support digital signatures, and
thus provide authentication of the initial packet origin.

3.6 Link Keys

When a SANE node boots, it attempts to establish shared keys with each of its
neighbors. It does this by running the key establishment protocol already described.
In the process, the identity of the neighbors is also veri�ed. The administrator of
an active network can essentially \freeze" the network topology by specifying which
nodes can be neighbors. There are certain bene�ts in doing this:



The Price of Safety in an Active Network � 7

|Certain distributed types of protocols (such as routing) can be secured against
outside attacks

|The switch o�ers secure forwarding services to any active packet that requests
them. This is important for mobile agent types of applications that cannot
depend on end-to-end security, but require some security guarantees on a hop-
by-hop basis.

|Administrative domains and their boundaries can be established through this
process. We de�ne an administrative domain as the set of active nodes that
are managed by the same entity, have a common set of access and resource
management policies and, after the KEP is run, trust each other (or at least
some subset of the nodes in the domain) to make some security decisions on each
other's behalf.

3.7 Administrative Domains

A user who needs to load a number of modules on a set of active nodes would
typically have to contact each node individually and establish security associations
(SAs) with each one. This establishment could happen in either a telescopic man-
ner (where the user \explores" the network) or a parallel manner (if the user knows
the identities of all the switches in advance). This can prove expensive both com-
putationally (because of the public key operations) and in packet size (since there
must be a separate authentication payload for each node that a packet may visit).
We de�ne as an \administrative domain" a set of network nodes under the same

administration, having the same security policy and some trust relationships with
each other. Figure 2 shows a network consisting of a set of distinct administrative
domains. Creation of an administrative domain involves providing the same security
policy to all the nodes, and initiating pairwise authentication exchanges at boot
time. By taking advantage of the existence of administrative domains, we could
make some optimizations:

|Once the user has established an SA with some active node in another adminis-
trative domain, that node can act as a key distribution server (KDC) similar to
Kerberos [Miller et al. 1987].

|Only nodes at the perimeter of an administrative cloud need verify the crypto-
graphic integrity of packets. They can then specify what the active packet can
do in the interior of the domain. In that respect, any machine at the edge of
the domain can act as a �rewall. In contrast to the Internet �rewalls however,
policy can be speci�ed but not enforced at the edges; enforcement of access and
resource management policies has to take place in the interior.

We implemented the active �rewall function in an experimental setup. For more
details, see Section 4.

3.8 Resource Control

Resource control on the active switch is imposed by the runtime system, as speci�ed
by the certi�cates exchanged during key establishment. The protected resources
include access to standard and loaded modules, use of CPU cycles, access to and
allocation of memory, the ability to send and receive packets, latency and bandwidth



8 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

Credential Forwarding Possible

B 2

A 3

A 2

A 1
C 1

C 2

C 3

D 2

D 1

B 1

Domain A

Domain B Domain C

Domain D

Complete Authentication Required

Fig. 2. Administrative Clouds and Path Setup

requirements, and others. It is a subject of further research exactly what the right
resources are and how to resolve conicting resource requests.
In any case, since a tenet of our approach is controlled loading of modules, SANE

must manage loading modules in a secure fashion if it is to be useful in an active
network. That is, it must control which modules are loaded, and by whom. SANE
associates cryptographic certi�cates with modules. SANE can either require a
certi�cate for loading a particular module, or may allow universal loading of the
module. Examples where such universal loading may be useful include low-cost
operations like ping, as well as the security operations used for bootstrapping the
security relationship with remote switches. There are two classes of certi�cate
which can be presented by a user packet requesting access to a resource via a
module. An administrative certi�cate allows loading of any or all modules into the
system; it is intended for management and emergencies as might arise, and can be
thought of as analogous to a \master key" granted by the switch administrator.
More commonly, certi�cates are used to permit loading of selected modules. Once
loaded, the certi�cates can then be used by the runtime system to allocate the
speci�ed amount of resources; for instance, the thread scheduler may terminate a
thread that has executed longer than its certi�cate values allow.

3.9 Naming

Conceptually, loaded modules can be considered as the interfaces to user de�ned
resources. Such resources will generally be shared between di�erent sessions of the
same principal, or even between di�erent principals. These principals will need to
identify (name) the particular resource they want to use.
The SANE naming service allows for unsupervised but collision-free1 (secure)

identi�cation of programs. The basis of this approach is to combine hashes of the
code, public keys (and signatures), and user-de�ned strings to generate \names"

1To the extent that the cryptographic hash functions employed are resistant to collisions.



The Price of Safety in an Active Network � 9

for pieces of code. Thus, a certain program can have di�erent names, each with
di�erent semantics and trust dependencies. Such a service is necessary in an active
network environment where di�erent users' modules can explicitly interact with, or
even depend on, each other. For more details, see [Alexander et al. 1998].

3.10 Overview of SwitchWare

While the Secure Active Network Environment (SANE) architecture is portable
across many active networking environments, our experimental prototype is con-
structed in the context of the SwitchWare active network architecture. SwitchWare
is based on the approach of using restricted semantics to contain the behavior of
potentially mischievous programs. This has the bene�t that enforcement of restric-
tions can be performed once at compile or link time, resulting in a lower cost than
an operating systems approach such as memory protection which requires repeated
checks at runtime2. These semantic restrictions depend on the integrity of other
system components such as the operating system, shared libraries, etc. The seman-
tic restrictions are enforced with a strongly-typed language which supports garbage
collection and module thinning.
alien [Alexander et al. 1997; Alexander 1998] is one of the systems built within

the SwitchWare project. alien provides the ability to built prototype active net-
working systems based both active packets and active extensions. Active code is
written the Caml language. alien provides restricted access to the underlying sys-
tem. For SANE, we have extended alien to make use of the security infrastructure.

4. IMPLEMENTATION AND PERFORMANCE OF SANE

We have implemented SANE in the SwitchWare environment. For our experimental
network we used a cluster of DEC Alpha 21164SX machines, with 533MHz proces-
sors and 64MB memory each, connected via 100Mbit switched Ethernet. All the
test machines were running RedHat Linux, kernel version 2.0.33, and a modi�ed
Caml 1.0.7 runtime system. For additional details of the con�guration, see [Alexan-
der 1998].
To generate accurate timing measurements, we use the cycle counter available

via the rpcc instruction. This is a 32 bit counter which increments once each clock
cycle, thus giving a period slightly over 8 seconds. Back to back calls to rpcc will
show a di�erence of two cycles. In C code, we call rpcc directly and attempt to print
out results at times when the system is not being measured to minimize overhead.
In Caml code, we use the locally written Time library. A start call immediately
followed by a stop call averages between 1.5 and 2 �sec (or about 500 times slower
than rpcc).
The activity of the garbage collector varied throughout the tests. Most of our

tests were made without regard to the actions of the garbage collector, as we would
expect to be the case if our system were being used in a production environment.
However, in seeking the causes of some of the behaviors we observed, we did alter
the behavior of the garbage collector to understand its contribution to the costs
of the system. In the descriptions below of the tests that we ran, we mention any

2Modern architectures have been optimized to handle memory protection reasonably fast. How-
ever, some costs still remain.



10 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

special settings of the garbage collector.

4.1 Cryptographic Primitives

Tables 1, 2, and 3 show the costs of the three cryptographic primitives provided by
SANE. Each was implemented twice based on two di�erent sets of integer primi-
tives. This is because the garbage collector requires a bit from each integer to use
as a tag bit. Thus, we have made use of a package called Int32 which supplies
full 32 bit integers on both Pentium and Alpha platforms (with additional space
overhead); using this package allows a single implementation of our cryptographic
routines which will run on either platform. (As the tables show, this portability can
come at a substantial cost in performance.) Finally, in addition to the bytecode in-
terpreter which we use, the Caml distribution also provides a native code compiler
which produces Alpha executables. Table 1 gives the average time in seconds to
hash a 4MB string using either the Int32 package and using the 63 bit integers pro-
vided by Caml on the Alpha. Additionally, it shows the di�erence in cost between
compiled and interpreted code. Figure 3 shows the average time to hash di�erent
block sizes using the Caml (compiled to native code) and C implementations of
SHA-1. Table 2 shows the cost to encrypt a 4MB message using 63 bit integers
with either the bytecode or native Alpha code. Finally, table 3 shows the cost in
milliseconds of signing and of verifying the message \abc," using DSA. Since a DSA
signature consists of computing a SHA-1 digest followed by the signature process
itself, for a longer message, one should add the cost of performing the hash.

Caml Int32 bytecode 86.446289 s
native 61.991894 s

Alpha ints bytecode 36.027246 s
native 2.477051 s

C 0.333212 s

Table 1. Time to SHA-1 hash 4MB of data

Caml Alpha ints bytecode 99.331543 s
native 16.723242 s

C 1.0785348 s

Table 2. Time to DES encrypt 4MB of data

In practice, to use the dynamic loader in Caml, we must use the bytecode inter-
preter. Because the byte code version of SHA-1 has such a high cost and because
that cost would be borne at least twice by every authenticated packet, we have
resorted to a C implementation of the hash algorithm. While this greatly speeds
the authenticator generation and veri�cation operations, it may interfere with the
Caml runtime thread scheduler. Speci�cally, when the end of a quantum occurs,
if the current thread is executing C code, no call to the scheduler occurs and the
thread will get an extra quantum. Furthermore, when using a C code implementa-
tion, we cannot catch type-system errors internal to that code, nor take advantage



The Price of Safety in an Active Network � 11

sign Caml Int32 bytecode 27.089 ms
native 12.954 ms

Alpha ints bytecode 20.907 ms
native 11.855 ms

C 2.800 ms

verify Caml Int32 bytecode 41.452 ms
native 22.121 ms

Alpha ints bytecode 35.198 ms
native 20.664 ms

C 5.000 ms

Table 3. Digital Signature Timings

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500

T
im

e 
(m

se
c)

Block size (bytes)

SHA-1 (Caml)
SHA-1 (C optimized)

Fig. 3. SHA-1 Cost

of the garbage collection mechanism available in the runtime. For these reasons, we
tried to limit the amount of non-Caml code in our system, so we opted to keep the
Caml DSA and DES implementations. In the future, we intend to investigate the
feasibility of statically integrating Caml native code into the bytecode interpreter
in the same way that we currently are able to integrate C code. This would allow
us to regain the advantages of strong types and garbage collection with a more
acceptable overhead, as can be seen in Figure 3. We also believe that in the future,
\Just In Time" compilation techniques can narrow this gap in performance.
The key exchange protocol was also implemented in Caml as a three step proto-

col. In the �rst two messages, a list of SPKI-like certi�cates encoded as a string is
exchanged. The third message contains a single certi�cate. Since the SPKI[Ellison
et al. 1997] format has not been fully speci�ed, we designed our own certi�cate
format in the same spirit. The protocol was designed to be fail safe [Gong and
Syverson 1995] under all circumstances. In the presence of loosely synchronized
clocks, it becomes fail stop (meaning that active attacks, including replays, on the
protocol, are always detected). We encode all �elds in the certi�cates as strings
before transmission, and for signing and veri�cation purposes. This allows us to



12 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

avoid complicated marshalling issues. The average execution time of KEP with a
256 bit Di�e-Hellman exponent is 2.4 seconds, and with a 1024 bit exponent, 4.8
seconds. In both cases we used a 1024 bit modulus. This time is comparable to
that of the IPsec key management protocols, Photuris [Karn and Simpson ] and
IKE [Maughan et al. 1996].
The certi�cate infrastructure we used in our setup is a shallow hierarchy. A small

number of keys are considered as trusted to make statements about nodes or, more
speci�cally, what the network topology is. These same keys are also used to certify
users and specify their access rights on the active nodes. It is only a matter of policy
however what sort of certi�cate method is followed. A cyclic graph-type (such as in
PGP[Zimmerman 1995]) or a hierarchical approach (such as in X.509 [Committee
1989]) or any other method can be used. Furthermore, there is no need for an
organization's internal certi�cation policies to be the same as the interdomain and
interorganizational policies.

4.2 Cost of Active Ping

To understand the cost imposed by authentication, we measured the cost of sending
an active ping (provided as Appendix A for illustration). This ping was generated
at a source machine, transmitted over a crossover cable via 100 Mbps Ethernet to
the target machine, loaded and evaluated, then sent back to the source machine,
where it was again loaded and evaluated.
The compiled byte code �le, saneping.cmo, is 2230 bytes long. (When we are

timing saneping.ml, it is slightly longer as the code to call the timing routines
is added.) This results from about 60 lines of code. Transmission requires two
Ethernet frames; fragmentation and reassembly is taken care of by UDP which we
use as a \link layer" in this experiment. The results are described in Section 5.

4.3 Bandwidth Testing

We have also built an experiment to test the bandwidth available with active pack-
ets. This experiment sends 101 packets from the originator to the receiver. On the
receiver, we check to see if all packets were received. If not, we add delays between
the transmission of each packet until we do receive each packet. We then examine
the time from when we started sending data until the kernel had accepted all the
data on the sender and the time from when the �rst packet arrived until the time
the last packet arrived on the receiver. (For all packet sizes greater than 32 bytes,
we had to use a delay of 1-2�sec. This results in an error in measuring the receiving
side because we include one extra delay after the last packet in the measurement.)
Figure 4 shows the bandwidth in megabits per second.

4.4 Implementing an Active Firewall on SANE

While the task for legacy �rewalls is to locally decide on whether to forward or drop
packets traveling between an external, untrusted network and an internal, trusted
network, we de�ne the operation model of an active �rewall as follows: an active
�rewall is an active node that is connected to multiple domains of di�erent security
policies and has to map the set of credentials being carried across domains to match
policy and security principals in each domain.
In a simpli�ed yet complete realization, our active �rewall has to control (i.e.,



The Price of Safety in an Active Network � 13

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
bp

s

packet size

authenticated transmission
authenticated reception

Fig. 4. Bandwidth of authenticated active packets

restrict or explicitly allow) packet code attempting to execute in the secured part
of the network. The secure nodes trust the �rewall, which is expected to provide
\guidelines" to the nodes with regards to access policy. Our active �rewall then
operates by attaching attribute certi�cates to active packet attempting to enter the
trusted network. These certi�cates de�ne the suggested access and resource usage
policy for the internal node. Such policies can be:

|DATA-ONLY: the packet can only call data delivery primitives

|ALL: giving full access to the execution environment

|a string representing the primitives, modules and globals (including functions)
the active code is allowed to use.

The certi�cate is signed by the �rewall, and encoded into the ANEP packet
header. Having been signed by the �rewall, it is trusted by the internal nodes. While
our current implementation supports per-packet authorization only, it is possible
to provide more persistent authorization per module or sender (packet header)
information. Furthermore, establishing a security association by sending a shared
secret from the �rewall to the internal node and using additional authenticators for
that association in the header would be more desirable if associations have a longer
life-cycle. Arriving at the �nal destination, the packet's encoded certi�cates are
veri�ed and the authorization string is extracted and passed along with the packet
code to the Caml dynamic linker. We enhanced the linker to perform access checks
on the incoming code relocation list, before proceeding with the actual linking.
Since the relocation list is essentially the contact surface between the incoming
code and the node execution environment, we believe that this approach o�ers
e�cient control and high security.
In our experimental topology, kenny is an active �rewall between the unsecure

network with two nodes (mrhat, mrgarrison) and the secure network with one node
(chef). Both external nodes send active pings which, to be evaluated by chef, need
access to modules \Safeloader" and \Saneproto." The �rewall, according to its
local policy , issues a certi�cate for packets coming from mrhat only, still forwards



14 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

kenny

chef

mrhat mrgarrison

active firewall

unsecure network

secure network

active pings

Fig. 5. Active Firewall Experimental Set-up

packets from both unsecure nodes to chef, which executes for the authorized packet
and raises an exception and logs the event for the packet coming from mrgarrison.
In our case, any certi�cate issued by a principal other than the �rewall would
be invalid. The above experiment shows SANE's exibility in providing security
services. It is important to note that, policy can be either suggested or enforced,
so that secure nodes may wish to maintain their own security policy and trust
relationships, possibly overriding �rewall decisions, a clear advantage over legacy
�rewalls in certain scenarios.

5. RESULTS

We have inserted timing points into alien and into saneping to �nd out where the
costs in the system are. We then classify these costs into several divisions. Based on
these divisions, we can make an assessment of how these costs can be ameliorated.

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

us
ec

ping times

Fig. 6. Times for saneping

Figure 6 shows the timings for a set of 1000 pings. Both the slowly rising nature



The Price of Safety in an Active Network � 15

of the data and the line of outliers are described below. The next several sections
describe how the tests were conducted and the results that we observed.

5.1 Breakdown of Costs

To better understand the behavior of our system, we used our timing infrastructure
to time sections of the code. For each test, we arranged to time a single section of
the code. We then started ten pings with su�cient delays between them to ensure
that no two pings were being processed simultaneously.
Times reported are medians unless we specify otherwise. As Jain [Jain 1991]

describes, for a skewed distribution, the median is the best indicator of central
tendency. Generally speaking, we tend to see data which clusters with very few
points below the cluster, but with outliers above the cluster. These outliers occur
because of events like resizing of tables or garbage collection. We also report the
Semi-Interquartile Range (SIQR) or scaled SIQR when warranted. Recall that the
quartiles Q1 and Q3 are the points such that 25% is less than or equal Q1 and
75% of the data is less than or equal to Q3. The SIQR is (Q3 � Q1)=2; it gives
some notion of how dispersed the data are. The scaled SIQR is the SIQR divided
by the median and can be expressed as a percentage. A low value indicates tight
clustering of the quartiles around the median; conversely, a high value indicates
dispersed data.
Figure 73 shows the breakdown of these costs into categories. We have divided

the code executed to process saneping into six categories. We then categorized the
timing results based on which of these categories best described the activity being
timed. Note that because of the additive nature of the errors introduced by our test
infrastructure, smaller elements of the graph may be overrepresented. Nonetheless,
the ordering of the elements should be correct.
The largest of these categories is \kernel/wire" which is the time spent in the

kernel and in transmission between the two systems. We measured a median time
of 3078�sec (with scaled SIQR 1.65%) for this value. We believe that some of
this cost could be reduced either by running the Caml runtime in kernel mode
or by using the techniques proposed by Brustoloni and Steenkiste [Brustoloni and
Steenkiste 1996]. Additionally, we believe that it would be possible to create a
compiler which optimized for byte code size, which would also reduce this cost
somewhat. A motivated programmer could also optimize the byte codes by hand
(but this seems contrary to the advances that compilers have made since the 1970s).
This is probably the area over which the programmer has the least control.
The next largest overhead is due to authentication. Therefore, each time a packet

is sent and received, the SHA-1 hash is computed, which accounts for practically
all of the authentication cost. In fact, of the total cost of our active ping, 33% is
spent on authentication. As long as this is the case, authentication needs to a rare
operation in high performance applications. Two primary approaches to avoiding
too frequent authentications are caching as in the ANTS architecture or designing a
domain speci�c language as in the PLAN architecture. Caching has the advantage
that, to the extent that active code is reused by a ow, the cost of authentication
(and several of the other costs we discuss here) can be amortized. A domain speci�c

3Values rounded and do not total 100%.



16 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

marshalling
16%

kernel/wire
26%

information 
gathering

10%

authentication
25%

Caml 
overhead

20%
transmission 

related
4%

Fig. 7. Categorized costs for saneping

language such as PLAN avoids the need for authentication and thus can be used
by applications that have very dynamic needs that result in constantly changing
active code.
Another approach to reducing the cost of authentication and transmission is a

reduction in the size of the transmitted active code. As seen in Figure 3, the cost of
authentication increases linearly with the size of the data to be authenticated / ver-
i�ed. (For keyed-hash or MAC4 type of authentication, the process of \signing" and
verifying is the same). Thus, if we can reduce the size of the transmitted packets, we
can reduce the cost of authentication. This can be achieved by data compression or
(in the case of active code) by a compact bytecode, such as Spanner[Schwartz et al.
1998]. Other ways of speeding up the authentication include hardware assistance,
cryptographic co-processors (possibly on the network card, or even entirely outside
the system), and faster software-authentication algorithms[Halevi and Krawczyk
1997].
In Figure 8, we have removed the kernel / wire and authentication elements to

focus on the costs imposed by alien. We examine each of these in turn.

4Message Authentication Code



The Price of Safety in an Active Network � 17

info gathering
19%

marshalling
32%

Caml 
overhead

41%

transmission 
related

8%

Fig. 8. Controllable costs for saneping

5.1.1 Caml overhead. The largest of the costs from alien is the category which
we have called Caml overhead. This consists of the cost to link a byte code �le
into the running system. When using active packets, this cost occurs on every node
visited and so is particularly important. We have not evaluated less easily measured
costs such as the overhead of using byte code and this interpreter or the relative
e�ciency of the Caml libraries for the task at hand. Overall, we measured the cost
of loading a byte code �le (on each of the two machines along the path) to have a
median time of 1148�sec with a scaled SIQR of 2.29%.
We also ran tests to more tightly characterize some e�ects of the runtime system.

These tests were run with an enlarged minor heap and invocations of the major
garbage collector at times which minimize garbage collection activity during the
timing period.
In particular, as described in [Alexander 1998], we divided the code used to load

a byte code �le into sections and timed these sections. We found several undesirable
characteristics. One of the most signi�cant features of Figure 6 is that the ping
time rises in later tests. This is caused by the growth of the symbol table, which is
stored as a hash table. Each new active packet declares the same set of symbols,
which shadow the previous de�nitions. This causes a problem because, whenever a
new entry is inserted into the hash table, the insertion routine counts the number
of elements in the bucket by traversing a linked list. This is done to determine



18 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

whether it is time to resize the hash table. The occasions when the hash table is
resized cause the lower line of outliers in Figure 6. Additionally, if a symbol from
a library should hash to the same bucket as one of the symbols from ping, it will
be at the \bottom" of the bucket.

The upper set of outliers is caused by a similar problem. There is an array which
contains global information used by the linker, to which each ping adds new entries.
(In fact, the entries shadow the entries from the previous ping in our case. Because
this is not typical behavior for a program, the runtime system makes no attempt
to �nd this sort of shadowing.) Every 12 to 13 pings, the array �lls and must be
resized. Moreover, the data in the old array must be copied to the new array which
accounts for the steep slope of the line through this set of outliers.

This example illustrates one of the weaknesses of our approach in alien: by
choosing an existing language, we gain a large infrastructure, but elements of that
infrastructure are designed for a di�erent problem than ours. In several cases, the
implementors of Caml have assumptions that are di�erent from ours. We have
identi�ed two categories of di�ering assumptions: assumptions about amortization
and assumptions about time scales. Garbage collection of the minor heap illustrates
both of these points. While copying garbage collection can take less time than com-
parable dynamic memory management using an explicit system like malloc [Appel
1987], this is often accomplished by \freeing" many allocations simultaneously. For
a long running, computationally bound program, it is reasonable to assume that
the user is only concerned with time to completion and so this sort of amortization
is appropriate. Even with an interactive program, if the length of the pauses can
be made short enough so that the user does not perceive them, this approach works
well. The key here is that with a single user, amortization reduces the costs paid
by the user. In contrast, in alien with multiple users, amortization may mean
that some switchlets see an increased cost as they pay not only for freeing their
own allocations, but also those of other switchlets. Moreover, because switchlets
may be sensitive on much �ner time scales than a human can perceive, the level of
acceptable jitter in alien is lower than would generally be the case.

In the case of garbage collection, incremental collection techniques based on
Baker's algorithm [Baker 1978] or the techniques from [Nettles and O'Toole 1993]
and [O'Toole and Nettles 1994] can be helpful. The major heap is collected us-
ing such a incremental technique. Another approach to the problem described in
[Shaw 1998] uses a separate minor heap for each thread thus solving the amortiza-
tion problem (as well as allowing access to multiple processors). Nonetheless, any
language to be used for Active Networks must be examined closely for instances
of these assumptions. This is particularly true for languages designed for general
purpose use where such assumptions are generally reasonable.

More generally, if the same program is to process di�erent data repeatedly, if
we adopted a means of caching and reusing active packets such as the facilities
provided by ANTS [Wetherall et al. 1998], this would also solve both of these
problems. Additionally, it would reduce our kernel/wire costs, our authentication
costs, our Caml overhead, and some of our marshaling costs. Since these are our
four most expensive activities, such an approach seems warranted. Moreover, it
would reduce some of our unmeasured costs. For example, with more reuse, we
should reduce the amount of memory allocation and hence the frequency of our



The Price of Safety in an Active Network � 19

module An_marshal = struct

type packet_data = { code : string; data : string; func : string }

let encode pkt = Marshal.to_string pkt []

let decode str off = Marshal.from_string str off

end

Fig. 9. Signature for An marshal

garbage collections. If dynamic code generators or just-in-time compilers cause the
automatic generation of active packets to become common, however, the costs that
we have outlined will be important.

5.1.2 Marshaling. The next largest set of costs are due to marshaling data. The
di�culty comes in making sure that the switchlet can only do this in a secure
manner while at the same time striving to deliver adequate performance.

For example, Caml provides a module called Marshal which allows complex data
objects to be transformed into strings and back again. However, these functions
do not perform checking to ensure that data objects created this way are valid
on this machine. Thus, they provide a means to subvert the type system which
undermines our security. More concretely, thread IDs are internally a pointer to
a (C) struct containing information about that thread. If an attacker were able
to guess the address of the descriptor for a thread that he wanted to attack then
it becomes simple to create a string which has the bit pattern which corresponds
to that address. A call to Marshal.from string would transform this into a valid
Thread.t. Since opaque types are intended to be unforgeable, we use them as
capabilities; the attacker could now kill the thread described by the forged ID. For
this reason, we do not make the Marshal module available to switchlets except in
limited circumstances.

Figure 9 shows An marshal which is a module we provide which allows transfor-
mations between structures containing three strings and a string which can be sent
over the network. Because the only data objects which can be created are strings,
we avoid any security holes.

In cases where we need to marshal other data, we use ad hoc methods usually
based on Printf.sprintf. For example, when SANE sends a certi�cate, the SHA-
1 values which describe the programs which are authorized are �rst converted from
a binary value to ASCII strings. Similarly, to send the starting time for saneping,
we use sprintf with a %f conversion to create an ASCII string that we can send
over the network. When the ping returns to the originator, we use a combination of
regular expression routines and string to oat conversions to recapture the original
value so that we can �nd the latency.

Unfortunately, this has a signi�cant performance penalty. An marshal.decode

has a median cost of 77�sec; ping decode has a median cost of 162�sec. Similarly,
An marshal.encode has a median time of 72�sec as compared with 189�sec for
ping encode.



20 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

5.1.3 Information Gathering. This category consists of the time spent by the
active packet gathering information about its environment. Thus, asking the Route
module for the next hop on the route to the destination or �nding the address of
the current host falls into this category. We have also included the cost of reading
from disk the bytecode �le for the program portion of the active packet. Overall,
these operations have a median cost of 1094�sec.
The cost of reading-in the bytecode �le, however, is driven by whether it is in

the bu�er cache of the host. (Linux maintains an in-memory cache of recently used
�le blocks. Our test �le is small enough and our test machine has enough memory
that we believe the �rst read of the �le caused the kernel to go to the disk to get
the �le whereas for subsequent reads of the �le, the kernel was able to �nd the
�le in memory.) A typical cost for reading the byte code �le for the �rst ping was
39,280�sec. The median cost was 1043�sec. Further, if we calculate tendencies for
this cost for the pings after the �rst, we �nd a median of 1040�sec and a mean of
1031�sec. The scaled SIQR is 2.55% and the standard deviation is 39�sec.

5.1.4 Transmission Related Costs. The �nal section is transmission-related costs.
This is the cost of calling Udp.sendto udp and queuing a packet for processing on
the receiving side. Some of the time from the former is also measured in the
kernel/wire category.
While this is the section with the lowest cost, there is a potential source of

improvement. We use queues to pass packets up to the thread that has registered
an interest in these packets. It has been suggested that if we instead allow the
thread to register an upcall, we save the cost of queuing and dequeuing the packet
and possibly of a context switch. Our concern is that doing so allows a malicious or
buggy thread to \capture" the thread that is intended to retrieve packets from the
interface. Finding a scheme that allows recovery in the case of such a misbehaving
thread, but which normally has only the cost of the upcall approach is an interesting
area for continued study.

6. RELATED WORK

The Secure Active Network Environment has no direct analogues in ongoing work
on active networks [Tennenhouse et al. 1997]. While ANTS uses MD5 hashes (\�n-
gerprints") to name on-demand loaded modules, the hashes provide unique names
rather than security. The ANTS execution environment depends on the Java pro-
gramming language for protection, a dependency shared by many active network
prototypes. Unfortunately, as [Wallach et al. 1997] notes, Java's security is suspect.
The remote authentication and namespace security of SANE address issues ignored
in these systems, and could be applied even in cases where Java is used, e.g., to
provide integrity checking of the JVM or layers beneath it, as well as on-demand
loaded modules.
Another quite di�erent approach to providing secure active networking is that

used by the Programming Language for Active Nets (PLAN). PLAN is a special-
purpose programming language appropriate for per-packet programs. PLAN's se-
mantics are purposely restricted to operations which are safe and bounded in re-
source usage, with the intention of being so lightweight that any node would be
willing to run PLAN packets, including those from remote nodes, and thus would



The Price of Safety in an Active Network � 21

not require the security of SANE. However, as any enhanced services are added to
the node as PLAN services, such services would require a SANE-like approach for
security.
An architecture which extended a protection model from the local domain to a

distributed environment was provided by Sansom, et al. [Sansom et al. 1986], who
enforced protection locally with memory-protection enforced capabilities. (It is no-
table that capabilities can be viewed as a namespace-based protection mechanism).
The capabilities were extended to remote nodes via cryptographic means. SANE
provides more general mechanisms and could thus be specialized to such an applica-
tion (moving memory-protected objects about the network) but more importantly
guarantees local integrity before extending itself into the network.
Of interest is the Proof-Carrying Code (PCC) [Necula 1997] approach, which

permits arbitrary code to be executed as long as a valid proof of safety accompanies
it. A number of important questions remain to be answered (e.g., cost of proof
veri�cation, ability to handle abstract resource types in a dynamic environment)
before we can determine exactly how and to what extend it can be used.
The Safetynet Project [Wakeman et al. 1998] at the University of Sussex has also

designed a new language for active networking. They have explicitly enumerated
what they feel are the important requirements for an active networking language
and then set about designing a language to meet those requirements. In particular,
they di�er from PLAN in that they hope to use the type system to allow safe
accumulation of state. They appear to be trying to avoid having any service layer
at all.

7. CONCLUSIONS

This paper has made two contributions. First, it has presented the design and
implementation of a secure active networking system, SANE, which provides a
tight coupling between programming language means of protecting resources and
cryptographic means to extend the enforcement of the protection semantics across a
network. SANE's realization in SwitchWare allowed us to exploit the ALIEN active
loader and its packet execution environment to provide a direct comparison of active
packets against active extensions which operate over a multiplicity of packets.
Second, a detailed measurement study was performed using this infrastructure.

The costs of various cryptographic operations were studied independently, and then
the entire SANE system was instrumented and measured using applications such
as an \Active Ping." Using PCs with extremely high performance arithmetic (533
Mhz Alphas) and native mode cryptographic implementations to make these op-
erations as fast as possible, we discovered that the basic operations required for
authenticating packets require a 33% overhead relative to unauthenticated pack-
ets. In an environment where an increasing amount of tra�c is multimedia-related,
such overhead may be unacceptable for data transmission. However, there are a
number of promising avenues of attacking this problem (hardware assistance, faster
software algorithms[Halevi and Krawczyk 1997]).
Of more interest is the e�ect of the overhead to the control-plane scenario of

Active Networks5. For a secure system, we see two architectural paths to high

5By control-plane scenario we mean using Active Network functionality to control, but not actually



22 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

performance. First is the use of active extensions, as they pay the cost of au-
thentication once for a stream or packets, achieving the bene�ts of amortizing the
security costs over a large number of packets. We note in passing that the caching
scheme employed in the ANTS architecture is e�ectively a \soft-state" active ex-
tension, and thus enjoys this bene�t for its MD5 hashes. The second approach is
to su�ciently restrict the actions of each active packet that no authentication is
required. This is the approach taken in the PLAN system. However, since many
advanced PLAN services utilize active extensions, this approach may simply rely
on the existence of the �rst architectural solution, but exploit it for further gains.
We see three promising research areas that have been exposed by our results.

First, much of the cost of authentication is a \per-byte" cost, and thus reducing
the size of the packet (e.g., by use of a \very-high-level language" or some other
compression scheme) may allow a wider range of the active packet/active exten-
sion continuum to be exploited by programmers. Second, it would be extremely
worthwhile to redo the experiments reported here in a second environment, such as
ANTS. The major architectural points will almost surely remain true, but it would
be valuable to understand some of the consequences of the language and security
mechanisms on ANTS performance. Finally, these questions have to be continually
reexamined as applications emerge. If most interesting applications can be written
with security enforcement largely in the \control plane" then this model will dom-
inate. If, however, many applications actually require operation in the transport
plane, then new approaches following PLAN-like ideas will be needed.

ACKNOWLEDGMENTS

We would like to thank Bill Marcus for his help in writing some of the original ANEP
code, and Mike Hicks for the discussions and tools he provided us for performance
analysis.

APPENDIX

A. CODE FOR THE ACTIVE PING

open Safeloader

open Printf

open Wf

open Safeunix

open Log

open An_marshal

type ping_packet = { start : string ;

finish : string;

timestamp : float}

let ping_encode pkt = "start = " ^ pkt.start

^ "; finish = " ^ pkt.finish

^ "; timestamp = "

perform, data switching.



The Price of Safety in an Active Network � 23

^ (string_of_float pkt.timestamp)

let decode_regexp = Str.regexp

"^start = \(.*\); finish = \(.*\)"

^ "; timestamp = \(.*\)$"

let ping_decode str ofs =

if not (Str.string_match decode_regexp

str ofs)

then failwith "bad packet"

else

{ start = Str.matched_group 1 str;

finish = Str.matched_group 2 str;

timestamp = float_of_string

(Str.matched_group 3 str)

}

(*

* This is routine that starts things off by

* handing the components of an ANEP header

* to send_wf.

*)

let send_ping dest name =

let code =

Get_bytecode.get_bytecode name in

let next_hop = Route.get_route dest in

let hdr =

{do_forward = true; type_id = 20} in

let payload = ping_encode

{ start = An.getAddress ();

finish = dest;

timestamp = Time.get_time()

} in

send_wf next_hop hdr [] "ping_out"

code payload

let ping_out arg_string =

let {code=code; data=datastr; func=func} =

decode arg_string 0 in

let ping_packet = ping_decode datastr 0 in

if (ping_packet.finish = An.getAddress())

then begin

send_wf

(Route.get_route ping_packet.start)

{do_forward=true; type_id=20} []

"ping_in" code datastr;

"at the remote machine"

end else begin



24 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

send_wf

(Route.get_route ping_packet.finish)

{do_forward=true; type_id=20} []

"ping_out" code datastr;

"not there yet; forward packet"

end

let ping_in arg_string =

let {code=code; data=datastr; func=func} =

decode arg_string 0 in

let ping_packet = ping_decode datastr 0 in

if (ping_packet.start = An.getAddress())

then begin

log_msg

(Printf.sprintf "Success (%f sec)\n"

((Time.get_time()) -.

ping_packet.timestamp));

"back at the sender"

end else begin

send_wf

(Route.get_route ping_packet.start)

{ do_forward=true; type_id=20 } []

"ping_in" code datastr;

"not back yet; forward packet"

end

let _ = Func.register "ping_out" ping_out

let _ = Func.register "ping_in" ping_in

REFERENCES

Alexander, D. S. 1998. ALIEN: A Generalized Computing Model of Active Networks. Ph.
D. thesis, University of Pennsylvania.

Alexander, D. S., Arbaugh, W. A., Keromytis, A. D., and Smith, J. M. 1998. A secure
active network architecture: Realization in SwitchWare. IEEE Network 12, 3 (May/June),
37{45. special issue on Active and Programmable Networks.

Alexander, D. S., Braden, B., Gunter, C. A., Jackson, A. W., Keromytis, A. D., Min-

den, G. J., and Wetherall, D. 1997. Active network encapsulation protocol (ANEP).
http://www.cis.upenn.edu/~angelos/ANEP.txt.gz.

Alexander, D. S., Shaw, M., Nettles, S. M., and Smith, J. M. 1997. Active bridging.
In Proc. 1997 ACM SIGCOMM Conference (1997).

Appel, A. W. 1987. Garbage collection can be faster than stack allocation. Information
Processing Letters 25, 4 (June), 275{279.

Arbaugh, W. A., Farber, D. J., and Smith, J. M. 1997. A secure and reliable bootstrap
architecture. In Proceedings 1997 IEEE Symposium on Security and Privacy (May 1997),
pp. 65{71.

Arbaugh, W. A., Keromytis, A. D., Farber, D. J., and Smith, J. M. 1998. Automated
Recovery in a Secure Bootstrap Process. In To appear in Network and Distributed System
Security Symposium (March 1998). Internet Society.

Arbaugh, W. A., Keromytis, A. D., and Smith, J. M. 1998. DHCP++: Applying an ef-



The Price of Safety in an Active Network � 25

�cient implementation method for fail-stop cryptographic protocols. Technical report (Jan-

uary), Department of Computer Science, University of Pennsylvania.

Arnold, K. and Gosling, J. 1996. The Java Programming Language. Java Series. Sun
Microsystems. ISBN 0-201-63455-4.

Atkinson, R. 1995a. IP authentication header. RFC 1826.

Atkinson, R. 1995b. IP encapsulating security payload. RFC 1827.

Atkinson, R. 1995c. Security architecture for the internet protocol. RFC 1825.

Baker, H. G. 1978. List processing in real-time on a serial computer. Commun. ACM 21, 4,
280{94.

Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S. 1997. Resource ReSer-

Vation protocol (RSVP) { version 1 functional sepci�cation. Internet RFC 2208.

Brustoloni, J. C. and Steenkiste, P. 1996. Application-allocated I/O bu�ering with
system-allocated performance. Technical Report CMU-CS-96-169 (August), Carnegie Mel-
lon University, Pittsburgh, PA.

Committee, C. 1989. X.509: The Directory Authentication Framework. Geneva: Interna-
tional Telephone and Telegraph, International Telecommunications Union.

Daemon9, Route, and Infinity. 1996. Project neptune. Phrack Magazine 7, 48.

Diffie, W. and Hellman, M. 1976. New directions in cryptography. IEEE Transactions
on Information Theory IT{22, 6 (Nov), 644{654.

Diffie, W., van Oorschot, P., and Wiener, M. 1992. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2, 107{125.

Ellison, C. M., Frantz, B., Rivest, R., and Thomas, B. M. 1997. Simple public key
certi�cate. Work in Progress.

Gong, L. and Syverson, P. 1995. Fail-stop protocols: An approach to designing secure
protocols. In Proceedings of IFIP DCCA-5 (September 1995).

Halevi, S. and Krawczyk, H. 1997. MMH: Message Authentication in Software in the
Gbit/second Rates. In Proceedings of the 4th Workshop on Fast Software Encryption
(1997), pp. 172{189. Springer, LNCS vol. 1267.

Hartman, J., Manber, U., Peterson, L., and Proebsting, T. 1996. Liquid software:
A new paradigm for networked systems. Technical Report TR 96-11 (June), University of
Arizona. http://www.cs.arizona.edu/liquid/.

Hicks, M., Kakkar, P., Moore, J. T., Gunter, C. A., and Nettles, S. 1998. PLAN:
A packet language for active networks. In Proceedings of the Internation Conference on
Function Programming (ICFP) (September 1998).

Jain, R. 1991. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Inc., New York.

Karn, P. and Simpson, W. A. The Photuris session key management protocol. Work in
Progress.

Leroy, X. 1995. The Caml Special Light System (Release 1.10). France: INRIA.

Leroy, X. and Rouaix, F. 1999. Security properties of typed applets. In Secure Internet
Programming, Lecture Notes in Computer Science. New York, NY, USA: Springer-Verlag
Inc.

Leslie, I. M., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D., Fairbairns,

R., and Hyden, E. 1996. The design and implementation of an operating system to
support distributed multimedia applications. IEEE Journal on Selected Areas in Commu-
nications 14, 7 (September), 1280{1297.

Maughan, D., Schertler, M., Schneider, M., and Turner, J. 1996. Internet security as-
sociation and key management protocol (ISAKMP). Internet{draft (June), IPSEC Working
Group.

Miller, S. P., Neuman, B. C., Schiller, J. I., and Saltzer, J. H. 1987. Kerberos au-
thentication and authorization system. Technical report (December), MIT.

Montz, A. B., Mosberger, D., O'Malley, S. W., Peterson, L. L., Proebsting, T. A., and

Hartman, J. H. 1994. Scout: A communications-oriented operating system. Technical
report (June), Department of Computer Science, University of Arizona.



26 � Alexander, Anagnostakis, Arbaugh, Keromytis, and Smith

NBS. 1977. Data encryption standard. Technical Report FIPS-46 (January), U.S. Depart-

ment of Commerce.

Necula, G. C. 1997. Proof-carrying code. In Proceedings of the 24th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '97)
(1997). ACM Press.

Nettles, S. M. and O'Toole, J. W. 1993. Real-time replication garbage collection.
In SIGPLAN Symposium on Programming Language Design and Implementation (June
1993), pp. 217{226. ACM.

NIST. 1994. Digital signature standard. Technical Report FIPS-186 (May), U.S. Depart-
ment of Commerce.

NIST. 1995. Secure hash standard. Technical Report FIPS-180-1 (April), U.S. Department
of Commerce. Also known as: 59 Fed Reg 35317 (1994).

O'Toole, J. and Nettles, S. 1994. Concurrent replicating garbage collection. In ACM
Symposium on LISP and Functional Programming (June 1994). ACM Press.

Panix. 1996. Cracker Attack Paralyzes PANIX. RISKS Digest. Volume 18. Issue 45.

Postel, J. 1981. INTERNET protocol. Internet RFC 791.

Sansom, R. D., Julin, D. P., and Rashid, R. F. 1986. Extending a capability based sys-
tem into a network environment. In Proceedings of the 1986 ACM SIGCOMM Conference
(August 1986).

Schwartz, B., Zhou, W., Jackson, A. W., Strayer, W. T., Rockwell, D.,

and Partridge, C. 1998. Smart Packets for active networks. http://www.net-
tech.bbn.com/smtpkts/smartpkts-index.html.

Shaw, M. 1998. An architecture for an active network node. Master's thesis, University of
Pennsylvania, Philadelphia.

Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., and Minden, G. J.

1997. A survey of active network research. IEEE Communications Magazine, 80{86.

Wakeman, I., Jeffrey, A., Graves, R., and Owen, T. 1998. Designing a programming
language for active networks. submitted to Hipparch special issue of Network and ISDN
Systems. http://www.cogs.susx.ac.uk/projects/safetynet/papers/isdn.ps.gz.

Wallach, D. S., Balfanz, D., Dean, D., and Felten, E. W. 1997. Flexible security
architecture for java. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles (October 1997).

Wetherall, D. J., Guttag, J., and Tennenhouse, D. L. 1998. ANTS: A toolkit for
building and dynamically deploying network protocols. In Proceedings of IEEE OpenArch
98 (April 1998). IEEE Computer Society Press.

Zimmerman, P. 1995. PGP User's Manual.


