
The Price of Safety in an Active Network
D. Scott Alexander, Paul B. Menage, Angelos D. Keromytis,

William A. Arbaugh, Kostas G Anagnostakis, and Jonathan M. Smith

Abstract: Security is a major challenge for “Active Networking,”
as accessible programmability creates numerous opportunities for
mischief. The point at which programmability is exposed, e.g.,
through the loading and execution of code in network elements,
must therefore be carefully crafted to ensure security.

The SwitchWare active networking research project has studied
the architectural implications of various tradeoffs between perfor-
mance and security. Namespace protection and type safety were
achieved with a module loader for active networks, ALIEN, which
carefully delineated boundaries for privilege and dynamic updates.
ALIEN supports two extensions, the Secure Active Network En-
vironment (SANE), and the Resource Controlled Active Network
Environment (RCANE). SANE extends ALIEN’s node protection
model into a distributed setting, and uses a secure bootstrap to
guarantee integrity of the namespace protection system. RCANE
provides resource isolation between active network node users, in-
cluding separate heaps and robust time-division multiplexing of the
node.

The SANE and RCANE systems show that convincing active
network security can be achieved. This paper contributes a
measurement-based analysis of the costs of such security with an
analysis of each system based on both execution traces and end-to-
end behavior.

Index Terms: Active networking, security, performance.

I. INTRODUCTION

The design space for active networks has many dimensions,
but the most important are flexibility, security, usability and per-
formance. While flexibility and usability follow from the choice
of a programming environment, the tradeoff between perfor-
mance and security is the major architectural focus in active
networking research. As we have previously discussed our ap-
proaches to these tradeoffs [1]–[5], the interested reader may
consult those references for further background. Here, we fo-
cus on the implications of our choices. Thus, we provide a de-
tailed exposition on the architectural decisions supporting secu-

Manuscript received month date,year.
D. S. Alexander is with Activium, Inc., in New York, NY, e-mail: salex@ac-

tivium.com.
P. B.Menage is with Ensim Corporation, in Sunnyvale, CA, e-mail: pme-

nage@ensim.com.
K. G. Anagnostakis, A. D. Keromytis, and J. m. Smith are with the Univer-

sity of Pennsylvania, in Philadelphia, PA, e-mail: anagnost@dsl.cis.upenn.edu,
angelos@dsl.cis.upenn.edu, jms@dsl.cis.upenn.edu.

W. A. Arbaugh is with the University of Maryland in College Park, MD, e-
mail: waa@cs.umd.edu.

This work was supported by DARPA under Contract #N66001-96-C-82, with
additional support from the Intel Corporation, the UK Engineering and Physi-
cal Sciences Research Council, and the US National Science Foundation under
Grants #ANI 98-13875, ANI 99-06855, and ANI 00-82386.

1229-2370/01/$10.00 c 2001 KICS

rity, and extensive and detailed measurements of performance
resulting from our choices.

Broadly, security is the restriction of actions within a system
to protect the operation of the system. Safety and security are
closely related, and are often supported by the same mechanisms
within a system. For our purposes, we distinguish safety from
security using the rule of thumb that safety is to protect you from
yourself, while security protects you from others.

Information security consists of getting the right information
to the right location at the right time. In a given context, a secu-
rity policy is specified reflecting details (location, information)
appropriate to the context. The flexibility of an active network-
ing infrastructure expands the possibilities for mischief. For ex-
ample, “denial-of-service” attacks are possible against a multi-
plicity of resources such as CPU cycles, storage and output link
bandwidth, which are used by loaded programs. Controlling ac-
cess to resources in an active networking requires controlling
the actions of loaded modules.

The remainder of the paper is as follows. Section II dis-
cusses security threats to an active network infrastructure. Sec-
tion III briefly discusses the Secure Active Network Environ-
ment (SANE)[1], and its services. SANE provides basic security
elements such as: a secure bootstrap; key exchange; authentica-
tion and identification of network entities; packet confidential-
ity and integrity; resource and access control; and name-space
protection. Section IV discusses the design principles and re-
alization of the RCANE architecture. Section V provides a de-
tailed measurement study of the implementation, with particular
attention focused on a cost breakdown for an example applica-
tion, “active ping,” and Section VI evaluates the effectiveness
of RCANE. Section VII discusses those results and the various
costs in our system. Section VIII reviews our contributions and
those of related work, and Section IX concludes the paper with
a discussion of the implications of these results for designers of
active networks and other systems with mobile untrusted code.

II. THREATS

An active network infrastructure is very different from the
current Internet. The latter was conceived as a network giving
only best-effort delivery. In the presence of congestion, proto-
cols such as TCP throttle back their output, so as not to overload
network switches. Token support for QoS was provided in the
Type of Service (ToS) field, which allowed packets to be marked
according to their traffic type and precedence. Such information
is typically ignored by network routers, leading to a best-effort
service for all network users. Security policies are enforced at
the endpoints.

The potential resource load at a node caused by the activities

let hostileForwardPacket pkt =
while (true) do

allocateSomeMemory ();
sendPacketToNeighbours (pkt)

done

Fig. 1. A hostile forwarding routine (an example of a forwarding routine
potentially capable of consuming all available resources at a node.).

of a particular end-user is likely to be roughly proportional to
the bandwidth offered to that user. There is a direct correlation
in the case of buffer storage and link utilization; the CPU cycles
required for forwarding a packet are likely to involve a constant
per-packet cost for the routing, and a copying cost proportional
to the bandwidth. Thus, by limiting the bandwidth that a user
receives, a network provider may limit the amount of resources
consumed by that user on a network node.

Breslau and Shenker [6] address the question of whether re-
source reservations are required in passive networks. Differ-
ent classes of applications and load distributions are consid-
ered, and expressions are derived for the additional bandwidth
required for a best-effort network to provide equivalent service
to a reservation-capable network. No definitive conclusions are
presented about whether future networks should be reservation-
capable. However, the authors note that the greater the unpre-
dictability of the offered load, the greater the performance ad-
vantage of a reservation-capable network over a best-effort net-
work; in particular, with an exponential or algebraic 1 load dis-
tribution, the additional factor of bandwidth required by a best-
effort network can increase without bound as the base bandwidth
increases.

In [7] traffic traces were studied, with the conclusion that
much of the WAN traffic in the Internet could not be modeled
with a Poisson inter-arrivals process, but instead exhibited dis-
tributions with much larger variances and self-similarity [8], [9].
Although it is difficult to predict the load distributions faced by
future networks, such results suggest that reservations will be
necessary, at least for certain classes of traffic.

Providing programmable platforms within the network
greatly increases the ways in which end-users may consume
resources—the loads generated on resources such as CPU cy-
cles, memory and outgoing link bandwidth may be totally unre-
lated to the incoming link bandwidth. At the extreme, hostile,
greedy, or careless forwarding code could potentially consume
all available resources at a node. For example, within an ac-
tive network node, allowing arbitrary customization of the for-
warding code used to process packets would permit (if specific
controls were not put in place) a single packet to potentially con-
sume all available CPU, memory and link bandwidth at a node
(see Fig. 1).

The solution, we believe, is to constrain real resources associ-
ated with active network programs, based on the authentication
offered by the principal (e.g., a “user”) supplying the program,
and the amount that the principal is willing to pay for resources.
For example, a user may request a certain fraction of the band-
width on a link or cycles of a CPU, in each case with a specified

1An algebraic distribution has a high variance in offered load; the probability
that k flows are requesting service is P (k) = �

�+kz
.

Linux Process V.M.

Loadable Modules

Module Checking

Caml Runtime/Loader

Memory Protection

Boundary

Secure Bootstrap

and Recovery, via

AEGIS

Integrity

Dependencies

Remote Authentication

of Modules

Trusted POST

POST2 and Exp. ROM

OS (e.g., Linux)

Fig. 2. SANE architecture.

maximum level of jitter. Such control requires support from the
operating system; fortunately, a number of new operating sys-
tems [10], [11] have appeared which provide the services nec-
essary to contain one or more executing threads within a single
scheduling domain.

We designed SANE/RCANE trying to neutralize, or at least
mitigate, some of these threats. We made use of cryptographic
primitives, language mechanisms, and appropriate software en-
gineering and protocol design principles. The following section
present a brief overview of SANE/RCANE.

III. OVERVIEW OF SANE

This section presents a brief overview of the architecture of
SANE. For detailed information, please refer to [1]–[3]. The
components of SANE are illustrated in Fig. 2. SANE provides
security from the moment power is applied to the active node.
This is accomplished using the AEGIS Secure Bootstrap Archi-
tecture which is able to detect alterations in the firmware and
within the operating system. See [12], [13] for further detail on
AEGIS.

Clients of SANE have access to several cryptographic primi-
tives. These are DES [14] for symmetric key encryption, SHA-
1 [15] for keyed hashes, and DSA [16] for public key signatures.
(Other equivalent primitives could be provided.) All the algo-
rithms have been implemented in Caml but due to performance
degradation, we use a C version of SHA-1. Access to this im-
plementation of SHA-1 occurs through a Caml interface, taking
care to avoid potential bypassing of the type system. For more
details on SHA-1 performance, see Section V-E.

Our architecture is based on public and private keys. Through
the use of certificates, these allow specification and enforcement
of security policies. Once two nodes have established a trust re-
lationship, they can commence exchanging authenticated and/or
encrypted packets. Please see the references for more details.

The basis of SANE’s control of the system is its control of
what modules are loaded, and by whom. SANE associates cryp-
tographic certificates with modules. SANE can either require

a certificate for loading a particular module, or may allow uni-
versal loading of the module. Examples where such universal
loading may be useful include low-cost operations like ping,
as well as the security operations used for bootstrapping the se-
curity relationship with remote switches. There are two classes
of certificate which can be presented by a user packet request-
ing access to a resource via a module. An administrative certifi-
cate allows loading of any or all modules into the system; it is
intended for management and emergencies as might arise, and
can be thought of as analogous to a “master key” granted by
the switch administrator. More commonly, certificates are used
to permit loading of selected modules. Once loaded, the cer-
tificates can then be used by the runtime system to allocate the
specified amount of resources; for instance, the thread scheduler
may terminate a thread that has executed longer than its certifi-
cate values allow.

IV. OVERVIEW OF RCANE

RCANE allows providers of nodes in a programmable network
to permit untrusted clients to run code on their nodes, without
the risk of Denial of Service attacks or excessive consumption
of resources. It provides abstractions to control access to CPU
cycles, network bandwidth and memory, and allows lightweight
and flexible communication between clients.

A. Architectural Principles

RCANE is designed to provide resource isolation between
multiple independent applications on a node in a programmable
network, with the resources consumed by each application be-
ing paid for by a remote principal. The following aims underlie
the design of the architecture:

� To provide guarantees to applications that they will re-
ceive the Quality of Service that they require in order to
complete their tasks in a timely manner.

� To accurately account resource consumption to the client
that causes such consumption to occur, in order that the
client may later be billed.

B. System Structure

RCANE employs both horizontal layering (between different
layers of trust) and vertical isolation (between different clients).

B.1 Layering

RCANE follows the principles proposed in [17] to partition
the system into multiple layers:

� The Runtime is written in unsafe native code and provides
access to—and scheduling for—the resources on the node.
Services such as garbage collection (GC) and thread syn-
chronization primitives are also provided by the Runtime.

� The Loader is written in a safe language (as are all higher
levels). The Loader is entered early in system initializa-
tion. It is responsible for:
— completing the initialization of the Runtime,
— loading the higher levels of the system, and
— linking user-supplied code into the system.

Virtual Machine Scheduling

Device Drivers

 Runtime

 Core

 Loader

Linker

Librarian

Runtime Access

Routing System
Policy

Billing &
Accounting

Untrusted Code

Trusted Code

Network
Output

 User-supplied Code

 Libraries

Safe Code

Native Code

Utility
Functions

Standard
Library

System
Management

Garbage
Collection

Service Calls

Fig. 3. RCANE architecture overview.

� The Core, loaded at system initialization time, provides
safe access to the Runtime and the Loader and performs
admission control for the resources on the node. The in-
terface to the Core represents the “Red Line” identified
in [18] as a requirement for security in a system using soft-
ware protection.

� Modules are units of untrusted code. They include stan-
dard libraries, supplied by the system and loaded at sys-
tem initialization time, and code supplied by remote users.
They have access to the interfaces exported by the Core,
but no direct access to the Runtime or the Loader except
where permitted by the Core.

System modules in the Core are linked against entry points in
the (unsafe) Runtime; these are then exported through safe in-
terfaces to which the untrusted modules can link directly. The
Runtime performs a policing function on the use of the node’s
resources. An overview of the RCANE architecture is shown in
Fig. 3. The Safe/Native code boundary indicates the division be-
tween unsafe native code (written in a language such as C) and
code written in a safe language supported by the Runtime’s vir-
tual machine. The Trusted/Untrusted code boundary indicates
the division between code that is known to respect the security
properties of the node and other code; such code may be re-
garded as untrusted if it is supplied by an untrusted source, or if
it is from a trusted source but has not been sufficiently checked
to ensure that it would not compromise the system. Within the
Core and the Loader, although all code is written in a safe lan-
guage, the interfaces exported by the Runtime permit complete
control over the node2. Thus it is important that malicious code
not be permitted to execute within the Core.

A safe language is one in which the language’s typesystem is
strongly enforced by the compiler, hence making it practical to
use software, rather than hardware, mechanisms to protect the
host machine from malicious code. For example, in Caml or

2In particular, some of the low-level features of the Runtime may permit lan-
guage safety to be compromised.

Java, an untrusted program may be passed a pointer to an object
containing system state; the abstract interface exported by the
object will limit the operations that the program may perform
on the object to that set approved by the system implementor.
Such an approach could not work in C, as the compiler would
permit you to cast the object pointer into a byte array pointer,
and hence read or modify any part of the object. In order to
make use of the type-safe properties of a language in this way, it
is necessary to be able to verify that the code supplied by the un-
trusted user does indeed respect the typesystem of the language;
such verification is often done by constructing a formal proof
for the supplied code, or by having a trusted compiler sign the
generated code.

B.2 Sessions

RCANE uses the abstraction of a Session to represent a princi-
pal with resources reserved on the node. A session is the analog
of a process in a conventional OS that uses hardware protection,
and is similar to the concept of a flow in the Active Networks
NodeOS [19]. Sessions are isolated, so that activity occurring in
one session cannot prevent other sessions from receiving their
guaranteed QoS, except in situations where explicit interaction
is requested (e.g., due to one session using services provided by
another session).

To provide guaranteed levels of QoS to remote principals,
RCANE allows sessions to reserve resources in advance. Re-
quests for resource reservations are processed by the System
session (see below) and, if accepted, are communicated to the
Runtime’s schedulers. In general, data-path activity—e.g., send-
ing packets—is carried out within the originating session.

In other active network systems, the main resource princi-
pal is the execution environment (EE). This can lead to QoS
crosstalk between the different clients of an EE. The use of ses-
sions in RCANE makes the end-user the resource principal, al-
lowing guarantees to be made more easily to individual end-
users. An EE then becomes a library that a session may use to
provide a convenient programming abstraction, and a client may
make use of more than one EE in a single session if desired.

At system initialization time two distinguished sessions are
created. The System session represents activity carried out as
housekeeping work for RCANE and has full control over the
Runtime. Many of the control-path services exported from the
Loader and the Core are accessed through communication with
the System session. The Best-Effort session represents activity
carried out by all remote principals without resource reserva-
tions. Packets processed by the Best-Effort session supply code
written in a very restricted language and are given minimal ac-
cess to system resources.

Fig. 4 shows how RCANE sessions are orthogonal to the
layering described in Section IV-B.1. The horizontal dashed
lines indicate boundaries of trust; the vertical dashed lines in-
dicate boundaries of resource isolation. It can be seen that
some portions of the Core—such as those dealing with data-
path activity—are directly accessible to user sessions; untrusted
code may call them directly, possibly resulting in a direct call
to the Runtime. The majority of the Core code executes in the
System Session and thus is not directly accessible to the user
sessions; such separation is achieved by isolating the heaps of

 Runtime

 Core

 Loader

Untrusted Code

Trusted Code

 Libraries

Safe Code

Native Code

User
Code

User
Code

System Session User Session User Session

Housekeeping
Code

EE
(PLAN)

EE
(ANTS)

User
Code

User Session

EE
(PLAN)

EE
(ANTS)

Invocations across
trust boundary

Fig. 4. Orthogonality of sessions and layering in RCANE.

the different sessions.
It can be seen that each user session has created an instance

of either the PLAN [20] or ANTS [21] execution environments,
or both. Note that although multiple sessions are using each
EE, these instantiations are operating independently and without
QoS crosstalk, since resource scheduling occurs in the Runtime,
below the level of the EEs.

C. CPU Management

RCANE’s CPU management abstractions are structured so as
to allow sessions to split their tasks between multiple scheduling
classes, control the level of concurrency used for different sets
of tasks, and to service those tasks efficiently. Three important
abstractions employed are:

1. A virtual processor (VP) represents a regular guaranteed
allocation of CPU time, according to some scheduling pol-
icy (e.g., EDF [22] or WFQ [23]). All activities carried
out within a single VP share that VP’s CPU guarantee. A
session may have one or more VPs; by requesting mul-
tiple VPs, a session may organize its tasks into multiple
independently-scheduled classes.

2. A thread is the basic unit of execution, and at any
time may be either runnable (working on computation),
blocked (e.g., on a semaphore, or awaiting more resources
to become available) or idle (in a quiescent state, awaiting
the arrival of further work items).

3. A thread pool is a collection of one or more threads. Each
thread is a member of one pool. A thread pool acts as
a queueing and dispatch point for events. An event rep-
resents a callback into one of a session’s functions, ei-
ther due to an incoming packet or an application-specified
alarm. Each pool is associated with a particular VP; its
threads are only eligible to run when its VP receives CPU
time.

D. Network I/O

Access to network flows is essential to allow mobile code to
communicate both with its original source and with the other
resources in the network with which it wishes to interact.

RCANE allows sessions to open channels to give access to
network resources. A channel is a simplex or duplex flow of
packets to and/or from the network. A channel may have a guar-
anteed level of buffering and transmission bandwidth 3, to pro-
vide QoS for both incoming and outgoing streams.

Each channel that is capable of receiving packets has associ-
ated with it a demultiplexing specification (to select the incom-
ing flow of packets to be directed to that channel) and a VP,
which is used for RX protocol processing on that channel.

One of the significant sources of QoS crosstalk in a traditional
operating system is the networking stack. In particular, the use
of kernel threads to perform protocol processing can make it
difficult to correctly account the resources consumed by a par-
ticular flow, and can lead to livelock situations4 [24].

To prevent crosstalk between the network activity of differ-
ent clients, all packets are demultiplexed to their receiving pools
by the Runtime using a packet filter. Protocol processing is not
performed on packets before demultiplexing. Each channel con-
tains a FIFO queue of received packets – if this queue fills up,
subsequent packets arriving for that channel will be discarded
until such time as space becomes available in the queue. At a
later time, when the VP associated with the channel is eligible
to receive CPU time, protocol processing occurs:

1. The packet is removed from the channel’s packet queue.
2. Any required processing such as defragmentation or

checksum validation is performed.
3. If specified by the application, further demultiplexing into

sub-flows may be performed, based on the value of speci-
fied key fields within the packet data.

4. The contents of the packet are encapsulated in a callback
event to the function specified for the particular flow or
sub-flow. Incoming packets for each thread pool are stored
in a per-pool packet queue.

The time required for this protocol processing is entirely ac-
counted to the VP associated with the channel, and thus to the
session that opened the channel.

E. Memory

The RCANE memory architecture is based around the model
of multiple garbage collected heaps in a single virtual machine.
Each session is given its own independent heap. The maximum
reserved size for this heap may be configured by the session, by
requesting a particular size from the Core.

An incremental garbage collector—which processes a small
portion of the heap each time it is invoked, rather than process-
ing the entire heap in a single invocation—is employed to pre-
vent excessive interruptions to execution. Such a property is es-
sential to prevent the unpredictable nature of garbage collection
from causing clients to miss their deadlines. Each session may
tune the parameters of GC activity—such as frequency and du-
ration of collection slices—in order to trade off responsiveness
against overhead.

3In its current incarnation, RCANE schedules link bandwidth and buffering at
a given node. A topic for future work is to extend the reservations provided by
RCANE to permit end-to-end network QoS between different active nodes.
4Livelock occurs when little or no useful work is performed processing re-

ceived data, as the system is too busy processing (and throwing away) more
incoming data.

Charging is based on the size of the reserved memory blocks
that comprise the heap, rather than the amount of live mem-
ory within those blocks, simplifying the accounting process and
more accurately reflecting the load placed on the system’s mem-
ory by each client.

Since each session executes in its own heap, for security direct
communication between sessions via procedure calls is forbid-
den. Instead RCANE provides the mechanism of inter-session
services, which allow secure control switching between ses-
sions. Due to space constraints this mechanism is not discussed
here.

More detail on the architecture and implementation of RCANE

may be found in [5], [25].

V. IMPLEMENTATION AND
PERFORMANCE OF SANE

A. The SwitchWare SANE Implementation

While the Secure Active Network Environment (SANE) ar-
chitecture is portable across many active networking environ-
ments, our experimental prototype is constructed in the context
of the SwitchWare active network architecture. SwitchWare is
based on the approach of using restricted semantics to contain
the behavior of potentially mischievous programs. This has the
benefit that enforcement of restrictions can be performed once
at compile or link time, resulting in a lower cost than an op-
erating systems approach such as memory protection which re-
quires repeated checks at runtime5. These semantic restrictions
depend on the integrity of other system components such as the
operating system, shared libraries, etc. The semantic restric-
tions are enforced with a strongly-typed language which sup-
ports garbage collection and module thinning [26].

ALIEN [27], [17] is one of the systems built within the Switch-
Ware project. ALIEN provides the ability to build prototype ac-
tive networking systems based both active packets and active ex-
tensions. Active code is written the Caml language. For SANE,
we have extended ALIEN to make use of the security infrastruc-
ture.

For our experimental network we used a cluster of DEC Al-
pha 21164SX machines, with 533 MHz processors and 64 MB
memory each, connected via 100 Mbps switched Ethernet. All
the test machines were running RedHat Linux, kernel version
2.0.33, and a modified Caml 1.0.7 runtime system. For addi-
tional details of the configuration, see [17].

To generate accurate timing measurements, we use the cy-
cle counter available via the rpcc instruction. This is a 32-bit
counter which increments once each clock cycle, thus giving a
period slightly over 8 seconds. Back to back calls to rpcc will
show a difference of two cycles. In C code, we call rpcc di-
rectly and attempt to print out results at times when the system
is not being measured to minimize overhead. In Caml code, we
use the locally written Time library. A start call immediately
followed by a stop call averages between 1.5 and 2 �s (or about
500 times slower than rpcc).

The activity of the garbage collector varied throughout the

5Modern architectures have been optimized to handle memory protection with
reasonable efficiency. However, some costs are unavoidable.

Table 1. Time to SHA-1 hash 4 MB of data.

Caml Int32 bytecode 86.446289 s
native 61.991894 s

Alpha ints bytecode 36.027246 s
native 2.477051 s

C 0.333212 s

tests. Most of our tests were made without regard to the actions
of the garbage collector, as we would expect to be the case if our
system were being used in a production environment. However,
in seeking the causes of some of the behaviors we observed, we
did alter the behavior of the garbage collector to understand its
contribution to the costs of the system. In the descriptions below
of the tests that we ran, we mention any special settings of the
garbage collector.

B. Cryptographic Primitives

Table 1 shows the costs of the main cryptographic primitive
used by SANE. Each was implemented twice based on two dif-
ferent sets of integer primitives. This is because the garbage
collector requires a bit from each integer to use as a tag bit.
Thus, we have made use of a package called Int32 which sup-
plies full 32 bit integers on both Pentium and Alpha platforms
(with additional space overhead); using this package allows a
single implementation of our cryptographic routines which will
run on either platform. (As the table shows, this portability can
come at a substantial cost in performance.) Finally, in addition
to the bytecode interpreter which we use, the Caml distribution
also provides a native code compiler which produces Alpha ex-
ecutables. Table 1 gives the average time in seconds to hash a
4 MB string using either the Int32 package and using the 63-bit
integers provided by Caml on the Alpha. Additionally, it shows
the difference in cost between compiled and interpreted code.
Fig. 5 shows the average time to hash different block sizes using
the Caml (compiled to native code) and C implementations of
SHA-1.6

In practice, to use the dynamic loader in Caml, we must use
the bytecode interpreter. Because the byte code version of SHA-
1 has such a high cost and because that cost would be borne at
least twice by every authenticated packet, we have resorted to
a C implementation of the hash algorithm. While this greatly
speeds the authenticator generation and verification operations,
it may interfere with the Caml runtime thread scheduler. Specif-
ically, when the end of a quantum occurs, if the current thread
is executing C code, no call to the scheduler occurs and the
thread will get an extra quantum. Furthermore, when using a
C code implementation, we cannot catch type errors internal to
that code, nor take advantage of the garbage collection mech-
anism available in the runtime. For these reasons, we tried to
limit the amount of non-Caml code in our system, so we opted
to keep the Caml DSA and DES implementations. In the future,
we intend to investigate the feasibility of statically integrating

6Since these measurements were originally taken, the Caml developers have
added their own Int32 package to the standard library. The result is substantially
faster results on the native code version of the Int32 test (under 10 s). Nonethe-
less, it is still not nearly fast enough to change our conclusions about using C
rather than Caml for this critical function, particularly since we do not see such
a speedup for the bytecode version of the function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500

T
im

e
(m

se
c)

Block size (bytes)

SHA-1 (Caml)
SHA-1 (C optimized)

Fig. 5. SHA-1 cost.

Caml native code into the bytecode interpreter in the same way
that we currently are able to integrate C code. This would allow
us to regain the advantages of strong types and garbage collec-
tion with a more acceptable overhead, as can be seen in Fig. 5.

The key exchange protocol was also implemented in Caml as
a three step protocol. In the first two messages, a list of SPKI-
like certificates encoded as a string is exchanged. The third mes-
sage contains a single certificate. Since the SPKI [28] format has
not been fully specified, we designed our own certificate format
in the same spirit. The protocol was designed to be fail safe [29]
under all circumstances. In the presence of loosely synchronized
clocks, it becomes fail stop (meaning that active attacks, includ-
ing replays, on the protocol, are always detected). We encode
all fields in the certificates as strings before transmission, and
for signing and verification purposes. This allows us to avoid
complicated marshaling issues. The average execution time of
KEP with a 256-bit Diffie-Hellman exponent is 2.4 seconds, and
with a 1024-bit exponent, 4.8 seconds. In both cases we used a
1024-bit modulus. This time is comparable to that of the IPsec
key management protocols, Photuris [30] and IKE [31].

C. Cost of Active Ping

To understand the cost imposed by authentication, we mea-
sured the cost of sending an active ping. This ping was gener-
ated at a source machine, transmitted over a crossover cable via
100 Mbps Ethernet to the target machine, loaded and evaluated,
then sent back to the source machine, where it was again loaded
and evaluated.

The compiled byte code file, saneping.cmo, is 2230 bytes
long. (When we are timing saneping.ml, it is slightly longer
as the code to call the timing routines is added.) This results
from about 60 lines of code. Transmission requires two Ethernet
frames; fragmentation and reassembly is taken care of by UDP
which we use as a “link layer” in this experiment. The results
are described in Section V-E.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
bp

s

packet size

authenticated transmission
authenticated reception

Fig. 6. Bandwidth of authenticated active packets.

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

u
se

c

ping times

Fig. 7. Times for saneping.

D. Bandwidth Testing

We have also built an experiment to test the bandwidth avail-
able with active packets. This experiment sends 101 packets
from the originator to the receiver. On the receiver, we check to
see if all packets were received. If not, we add delays between
the transmission of each packet until we do receive each packet.
We then examine the time from when we started sending data
until the kernel had accepted all the data on the sender and the
time from when the first packet arrived until the time the last
packet arrived on the receiver. (For all packet sizes greater than
32 bytes, we had to use a delay of 1–2 �s. This results in an er-
ror in measuring the receiving side because we include one extra
delay after the last packet in the measurement.) Fig. 6 shows the
bandwidth in megabits per second.

E. Performance of SwitchWare SANE

We have inserted timing points into ALIEN and into saneping
to find out where the costs in the system are. We then classify
these costs into several divisions. Based on these divisions, we
can make an assessment of how these costs can be ameliorated.

Fig. 7 shows the timings for a set of 1000 pings. Both the
slowly rising nature of the data and the line of outliers are de-
scribed below. The next several sections describe how the tests
were conducted and the results that we observed.

marshalling
16%

kernel/wire
26%

information
gathering

10%

authentication
25%

Caml
overhead

20%
transmission

related
4%

Fig. 8. Categorized costs for saneping.

E.1 Breakdown of Costs

To better understand the behavior of our system, we used our
timing infrastructure to time sections of the code. For each test,
we arranged to time a single section of the code. We then started
ten pings with sufficient delays between them to ensure that no
two pings were being processed simultaneously.

Times reported are medians unless we specify otherwise. As
Jain [32] describes, for a skewed distribution, the median is the
best indicator of central tendency. Generally speaking, we tend
to see data which clusters with very few points below the clus-
ter, but with outliers above the cluster. These outliers occur be-
cause of events like resizing of tables or garbage collection. We
also report the Semi-Interquartile Range (SIQR) or scaled SIQR
when warranted.7

Fig. 88 shows the breakdown of these costs into categories.
We have divided the code executed to process saneping into
six categories. We then categorized the timing results based
on which of these categories best described the activity being
timed. Note that because of the additive nature of the errors in-
troduced by our test infrastructure, smaller elements of the graph
may be overrepresented. Nonetheless, the ordering of the ele-
ments should be correct.

The largest of these categories is “kernel/wire” which is the
time spent in the kernel and in transmission between the two
systems. We measured a median time of 3078 �s (with scaled
SIQR 1.65%) for this value. We believe that some of this cost
could be reduced either by running the Caml runtime in kernel
mode or by using the techniques proposed by Brustoloni and
Steenkiste [33]. Additionally, we believe that it would be pos-
sible to create a compiler which optimized for byte code size,
which would also reduce this cost somewhat. A motivated pro-
grammer could also optimize the byte codes by hand (but this
seems contrary to the advances that compilers have made since

7Recall that the quartiles Q1 and Q3 are the points such that 25% is less than
or equal Q1 and 75% of the data is less than or equal to Q3. The SIQR is (Q3�
Q1)=2; it gives some notion of how dispersed the data are. The scaled SIQR is
the SIQR divided by the median and can be expressed as a percentage. A low
value indicates tight clustering of the quartiles around the median; conversely, a
high value indicates dispersed data.
8Values rounded and do not total 100%.

info gathering
19%

marshalling
32%

Caml
overhead

41%

transmission
related

8%

Fig. 9. Controllable costs for saneping.

the 1970s). This is probably the area over which the program-
mer has the least control.

The next largest overhead is due to authentication. Therefore,
each time a packet is sent and received, the SHA-1 hash is com-
puted, which accounts for practically all of the authentication
cost. In fact, of the total cost of our active ping, 33% is spent on
authentication. As long as this is the case, authentication needs
to be a rare operation in high performance applications. Two
primary approaches to avoiding too frequent authentications are
caching as in the ANTS architecture or designing a domain spe-
cific language as in the PLAN architecture. Caching has the
advantage that, to the extent that active code is reused by a flow,
the cost of authentication (and several of the other costs we dis-
cuss here) can be amortized. A domain specific language such
as PLAN can reduce the need for authentication and thus can be
used by applications that have very dynamic needs that result in
constantly changing active code.

Another approach to reducing the cost of authentication and
transmission is a reduction in the size of the transmitted active
code. As seen in Fig. 5, the cost of authentication increases lin-
early with the size of the data to be authenticated/verified. (For
keyed-hash or MAC (Message Authentication Code) type of au-
thentication, the process of “signing” and verifying is the same.)
Thus, if we can reduce the size of the transmitted packets, we
can reduce the cost of authentication. This can be achieved by
data compression or (in the case of active code) by a compact
bytecode, such as Spanner [34]. Other ways of speeding up the
authentication include hardware assistance, cryptographic co-
processors (possibly on the network card, or even entirely out-
side the system), and faster software-authentication algorithms.

In Fig. 9, we have removed the kernel/wire and authentication
elements to focus on the costs imposed by ALIEN. We examine
each of these in turn.

E.2 Caml Overhead

The largest of the costs from ALIEN is the category which we
have called Caml overhead. This consists of the cost to link a
byte code file into the running system. When using active pack-
ets, this cost occurs on every node visited and so is particularly
important. We have not evaluated less easily measured costs
such as the overhead of using byte code and this interpreter or

the relative efficiency of the Caml libraries for the task at hand.
Overall, we measured the cost of loading a byte code file (on
each of the two machines along the path) to have a median time
of 1148 �s with a scaled SIQR of 2.29%.

We also ran tests to more tightly characterize some effects of
the runtime system. These tests were run with an enlarged mi-
nor heap and invocations of the major garbage collector at times
which minimize garbage collection activity during the timing
period.

In particular, as described in [17], we divided the code used to
load a byte code file into sections and timed these sections. We
found several undesirable characteristics. One of the most sig-
nificant features of Fig. 7 is that the ping time rises in later tests.
This is caused by the growth of the symbol table, which is stored
as a hash table. Each new active packet declares the same set of
symbols, which shadow the previous definitions. This causes
a problem because, whenever a new entry is inserted into the
hash table, the insertion routine counts the number of elements
in the bucket by traversing a linked list. This is done to deter-
mine whether it is time to resize the hash table. The occasions
when the hash table is resized cause the lower line of outliers in
Fig. 7. Additionally, if a symbol from a library should hash to
the same bucket as one of the symbols from ping, it will be at
the “bottom” of the bucket.

The upper set of outliers is caused by a similar problem.
There is an array which contains global information used by the
linker, to which each ping adds new entries. (In fact, the entries
shadow the entries from the previous ping in our case. Because
this is not typical behavior for a program, the runtime system
makes no attempt to find this sort of shadowing.) Every 12 to
13 pings, the array fills and must be resized. Moreover, the data
in the old array must be copied to the new array which accounts
for the steep slope of the line through this set of outliers.

This example illustrates one of the weaknesses of our ap-
proach in ALIEN: by choosing an existing language, we gain
a large infrastructure, but elements of that infrastructure are de-
signed for a different problem than ours. In several cases, the
implementors of Caml have assumptions that are different from
ours. We have identified two categories of differing assump-
tions: assumptions about amortization and assumptions about
time scales. Garbage collection of the minor heap illustrates
both of these points. While copying garbage collection can take
less time than comparable dynamic memory management using
an explicit system like malloc [35], this is often accomplished
by “freeing” many allocations simultaneously. For a long run-
ning, computationally bound program, it is reasonable to assume
that the user is only concerned with time to completion and so
this sort of amortization is appropriate. Even with an interactive
program, if the length of the pauses can be made short enough
so that the user does not perceive them, this approach works
well. The key here is that with a single user, amortization re-
duces the costs paid by the user. In contrast, in ALIEN with
multiple users, amortization may mean that some switchlets see
an increased cost as they pay not only for freeing their own al-
locations, but also those of other switchlets. Moreover, because
switchlets may be sensitive on much finer time scales than a hu-
man can perceive, the level of acceptable jitter in ALIEN is lower
than would generally be the case.

module An_marshal = struct
type packet_data = { code : string; data : string; func : string }
let encode pkt = Marshal.to_string pkt []
let decode str off = Marshal.from_string str off

end

Fig. 10. Signature for An marshal.

In the case of garbage collection, incremental collection tech-
niques based on Baker’s algorithm [36] or the techniques from
[37] and [38] can be helpful. The major heap is collected using
such a incremental technique. Another approach to the problem
described in [39] uses a separate minor heap for each thread thus
solving the amortization problem (as well as allowing access
to multiple processors). Nonetheless, any language to be used
for Active Networks must be examined closely for instances of
these assumptions. This is particularly true for languages de-
signed for general purpose use where such assumptions are gen-
erally reasonable.

More generally, if the same program is to process different
data repeatedly, if we adopted a means of caching and reusing
active packets such as the facilities provided by ANTS [21], this
would also solve both of these problems. Additionally, it would
reduce our kernel/wire costs, our authentication costs, our Caml
overhead, and some of our marshaling costs. Since these are
our four most expensive activities, such an approach seems war-
ranted. Moreover, it would reduce some of our unmeasured
costs. For example, with more reuse, we should reduce the
amount of memory allocation and hence the frequency of our
garbage collections. If dynamic code generators or just-in-time
compilers cause the automatic generation of active packets to
become common, however, the costs that we have outlined will
be important.

E.3 Marshaling

The next largest set of costs are due to marshaling data. The
difficulty comes in making sure that the switchlet can only do
this in a secure manner while at the same time striving to deliver
adequate performance.

For example, Caml provides a module called Marshal
which allows complex data objects to be transformed into strings
and back again. However, these functions do not perform check-
ing to ensure that data objects created this way are valid on this
machine. Thus, they provide a means to subvert the type system
which undermines our security. More concretely, thread IDs are
internally a pointer to a (C) struct containing information about
that thread. If an attacker were able to guess the address of the
descriptor for a thread that he wanted to attack then it becomes
simple to create a string which has the bit pattern which cor-
responds to that address. A call to Marshal.from string
would transform this into a valid Thread.t. Since opaque
types are intended to be unforgeable, we use them as capabil-
ities; the attacker could now kill the thread described by the
forged ID. For this reason, we do not make the Marshal mod-
ule available to switchlets except in limited circumstances.

Fig. 10 shows An marshal which is a module we pro-
vide which allows transformations between structures contain-
ing three strings and a string which can be sent over the network.
Because the only data objects which can be created are strings,

we avoid any security holes.
In cases where we need to marshal other data, we use ad

hoc methods usually based on Printf.sprintf. For exam-
ple, when SANE sends a certificate, the SHA-1 values which
describe the programs which are authorized are first converted
from a binary value to ASCII strings. Similarly, to send the start-
ing time for saneping, we use sprintf with a %f conversion
to create an ASCII string that we can send over the network.
When the ping returns to the originator, we use a combination
of regular expression routines and string to float conversions to
recapture the original value so that we can find the latency.

Unfortunately, this has a significant performance penalty.
An marshal.decode has a median cost of 77 �s;
ping decode has a median cost of 162 �s. Similarly, An -
marshal.encode has a median time of 72 �s as compared
with 189 �s for ping encode.

E.4 Information Gathering

This category consists of the time spent by the active packet
gathering information about its environment. Thus, asking the
Route module for the next hop on the route to the destination
or finding the address of the current host falls into this category.
We have also included the cost of reading from disk the bytecode
file for the program portion of the active packet. Overall, these
operations have a median cost of 1094 �s.

The cost of reading-in the bytecode file, however, is driven by
whether it is in the buffer cache of the host. (Linux maintains
an in-memory cache of recently used file blocks. Our test file
is small enough and our test machine has enough memory that
we believe the first read of the file caused the kernel to go to the
disk to get the file whereas for subsequent reads of the file, the
kernel was able to find the file in memory.) A typical cost for
reading the byte code file for the first ping was 39,280 �s. The
median cost was 1043 �s. Further, if we calculate tendencies for
this cost for the pings after the first, we find a median of 1040
�s and a mean of 1031 �s. The scaled SIQR is 2.55% and the
standard deviation is 39 �s.

E.5 Transmission Related Costs

The final section is transmission-related costs. This is the cost
of calling Udp.sendto udp and queuing a packet for process-
ing on the receiving side. Some of the time from the former is
also measured in the kernel/wire category.

While this is the section with the lowest cost, there is a po-
tential source of improvement. We use queues to pass packets
up to the thread that has registered an interest in these packets.
It has been suggested that if we instead allow the thread to reg-
ister an upcall, we save the cost of queuing and dequeuing the
packet and possibly of a context switch. Our concern is that do-
ing so allows a malicious or buggy thread to “capture” the thread

that is intended to retrieve packets from the interface. Finding
a scheme that allows recovery in the case of such a misbehav-
ing thread, but which normally has only the cost of the upcall
approach is an interesting area for continued study.

VI. IMPLEMENTATION AND PERFORMANCE OF
RCANE

A prototype of RCANE was developed over the Nemesis Op-
erating System [11]. Nemesis was chosen as the base platform
for its support for low-level of abstraction, allowing better con-
trol over the resources available to the RCANE system. Experi-
ments were performed on Intel Pentium II machines running at
300 MHz connected to 100 Mbps Ethernet and Intel PentiumPro
machines running at 200 MHz, connected to 10 Mbps Ethernet.

A. CPU Scheduling

The fundamental advantage of a programmable network over
a passive network is that end-users may perform computations
at nodes within the network, and hence receive lower latency
than if all interactions were required to take place between the
end-user and the ultimate destination. In order to provide low
latency, it is vital that the user-supplied applications running on
the programmable node receive timely access to the CPU. Alter-
natively, if the application is attempting to process or filter some
form of multimedia data, it should receive regular access to the
CPU in order to prevent excessive jitter in its results. Thus an
important feature of RCANE that must be shown is that it allows
users to request and receive the guaranteed access to the CPU
that they require.

To demonstrate the effectiveness of the CPU guarantees pro-
vided by RCANE, the time received by a set of sessions loaded
over the network on to an RCANE node was logged. Four ses-
sions were created at various times through the experiment.
Each session used a single VP and was CPU bound.

All four sessions were started with no particular guarantee,
but with access to best-effort time. Sessions B, C, and D were
created at 3 second intervals following the creation of session A,
and requested 10%, 20%, and 30% shares of the CPU, respec-
tively, each with a period of 4ms and with no access to extra
time.

Fig. 11 shows the percentage of the total CPU that each VP
received over each scheduling period (i.e., between consecutive
deadlines). The scheduling period for each VP is used since this
is provides an accurate view of whether the contractual guaran-
tee made to the session is being honored. Since session A’s VP is
running without a guarantee, it is assigned a notional scheduling
period of 100 ms; hence, the trace shown is clearly coarser than
the traces for the other sessions, whose VPs have fine-grained
guarantees.

B. Network Transmission

Fig. 12 shows a trace of network output from three sessions,
each attempting to transmit continuously.

� Session D has no guaranteed bandwidth.
� Session E has a transmission scheduling period of 6ms,

during which it receives 2 ms worth of link bandwidth.

0

20

40

60

80

100

18 20 22 24 26 28 30 32 34

%
 o

f C
P

U
 ti

m
e

(a
ve

ra
ge

d
ov

er
 V

P
’s

 p
er

io
d)

Time (s)

A
B
C
D

Fig. 11. CPU consumption by a set of sessions.

0

20

40

60

80

100

18 19 20 21 22 23 24 25 26

T
X

 b
an

dw
id

th
 (

M
b/

s)

Time (s)

F
E
D

Fig. 12. Network transmission rates.

This 33% share equates to 33 Mbps on the 100 Mbps link
used for this experiment.

� Session F has a 6 ms transmission scheduling period, and
a dynamically changing guarantee (see below).

Session F starts with a guarantee of 25%. 20 s after the start
of the experiment it requests 45%, thus reducing the best-effort
bandwidth received by D. After another 2 s, it requests 65%.
Now the link is saturated and there is no best-effort transmis-
sion time available for D. After a further 2 s it returns to 25%,
allowing D to begin transmitting again. It can be seen from the
trace that the desired resource isolation is achieved.

The apparent noisiness of the traces shown for the sessions
with guaranteed resources is due to the quantization effects
caused by the use of large (1500 byte) packets and small trans-
mission periods. The network transmission guarantee given to
session E, 33 Mbps guaranteed over a 6 ms period, is equivalent
to 16

2

3
packets per scheduling period. Since it is not possible to

preempt access to the network while a packet is in the process of
being transmitted, sessions alternately overrun their guarantee in
one period, and then receive correspondingly less in the follow-
ing period, such that when the traces are averaged over two or

0 2 4 6 8 10 12 14 16 18 20
Scheduling period (ms) 0

10
20

30
40

50
60

70
80

90

Buffering (KB)

20
30
40
50
60
70
80
90

100

Bandwidth of data
processed (Mb/s)

Fig. 13. Network receive bandwidth as a function of CPU scheduling
period and buffering.

more periods, the oscillation becomes insignificant. In the case
of session E, it manages to transmit either 16 or 17 packets in
each period. This effect could be reduced through the use of a
networking technology that uses a smaller maximum packet/cell
size.

C. Network Reception

On a shared, unscheduled medium such as Ethernet it is not
straightforward to provide guarantees on the number of packets
received at a node for a particular client. However, the level
of guaranteed buffering and CPU time that a particular client
receives will affect the amount of incoming data on a network
stream that actually reaches the client. To demonstrate this, the
bandwidth of data that could be processed by a session running
on an RCANE node was measured.

A session on a neighboring node (belonging to the same prin-
cipal, and bearing the same session ID) transmitted approxi-
mately 97 Mbps across the intermediate link. A CPU bound
session with a 40% guarantee and a 10 ms period is also run-
ning on the receiving node. The buffer space reserved by the
receiving session was varied between 1.5 KB and 88 KB; it was
guaranteed 10% of the CPU, with a scheduling period varying
between 1 ms and 20 ms. 10% of the CPU had been observed
to be more than sufficient to process the entire incoming data
stream on an otherwise unloaded node.

Fig. 13 shows how the level of buffering and CPU scheduling
period affect the amount of data that can be processed. It can be
seen that when the session runs with a short scheduling period,
it is scheduled sufficiently frequently to process all the incoming
data even when its buffering is relatively low. Similarly, when
the session has large amounts of buffering, it is able to process
all the data even if its scheduling period is long.

However, the CPU-bound session has a guaranteed slice of 4
ms every 10 ms; as the receiving session’s scheduling period in-
creases, it finds itself interrupted for longer periods of time, and
thus for modest levels of buffering the sustained receive band-
width falls—the receiving session loses access to the CPU for
long enough stretches of time that its buffers are filled up, re-

Saracen

PLAN
Daemon

100Mb/s physical link

10Mb/s physical link

UDP virtual network

Ethernet virtual network

Vixen BarehandsRocket

Downstream
receiver

Downstream
receiver

Downstream
receiver

Upstream
sender

ARM
sender

ARM
router

ARM
receiver

RCANE RCANE RCANE

Fig. 14. Experimental topology for ARM testing.

sulting in incoming packets being dropped in the network device
driver. As the receiving session’s period increases significantly
beyond the 4 ms slice that is being received by the CPU-bound
session, no further reduction in processed bandwidth occurs.

It may also be seen that at very low levels of buffering, the
amount of data that can be processed drops off rapidly due to
the inherent latency in the Nemesis I/O channels between the
network device driver and RCANE.

D. Memory Isolation

D.1 Memory Consumption

In [40], the Active Reliable Multicast protocol (ARM) was
proposed to improve the performance of reliable multicast flows.
ARM caches packets at intermediate nodes within the network,
trading memory on the nodes for reduced bandwidth require-
ments and latency; as such, some form of resource control is
required to ensure that greedy clients do not consume excessive
amounts of memory. A simple implementation of ARM was
developed to run over RCANE.

RCANE provides callbacks to indicate to a session that it is
close to exhausting its reserved heap size; when ARM receives
such callbacks, older packets and older structures describing
NACKs received and pending retransmissions, are recycled to
reduce garbage collection overheads or released to be reused as
a different type of object. ARM records the numbers of NACKs
received, and the number of times that the packet requested by
a NACK was not found in the cache. At intervals it checks the
ratio of these; if the ratio is too high, it deduces that the amount
of caching it is using is insufficient to effectively deal with the
loss on the downstream links, and (assuming that the client is
willing to pay for an additional memory reservation) requests a
higher memory reservation from RCANE.

Fig. 14 shows the experimental setup used to demonstrate the
use of ARM over RCANE. Rocket, Vixen and Barehands are
each running RCANE and are connected by 100 Mbps Ethernet.
Saracen is running a PLAN daemon and is used to control the
RCANE machines. The link between Vixen and Rocket is as-
sumed to be non-lossy. The link between Vixen and Barehands
is artificially made very lossy, by dropping packets at Barehands
with a given probability. Sessions on all three nodes are started
by a client who wishes to transfer an ARM flow from upstream
of Rocket to downstream of Barehands. Thus Rocket is acting as

0

100

200

300

400

20 40 60 80 100 120 140
0

100

200

300

400

500

H
ea

p
S

iz
e

(K
)

P
ac

ke
ts

/S
ec

on
d

Heap Size (K)
Packets sent

NACKs received
NACK cache hits

Fig. 15. Memory usage, packet counts and cache hits for an ARM
stream.

an ARM sender, Vixen as an ARM router and Barehands as an
ARM receiver9. Initially, 25% of packets from Vixen to Bare-
hands are dropped; after 90 seconds 50% are dropped. Vixen
is configured to attempt to increase its reserved heap size if it
discovers that it is servicing less than 90% of the NACKs from
its cache over a 1 second period.

Fig. 15 shows the memory usage of the ARM router on
Vixen, along with the total number of packets sent, the number
of NACKs received from Barehands and the number of cache
“hits” (NACKs that could be served from the cache). It can
be seen that the heap consumed by ARM quickly grows to ap-
proximately 180 KB; at this level, Vixen is able to service over
90% of the NACKs that it receives from Vixen directly from its
cache. After 90 seconds the loss on the link from Vixen to Bare-
hands doubles to 50%. At this point, the number of NACKs re-
ceived from Barehands increases significantly, and the percent-
age of NACKs serviced from the cache falls noticeably below
90%. Thus ARM increases its reserved heap size in an attempt
to reduce the number of misses; the heap size grows to approx-
imately 370 KB over the course of 40 seconds, at which point
the level of NACK hits reaches the target of 90%, and the heap
size stabilizes.

This demonstrates the ability of RCANE to constrain the
amount of memory used by different clients on a node—an es-
sential property of any practical programmable network plat-
form.

D.2 Garbage-Collection Isolation

RCANE runs each session in a separate heap in order to elim-
inate crosstalk caused by garbage collection—a session should
not be inconvenienced due to the allocation behavior of other
sessions. To demonstrate the utility of this approach, two sce-
narios were considered. In Fig. 16(a), VPs A and B are running
in the same session. Initially both are generating small amounts
of garbage. After a period of time, A begins generating large

9Clearly in a real situation Rocket would be receiving from an upstream node,
and Barehands would be sending to a set of downstream nodes; this was not
practical due to lack of suitable networking infrastructure.

0

20

40

60

80

100

22 24 26 28 30 32 34

%
 o

f C
P

U
 ti

m
e

(a
ve

ra
ge

d
ov

er
 V

P
’s

 p
er

io
d)

Time (s)

VP 1 total CPU time
VP 1 GC time

VP 2 total CPU time
VP 2 GC time

(a)

0

20

40

60

80

100

20 22 24 26 28 30 32 34

%
 o

f C
P

U
 ti

m
e

(a
ve

ra
ge

d
ov

er
 V

P
’s

 p
er

io
d)

Time (s)

VP 1 total CPU time
VP 1 GC time

VP 2 total CPU time
VP 2 GC time

(b)

Fig. 16. Avoiding QoS crosstalk due to garbage collection.(a) Single
heap; (b) Separate heaps

amounts of garbage. Scenario Fig. 16(b) is the same, but with
the two VPs running in separate sessions (and hence having sep-
arate heaps). Fig. 16 shows the outcome of these scenarios. In
Fig. 16(a), both VPs are initially doing small amounts of GC
work. A is running best-effort, whereas B has a guarantee of
1ms in each 4ms period. When A switches to generating large
amounts of garbage, the time it spends garbage collecting in-
creases substantially. However, as shown by the noisy region at
the bottom right of the graph, B also ends up doing an irregu-
lar but substantial amount of GC work. Although B has its own
independent CPU guarantee, at times critical GC activity (such
as root tracing) is taking place when its thread is due to run;
this GC work must be completed before normal execution can
be resumed. In Fig. 16(b), B is unaffected by the extra GC ac-
tivity caused by A, since it is running in a separate session and
hence does not share its heap; thus B’s own GC activity remains

minimal.

VII. DISCUSSION

We have described the architecture of two active networking
systems, SANE and RCANE, which have a shared heritage in
ALIEN. The key contributions of ALIEN were its proof that a
general purpose computing model was applicable to active net-
working, and for security, that privilege boundaries were distinct
from mutability boundaries. This resulted in a system with three
distinct levels: 1) an immutable privileged loader; 2) a mutable
privileged “Core Switchlet,” the loading of which is the major
role of the loader; and 3) unprivileged active code. Loaded mod-
ules are constrained via “module thinning” which can be viewed
as a form of namespace sandboxing; the major idea is that the
restriction of the namespace serves (along with privilege) to re-
strict access to named resources.

ALIEN’s form of protection is effective on a closed active
node, ignoring competition for bandwidth and assuming the
integrity of the node. SANE’s advances were in two areas:
1) guaranteeing the integrity of control transfers until ALIEN

gains control of the node, and 2) providing remote access to the
namespace via ALIEN-authorized cryptographic credentials. We
evaluated the cost of implementing SANE using a small active
application, that of an active network echo packet (“saneping”),
and discovered that the cost of the cryptographic operations on
either a per-byte or a per-packet basis comprised a major portion
of the measured delays, up to about 25%. SANE pays about a
25% delay penalty for its extended security. SANE’s mecha-
nisms depend on a modified BIOS and operating system boot
block for the chained layered integrity checks, but do not other-
wise depend on the operating system, other than demanding that
it be available as a target for lower layers of the system. SANE
intends to pass control to ALIEN in our current implementation,
but could as easily use a JVM or ANTS. SANE is completely
oblivious to the use of Linux as a platform for its Caml imple-
mentation.

RCANE has addressed the availability of service to applica-
tions by its management of resources in the time domain. Our
measurements have clearly demonstrated that the system effec-
tively partitions active applications from each other, with its use
of separate heaps and Nemesis scheduling technologies. Fur-
ther, active applications are protected from many forms of de-
nial of service attacks and other bandwidth-starvation schemes,
as we showed in our end-to-end measurements. RCANE is the
first active networking system which pulls together the names-
pace protection schemes of ALIEN and the management of real
resources derived from Nemesis.

The way forward in systems development is the augmenta-
tion of the RCANE implementation of an active networking en-
vironment on Nemesis with the security features of SANE. This
implies that the BIOS of machines so configured would be mod-
ified to support the secure bootstrap, the boot block of the Neme-
sis boot disk would be modified, etc. The bootstrap would end
in the Nemesis system executing RCANE. The cryptographic
support and credentials used by SANE are easily imported into
RCANE, as RCANE’s active networking programming environ-
ment is essentially Caml. The result is a threat-secure active

networking node implementation.

VIII. RELATED WORK

Ongoing work on active networks has been surveyed else-
where [41], [42] and thus we focus on issues germane to SANE
and RCANE.

An architecture which, like from ALIEN to SANE, extended a
protection model from the local domain to a distributed environ-
ment was provided by Sansom, et al. [43], who enforced protec-
tion locally with memory-protection enforced capabilities. (It
is notable that capabilities can be viewed as a namespace-based
protection mechanism). The capabilities were extended to re-
mote nodes via cryptographic means. SANE provides more
general mechanisms and could thus be specialized to such an ap-
plication (moving memory-protected objects about the network)
but more importantly guarantees local integrity before extending
itself into the network.

ANTS [44] uses MD5 hashes (“fingerprints”) to name on-
demand loaded modules, the hashes provide unique names
rather than security. ANTS performance is limited by its use
of the Java programming language for protection; ANTS use
of “code caching” can be used to amortize the cost of cryptogra-
phy across multiple uses of a module. The remote authentication
and namespace security of SANE can be used to support ANTS
and similar systems, and RCANE supports ANTS, making its
resource control available with the ANTS namespace isolation
model.

Another, quite different, approach to providing secure ac-
tive networking is that used by the Programming Language
for Active Nets (PLAN). PLAN is a special-purpose program-
ming language appropriate for per-packet programs. PLAN’s
semantics are purposely restricted to operations which are safe
and bounded in resource usage, with the intention of being so
lightweight that any node would be willing to run PLAN pack-
ets, including those from remote nodes, and thus would not re-
quire the security of SANE. However, as any enhanced ser-
vices are added to the node as PLAN services, such services
would require a SANE-like approach for security. RCANE sup-
ports PLAN, and thus its features and model can be coupled with
robust resource control of memory, bandwidth and processing.
The interesting issue in such a construction would be the cou-
pling of PLAN’s language-supported “resource bound” with the
controls supported by RCANE.

Finally, the Active Network Node Operating System
(“NodeOS”) provides support for Execution Environments such
as ALIEN, PLAN and ANTS. The architecture provides consid-
erable support for resource management, and in fact has incor-
porated ideas such as the thread model from RCANE. It may
be interesting to compare the performance of our current SANE
and RCANE systems with versions using implementations of a
NodeOS when they become available.

IX. CONCLUSIONS

This paper has made two contributions.
First, it has presented the design and implementation of two

active networking systems, SANE and RCANE, which have ex-

plored different aspects of security. Each was based on a com-
mon framework, ALIEN, developed as part of the SwitchWare
project. SANE added a secure bootstrap and cryptographic pro-
tocols to ensure node integrity and preserve ALIEN’s namespace
protection. RCANE used the Nemesis operating system as a
basis for resource control unavailable in ALIEN’s initial Linux
implementation, while adding support for separate heaps and
garbage collection.

The second contribution is detailed measurement studies of
SANE and RCANE, showing the measured costs of their secu-
rity enhancements. The costs of various cryptographic opera-
tions were studied independently, and then the entire SANE sys-
tem was instrumented and measured using applications such as
an “Active Ping.” Using PCs with extremely high performance
arithmetic (533 MHZ Alphas) and native mode cryptographic
implementations to make these operations as fast as possible,
we discovered that the basic operations required for authenticat-
ing packets require a 33% overhead relative to unauthenticated
packets. The RCANE measurements confirm that a flexible high
performance active network node architecture can provide good
resource control and isolation with appropriate operating system
support.

We see three promising research areas, beyond the system de-
velopment discussed in the previous section, that have been ex-
posed by our results. First, much of the cost of authentication
is a “per-byte” cost, and thus reducing the size of the packet
(e.g., by use of a “very-high-level language” (such as PLAN) or
some other compression scheme) may allow a wider range of
the active packet/active extension continuum to be exploited by
programmers. (An alternative is the clever code-caching scheme
of ANTS, which on average would pay the authentication cost
once.) Second, it would be of interest to replicate the experi-
ments reported here in other environments, such as those used
in related work. The major architectural points we have made
will almost surely remain true, but it would be valuable to study
other environments to split out their detailed cost/performance
tradeoffs. Finally, performance versus security tradeoffs must
be reexamined as each new active application is developed.

X. ACKNOWLEDGEMENTS

We would like to thank Bill Marcus for his help in writing
some of the original ANEP code, and Mike Hicks for the dis-
cussions and tools he provided us for performance analysis.

We would also like to thank Simon Crosby, Scott Nettles, and
Marianne Shaw for their discussions and insights into this work.

REFERENCES
[1] D. S. Alexander et al., “A secure active network architecture: Realiza-

tion in SwitchWare,” IEEE Network, (Special issue on Active and Pro-
grammable Networks), vol. 12, pp. 37–45, May/June 1998.

[2] D. S. Alexander et al., “Safety and security of programmable network
infrastructures,” IEEE Commun. Mag., (Special issue on Programmable
Networks), vol. 36, pp. 84–92, Oct. 1998.

[3] D. S. Alexander et al., “A secure active network environment architecture,”
Technical Report MS-CIS-97-17, Pennsylvania Univ., Nov. 1997.

[4] D. S. Alexander and J. M. Smith, “The Architecture of ALIEN,” in Proc.
the 1st International Working Conf. Active Networks (IWAN ’99), Lecture
Notes in Computer Science, July 1999.

[5] P. Menage, “RCANE: A resource controlled framework for active network
services,” in Proc. the 1st International Working Conf. Active Networks
(IWAN’99), Lecture Notes in Computer Science, July 1999.

[6] L. Breslau and S. Shenker, “Best-effort versus reservations: A simple com-
parative analysis,” in Proc. ACM SIGCOMM, vol. 28, Sept. 1998.

[7] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson model-
ing,” in Proc. ACM SIGCOMM, vol. 24, Sept. 1994, pp. 257–268.

[8] W. E. Leland et al., “On the self-similar nature of Ethernet traffic,” in Proc.
ACM SIGCOMM, vol. 23, Sept. 1993, pp. 183–193.

[9] M. Crovella and A. Bestavros, “Explaining world wide web traffic self-
similarity,” Technical Report 95-015, Boston Univ., Aug. 1995.

[10] A. B. Montz et al., “Scout: A communications-oriented operating system,”
Technical Report, Department of Computer Science, Arizona Univ., June
1994.

[11] I. M. Leslie et al., “The design and implementation of an operating sys-
tem to support distributed multimedia applications,” IEEE J. Select. Areas
Commun., vol. 14, pp. 1280–1297, Sept. 1996.

[12] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable boot-
strap architecture,” in Proc. IEEE Symposium on Security and Privacy,
May 1997, pp. 65–71.

[13] W. A. Arbaugh et al., “Automated recovery in a secure bootstrap process,”
in Symposium on Network and Distributed System Security, Internet Soci-
ety, Mar. 1998.

[14] “Data encryption standard,” Technical Report FIPS-46, U.S. Department
of Commerce, Jan. 1977.

[15] “Secure hash standard,” Technical Report FIPS-180-1, U.S. Department
of Commerce, Apr. 1995. Also known as: 59 Fed Reg 35317, 1994.

[16] “Digital signature standard,” Technical Report FIPS-186, U.S. Department
of Commerce, May 1994.

[17] D. S. Alexander, ALIEN: A Generalized Computing Model of Active Net-
works, Ph.D. Dissertation, Pennsylvania Univ., Sept. 1998.

[18] G. Back and W. Hsieh, “Drawing the Red Line in Java,” in Proc. the Sev-
enth Workshop on Hot Topics in Operating Systems (HOTOS-VII), Mar.
1999.

[19] “L Peterson, ed. NodeOS Interface Specification, AN Node OS Working
Group,” Jan. 2000. Draft.

[20] M. Hicks et al., “PLANet: An active internetwork,” in Proc. IEEE INFO-
COM’99, Mar. 1999.

[21] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for
building and dynamically deploying network protocols,” in Proc. OPE-
NARCH’98, Apr. 1998.

[22] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a
hard real-time environment,” J. the ACM, vol. 20, pp. 46–61, Feb. 1973.

[23] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” in Proc. ACM SIGCOMM, vol. 19, Sept. 1989, pp. 1–
12.

[24] P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network
subsystem architecture for server systems,” in Proc. the 2nd Symposium
on Operating Systems Design and Implementation (OSDI’96), USENIX,
Oct. 1996, pp. 261–275.

[25] P. Menage, Resource Control of Untrusted Code in an Open Pro-
grammable Network, Ph.D. Dissertation, Cambridge Univ. Computer
Lab., June 2000.

[26] F. Rouaix, “A web navigator with applets in Caml,” Fifth WWW Conf.,
May 1996. Available at http://pauillac.inria.fr/mmm/papers/mmm.ps.gz.

[27] D. S. Alexander et al., “Active bridging,” in Proc. ACM SIGCOMM, Sept.
1997.

[28] C. M. Ellison et al, “Simple public key certificate.” Apr. 1997, work in
progress.

[29] L. Gong and P. Syverson, “Fail-stop protocols: An approach to designing
secure protocols,” in Proc. IFIP DCCA-5, Sept. 1995.

[30] P. Karn and W. Simpson, “Photuris: Session-key management protocol,”
RFC 2522, Mar. 1999.

[31] D. Maughan et al., “Internet security association and key management
protocol (ISAKMP),” internet–Draft, IPSEC Working Group, June 1996.

[32] R. Jain, The Art of Computer Systems Performance Analysis, New York:
John Wiley & Sons Inc., 1991.

[33] J. C. Brustoloni and P. Steenkiste, “Application-allocated I/O buffering
with system-allocated performance,” Technical Report CMU-CS-96-169,
Carnegie Mellon Univ., Pittsburgh, PA., Aug. 1996.

[34] B. Schwartz et al., “Smart packets for active networks,” Jan. 1998. Avail-
able at http://www.net-tech.bbn.com/smtpkts/smartpkts-index.html.

[35] A. W. Appel, “Garbage collection can be faster than stack allocation,” In-
formation Processing Lett., vol. 25, pp. 275–279, June 1987.

[36] H. G. Baker, “List processing in real-time on a serial computer,” Commun.
ACM, vol. 21, no. 4, pp. 280–94, 1978.

[37] S. M. Nettles and J. W. O’Toole, “Real-time replication garbage collec-

tion,” SIGPLAN Symposium on Programming Language Design and Im-
plementation, pp. 217–226, ACM, June 1993.

[38] J. O’Toole and S. Nettles, “Concurrent replicating garbage collection,”
ACM Symposium on LISP and Functional Programming, ACM Press, June
1994.

[39] M. Shaw, “An architecture for an active network node,” Master’s Thesis,
Pennsylvania Univ., Philadelphia, Dec. 1998.

[40] L. Lehman, S. J. Garland, and D. L. Tennenhouse, “Active reliable multi-
cast,” in Proc. IEEE INFOCOM’98, Mar. 1998.

[41] D. L. Tennenhouse et al., “A survey of active network research,” IEEE
Commun. Mag., pp. 80–86, Jan. 1997.

[42] J. M. Smith et al., “Activating networks: A progress report,” IEEE Com-
puter, vol. 32, pp. 32–41, Apr. 1999.

[43] R. D. Sansom, D. P. Julin, and R. F. Rashid, “Extending a capability based
system into a network environment,” in Proc. ACM SIGCOMM, Aug.
1986.

[44] D. Wetherall, “active network vision and reality: Lessons from a capsule-
based system,” in Proc. the 17th ACM Symposium on Operating Systems
Principles (SOSP’99), vol. 33, Dec. 1999.

D. Scott Alexander is currently Chief Architect at
Activium, Inc. where he is involved in bringing Active
Networking to the commercial market. Previously, he
has worked for Bell Laboratories and the Jet Propul-
sion Lab. He earned his B.A. at Rice University and
his M.S.E and Ph.D. at the University of Pennsylva-
nia.

Paul B. Menage is a software engineer at Ensim Cor-
poration, working on scalable ISP/ASP hosting tech-
nology. He received his B.A., M.A., and has recently
completed his Ph.D., at the University of Cambridge.
He is a member of the IEEE and ACM.

Angelos D. Keromytis is a Ph.D. candidate at the
University of Pennsylvania. He earned a M.S. in com-
puter science from University of Pennsylvania, and a
B.S. from University of Crete, Greece. He is a mem-
ber of IEEE, ACM, USENIX, and IACR.

William A. Arbaugh is an Assistant Professor of Computer Science at the Uni-
versity of Maryland, College Park, where his current research focus is computer
and network security. Bill received his Ph.D. at the University of Pennsylvania.
He has served as a senior computer scientist with the Research Group of the U.S.
Department of Defense, and as a senior software engineer and a tactical com-
munications platoon leader with the U.S. Army. He earned a M.S. in computer
science from Columbia University, and a B.S. from the United States Military
Academy. He is a member of the IEEE and ACM.

Kostas G. Anagnostakis is a Ph.D. candidate at the
University of Pennsylvania. He earned a M.S. in Com-
puter and Information Science from the University of
Pennsylvania and a B.S. in Computer Science from
the University of Crete, Greece.

Jonathan M. Smith is a Professor in CIS at the Uni-
versity of Pennsylvania, where he leads research in
networking and security.

