
94 Computer

S E C U R I T Y

I n the June 2004 Security column
(“A Patch in Nine Saves
Time?”pp. 82-83), Bill Arbaugh
makes two interesting observa-
tions: first, whoever has the tight-

est observe-orient-decide-act (OODA)
loop will prevail in a confrontation;
second, the infection rates of recent
worms suggest that the good guys are
losing the battle. 

Arbaugh offers some sensible sug-
gestions to vendors and security pro-
fessionals on improving patch man-
agement. However, the best indication
that we are losing the battle is not the
infection rates of worms such as
Slammer and Blaster, but the shrink-
ing interval between discovering and
announcing a new vulnerability and
the appearance of a worm or attack
that exploits it. 

The most recent example is the
Witty worm, which effectively ex-
ploited a vulnerability present in a
small population of hosts—approxi-
mately 12,000 computers. Although it
was first discovered on 8 March 2004,
the vendor didn’t announce the vul-
nerability until 18 March, after it had
made a patch available. A little over 
a day after the announcement, Witty
made its first appearance.

ZERO-DAY ATTACKS
Given such a short turnaround time,

we can reasonably expect to soon
experience a zero-day worm. Zero-day

attacks are those for which users
receive no prior warning and thus have
no preventive measures in place. 

To date, a combination of aggressive
packet filtering and proactive applica-
tion patching could—at least in prin-
ciple—defeat all the worms we have
encountered. Although we could, in
theory, deploy patches and network fil-
ters automatically, the practicality of
employing such measures and their
effect on regular system operation are
an entirely different story.

Witty came close to being a zero-day
worm; for most organizations, it was.
Few system administrators had even
seen the announcement before the
attack, much less downloaded and
installed the necessary software patch. 

Furthermore, as Arbaugh (“Win-
dows of Vulnerability: A Case Study of
Analysis,” Computer, Dec. 2000, pp.
52-59) and others such as Eric Rescorla
(“Security Holes … Who Cares?” Proc.
12th Usenix Security Symp., Usenix,
2003, pp. 75-90) have noted, many
administrators find it impractical, if not

otherwise unacceptable, to patch or
upgrade their systems when a vulnera-
bility is announced. Instead, they wait
for news of an actual exploitation. In
many cases, this is simply too late. 

PATCH ON DEMAND
What to do then? One new idea is to

integrate the vulnerability discovery,
patch generation, and patch applica-
tion cycles into a system that would
automatically detect a new attack, ana-
lyze its modus operandi, determine the
best software patch, and apply it at the
desired level of granularity—LAN,
enterprise, or Internet-wide. 

Although the system would still
function by reacting to attacks, its
response time would be significantly
shorter. Perhaps most importantly, it
could operate autonomously. 

Furthermore, by retaining a focus on
software patching, this approach could
avoid at least some pitfalls of network-
based defense techniques. These tech-
niques, which include packet and
content filtering, can fall prey to worms
that exploit opportunistic encryption,
polymorphism, or metamorphism.
Traditionial viruses use polymorphism
to make detection more difficult: A
small decoder, which changes periodi-
cally, decrypts the virus’s main body
prior to execution.

Metamorphic viruses, on the other
hand, completely translate the virus
code to use different but equivalent
instructions every time it infects a new
target. Classic signature-matching tech-
niques are, for the most part, incapable
of detecting such viruses.

Metamorphism, in particular, makes
detecting new viruses extremely diffi-

“Patch on Demand”
Saves Even More
Time?
Angelos D. Keromytis, Columbia University

A vaccination system could
automatically generate
patches to protect an
application’s source code.



cult and time-consuming. Worse, sev-
eral advanced metamorphic virus
engines, such as Zmist, have been pub-
licly available for a few years. I suspect
that their use in a future worm is only
a matter of time. One reason we have
not seen them yet may be that current
practices are so effective in creating
highly infectious worms.

Vaccination system
Can we develop a patch-on-demand

system that is both practical and safe? 
This is the question we are investi-

gating at Columbia University’s 
Network Security Lab (http://nsl.cs.
columbia.edu/). We believe that some
of the necessary technology, at least for
the initial steps, is already available.

To begin with, we think it is much
easier to identify a previously unknown
vulnerability by observing the actions
of an attacker, such as a worm, that
must “demonstrate” its use (and side
effects) while attacking a new system. 

Figure 1 shows an automated worm
vaccination system that includes a hon-
eypot—a security resource that pre-
tends to be an easy target for purposes
of attracting and exposing attackers.
Using honeypots for early-warning sys-
tems has increased over the past few
years. A properly instrumented vacci-
nation system could monitor the attack
activity at the software level and detect
previously unknown attacks against
what the adversary considers a valid
target for infection. 

As the worm attempts to infect the
system, it reveals not only the vulnera-
bility’s existence but also its precise
characteristics. For example, in the case
of buffer overflows, a trace of the stack
shows up at the time of the attack,
along with identification of the routine
where the overflow occurred, the vul-
nerable buffer, and the attack vector.

Developers could use this system to
get the information needed to develop
a patch manually. We propose going a
step further. By applying a series of
transformations to the vulnerable
application’s source code, we want to
automatically create a narrowly defined

patch that protects against the specific
vulnerability. At its simplest, such a
patch would recompile the vulnerable
part of the application with a mecha-
nism like StackGuard. 

More advanced fixes are also possi-
ble. For example, we have been exper-
imenting with patches that maintain
the application’s availability (http://
nsl.cs.columbia.edu/projects/wormv/).

Results
Our preliminary experiments with

several vulnerable open source appli-
cations show a better than 80 percent

success rate in protecting against an
attack and maintaining continuous
operation. In the remaining cases, the
patch successfully thwarts the attack,
but the application terminates its exe-
cution. 

An analysis of an Apache server that
our system patched in response to a
Slapper-like attack showed no impact
on performance. Furthermore, the
patching process took less than 10 sec-
onds. Naturally, additional research is
needed to determine the mechanism’s
limits with a richer corpus of vulnera-
ble software.

August 2004 95

Hypothesis
testing and

analysis

Application
server

Host-based
sensor

(4) Vulnerability
testing and

identification

Instrumented
application

Patch
generation

(5) Possible fix
generation

Sandboxed
environment

(6) Application update
(3) Forwarded

features

Anomaly
detection
engine

Firewall
sensor

Passive
sensor

Honeypot

(2) Notifications

Enterprise
network

Remote sensor

Internet

(1) Worm scans/infection attempts

Figure 1. Worm vaccination architecture. (1) Sensors deployed at various locations in the
network detect a potential worm and (2) notify an analysis engine. (3) The engine forwards
the potential infection vector and other relevant information to an isolated environment,
where (4) the potential infection vector is tested against an appropriately instrumented
version of the targeted application and the vulnerability is identified. (5) Several software
patches are generated and tested using different heuristics. If one of the patches is found
to be immune to the infection, (6) the application server is updated.



Trust
At a different abstraction level, these

ideas could serve as existential proof for
reactive decentralized mechanisms that
do not require collaboration but can
respond through purely local action to
global phenomena such as worms.

Several researchers have proposed
the need for large-scale collaborative
mechanisms to detect and filter future
worm attacks. For example, Vern
Paxson proposed a Cyber Center for
Disease Control for identifying out-
breaks, rapidly analyzing pathogens,
and fighting the infection (“How to
Own the Internet in Your Spare Time,”
Proc. Usenix Security Symp., Usenix,
2002, pp. 149-167). The CCDC could
use our mechanism to quickly create
needed patches. 

The trust issues inherent in such an
approach present unique challenges. It
seems unlikely that many organiza-
tions would trust such a third entity to
dynamically alter their own defensive
posture—for example, by pushing net-
work filters to network firewalls or
sending software patches. 

CHALLENGES
In our exploratory work we have

already identified issues that require
further research, such as reasoning
about the system’s reliability and secu-
rity, extending it to cover other types
of software failures and attacks, and
handling binary-only systems—to
name but a few. 

Risk
As with any fully automated task,

the risks of relying on automated
patching and testing as the only real-
time defense techniques are not fully
understood. Furthermore, it should be
obvious that this system does not
address the growing number of e-mail
worms that spread by exploiting other
types of security flaws and human
curiosity.

Software engineering, programming
languages, security, and networking
are all components in developing the
system. At the very least, some of the
techniques we have developed should
help in the traditional “penetrate and
patch” cycle.

A CCDC whose role was confined to
managing a large number of hon-
eypots and attack-detection sen-

sors would be valuable in spreading the
word of new attacks. Organizations, or
their security service providers, could
run software vaccination systems inde-
pen- dently of each other. All that this
hypothetical CCDC would do is broad-
cast the newly captured attack vector
and allow individual organizations to
develop their own patches in real time:
Trust but verify! �

Angelos D. Keromytis is an assistant
professor in the Department of Com-
puter Science and director of the Net-
work Security Lab at Columbia Uni-
versity. Contact him at angelos@cs.
columbia.edu.

S e c u r i t y

Editor: William A. Arbaugh, Dept. of 
Computer Science, University of Maryland
at College Park; waa@cs.umd.edu

Visit Computer
magazine online 
for current articles,
links to online
resources, and 
a collection of 
classics that 
changed the 
computing field. 

www.computer.org/computer/


