
Cryptography in OpenBSD: An Overview

Theo de Raadt, Niklas Hallqvist, Artur Grabowski, Angelos D. Keromytis, Niels Provos

fderaadt,niklas,art,angelos,provosg@openbsd.org
The OpenBSD Project

Abstract

Cryptographic mechanisms are an important se-
curity component of an operating system in secur-
ing the system itself and its communication paths.
Indeed, in many situations, cryptography is the
only tool that can solve a particular problem, e.g.,
network-level security. While cryptography by it-
self does not guarantee security, when applied cor-
rectly, it can signi�cantly improve overall security.
Since one of the main foci of the OpenBSD system is
security, various cryptographic mechanisms are em-
ployed in a number of di�erent roles.
This paper gives an overview of the cryptography

employed in OpenBSD. We discuss the various com-
ponents (IPsec, SSL libraries, stronger password en-
cryption, Kerberos IV, random number generators,
etc.), their role in system security, and their inter-
actions with the rest of the system (and, where ap-
plicable, the network).

1 Introduction

An important aspect of security in a modern op-
erating system is cryptographic services and mecha-
nisms. While not a security panacea, cryptography
is sometimes the right tool in solving certain prob-
lems. In particular, cryptography is extremely useful
in solving a number of security issues in the following
three areas:

� Network security.

� Secure storage facilities.

� (Pseudo-) Random number generators.

Since one of our goals in the OpenBSD project
is to provide strong security, we have implemented a
number of protocols and services in the base system.
An OpenBSD distribution thus has full support for
such mechanisms as IPsec, SSL, Kerberos, etc, being
una�ected by export restriction laws.
Simply supporting these mechanisms, however, is

not su�cient for wide-spread use. We are constantly

trying to make their use as easy and, where possi-
ble, transparent to the end user. Thus, more work
is done in those mechanisms that can be used to
provide transparent security, e.g., IPsec.
With this paper, we intend to give a good overview

of the cryptography currently distributed and used
in OpenBSD, and of our plans for future work. We
hope this will be of interest both to end-users and ad-
ministrators looking for better ways to protect their
host and networks, and to developers in other sys-
tems (free or otherwise) that are considering sup-
porting some of these mechanisms. We should again
caution the readers, however, that cryptography
does not solve all security problems in an operat-
ing system, and should not be considered as an end
in itself, but rather as an important piece of the se-
curity puzzle.

1.1 Paper Organization

The remainder of this paper is organized as
follows: section 2 describes the various network
security facilities implemented and supported in
OpenBSD, section 3 covers the extensive use of ran-
dom number generators, and section 4 briey out-
lines our future plans in this area. Section 5 con-
cludes the paper.

2 Communications Security

In an increasingly networked environment, com-
munications security support in an OS is extremely
important. As there are di�erent mechanisms
and di�erent layers where one may apply security,
OpenBSD supports a number of security protocols
and mechanisms, some of which were developed (or
even designed) by our developers. In some cases,
there is considerable overlap in functionality. One
of our goals is to eventually make it transparent to
the end user which such security mechanism is in
use.
The following sections give a brief overview of

these mechanisms, some detail of their implemen-



tation and integration in OpenBSD, and our plans
for future work. As we already mentioned in sec-
tion 1, we consider IPsec an extremely important
tool in network security, both because of its poten-
tial for user-transparency and its exibility. This is
reected by the more thorough coverage of IPsec in
the text that follows.
Other popular mechanisms, such as SSH [38], are

not covered because they are only part of our ports
system. While virtually all the developers use SSH,
there is no free implementation we can add to our
standard distribution. Furthermore, the current ver-
sion of SSH is restricted by the RSA patent in the
US. We are waiting for a free implementation to be-
come available as part of the IETF standardization
process of SSH. Such an implementation would be
linked with our libssl.

2.1 SSL

In OpenBSD libssl provides a toolkit for the
Secure Socket Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) [6] which provide strong
cryptographic protection for network communica-
tion such as server authentication and data encryp-
tion. The Secure Socket Layer is currently used by
web servers, e.g., Apache as shipped with OpenBSD,
and browsers like Netscape Communicator. In the
future, applications like telnet and ftp will be con-
verted to use TLS, possibly even during our network
installation process.
Due to patent restrictions, libssl in the

OpenBSD distribution supports only digital signa-
tures with DSA [27], but an additional package is
provided for users outside the USA to add back
RSA-signature [19] support. This is implemented
by providing two shared libraries: libssl.so.1.0

has only function stubs for RSA support, while
libssl.so.1.1 contains full RSA support. Notice
that shared library minor-version number changes
typically indicate interface-transparent bug �xes.

2.2 IP Security (IPsec)

2.2.1 Background

While IP has proven to be an e�cient and robust
protocol when it comes to actually getting data
across the Internet, it does not inherently provide
any protection of that data. There are no facili-
ties to provide con�dentiality, or to ensure the in-
tegrity or authenticity of IP [31] datagrams. In or-
der to remedy the security weaknesses of IP, a pair
of protocols collectively called IP Security, or IPsec
[3, 16] for short, has been standardized by the IETF.

The protocols are ESP (Encapsulating Security Pay-
load) [2, 15] and AH (Authentication Header) [1, 14].
Both provide integrity, authenticity, and replay pro-
tection, while ESP adds con�dentiality to the pic-
ture. IPsec can also be made to protect IP data-
grams for other hosts. The IPsec endpoints in this
arrangement thereby become security gateways and
take part in a virtual private network (VPN) where
ordinary IP packets are tunneled inside IPsec [36].

Network-layer security has a number of very im-
portant advantages over security at other layers of
the protocol stack. Network-layer protocols are gen-
erally hidden from applications, which can there-
fore automatically and transparently take advantage
of whatever network-layer encryption services that
host provides. Most importantly, network-layer pro-
tocols o�er a remarkable exibility not available at
higher or lower layers. They can provide security
on an end-to-end (securing the data between two
hosts), route-to-route (securing data passing over a
particular set of links), edge-to-edge (securing data
as it passes from a \secure" network to an \insecure"
one), or a combination of these.

2.2.2 Operation

Central to both ESP and AH are an abstraction
called security association, or SA. In each SA there
is information (algorithm IDs, keys, etc.) stored
describing how the wanted protection should be
setup. For two peers to be able to communicate
they need matching SAs at each end. When de-
ciding what SA should be used for outbound traf-
�c, some kind of security policy database needs to
be consulted. In OpenBSD, this is currently imple-
mented as an extension to the routing table, where
source/destination addresses, protocol, and ports
serve as selectors.

Looking at the wire format, IPsec works by insert-
ing an extra header between the IP header and the
payload. This header holds IPsec-speci�c data, such
as an anti-replay sequence number, cryptographic
synchronization data, and integrity check values. If
the security protocol in use is ESP, a cryptographic
transform is applied to the payload in-place, e�ec-
tively hiding the data. As an example, an UDP data-
gram protected by ESP is shown in �gure 1.

This mode of operation is called transport mode,
as opposed to tunnel mode which is typically used
when a security gateway is protecting datagrams for
other hosts. Tunnel mode di�ers from transport
mode by the addition of a new, outer, IP header con-
sisting of the security gateways' addresses instead of
the actual source and destination, as shown in �gure



Encrypted

Header
IP

Header
ESP UDP

Header Data
UDP

Figure 1: IPsec Transport Mode

Encrypted

Header
IP

Header
ESP UDP

Data
UDP

Header
IP

Header

Figure 2: IPsec Tunnel Mode

2.
As was mentioned earlier, this mode is ideal for

implementing VPNs.
The last, but not least, part of the picture is a key

management infrastructure. IPsec can only work if
the keys in the SAs are synchronized and updated
in a secure fashion. To automate this task, di�erent
protocols have been devised that allow two peers to
compute identical keys without actually sending all
the data needed for it over the wire [7, 8]. The Inter-
net Key Exchange, IKE, is one such, and Photuris is
another. The main di�erence between these two lies
in the complexity level. IKE is a very complex proto-
col which, however, o�ers considerable exibility in
negotiating and establishing SAs. IKE is the o�cial
IETF standard. Both protocols work in a similar
vein, by �rst building an encrypted application-level
\tunnel" where further key exchanges take place.
The Di�e-Hellman algorithm [7] is used to make it
computationally hard to crack the key computation.
Every SA is assigned a lifetime, either in wall-clock
time or in volume, and when such a lifetime expires,
the key management daemon renegotiates with the
peer, creating new SAs with fresh keys.

2.2.3 OpenBSD IPsec

OpenBSD's IPsec stack was written by John Ioan-
nidis and Angelos Keromytis [18] and later enhance-
ments and �xes have been provided by Niels Provos
and Niklas Hallqvist. The core is stable and in pro-
duction use securing data in many places all over
the world, as it does not su�er from US export reg-
ulations. A number of companies, agencies, insti-
tutions, and individuals are using the code, a fact

that has helped us signi�cantly in �nding and �xing
bugs, and in motivating further development.
Recently, the API used to setup and maintain the

SA database was switched to the standard PF KEY
[23]. This API is much more exible than the
old PF ENCAP interface. Available algorithms for
encryption are DES [26], 3DES, Cast-128, Blow-
�sh [35], and Skipjack (support for the latter, de-
spite its known weaknesses, was added after re-
quests by US Government agencies using our IPsec
stack). One-way hash algorithms are MD5, SHA1
and RIPEMD160 [20, 21, 17]. For key management,
two daemons are available, isakmpd implementing
IKE [29, 22, 12] and photurisd implementing Pho-
turis [13].

2.2.4 Future Work in IPsec

Our IPsec implementation is under constant devel-
opment and improvement, as there remain a number
of unresolved issues.

� Our IPv6 stack is not yet integrated with our
IPsec implementation.

� We want a more exible, possibly uni�ed policy
mechanism. In particular, we are looking into
merging routing, security policy, and protocol
block lookups.

� Develop or borrow a policy API, rather
than use private extensions to PF KEY and
PF ROUTE.

� isakmpd has not yet covered all mandatory re-
quirements in the RFCs.

� A DNSSEC [9] implementation, and integration
in isakmpd and photurisd, will be needed for op-
portunistic encryption.

� isakmpd and photurisd are not linked with lib-
ssl so they will not automatically support RSA
when an RSA-supporting libssl is installed.

� We do not currently do on-demand keying
(a facility available in the past through the
PF ENCAP API).

� Finally, we intend to support some application
API for requesting security and possibly other
services. With that in place, we intend to have
all networking applications take advantage of
IPsec.

All of these are improvements that we want to
address in the time-frame for the next release.



2.3 Kerberos

In a networked environment, it is very important
to be able to authenticate users in a secure way over
insecure networks. Kerberos is a network authenti-
cation protocol using a trusted third-party to pro-
vide authentication and basic session-key exchange.

Kerberos is built around a central key distribu-
tion center (KDC) which keeps a database of clients
and servers (called principals) and their private keys.
Encryption in Kerberos is based on DES [26]. When
the client wants to use some service it issues a re-
quest to the KDC for a ticket for that service. The
server returns a message encrypted with the client's
private key, containing three parts: a session key
that can be used for encryption between the client
and the server, a timestamp, and a ticket. The ticket
is encrypted with the private key of the server and
contains the name of the client, a timestamp, the
clients network address, lifetime of the ticket, and
the same session key that the client obtained. The
ticket can be passed to the server for authentication.

Kerberos [24] was originally developed by project
Athena at MIT, but was not exportable from the US
due to legal restrictions. The cryptographic func-
tionality was removed and a \Bones" distribution
was created and exported. The cryptographic in-
terfaces were added back by Eric Young, and KTH
(The Royal Institute of Technology in Stockholm,
Sweden) maintained the code outside the USA. The
Kerberos implementation in OpenBSD is \kth-krb",
protocol version 4, and is used in a number of utili-
ties.

2.3.1 Practical Uses

The simplest use of Kerberos is to authenticate users
locally on a workstation. The login, xdm, and su pro-
grams in OpenBSD have the necessary code to allow
Kerberos authentication. The next step is to provide
authentication for network protocols. The rlogin,
rsh, and telnet programs have been modi�ed to use
Kerberos. In addition to that, they can use the ses-
sion key, obtained in the authentication phase, to
encrypt the data-stream for privacy. Another very
practical use is in \kx" - a protocol to authenticate
and forward X11 connections in a secure way. Other
programs using Kerberos for authentication include
cvs, sudo, and xlock. Kerberos authentication is also
used in AFS.

One of our future goals is to allow kerberized ap-
plications to use IPsec services when possible, thus
avoiding double-encryption (and consequently de-
graded performance). Furthermore, we intend to

integrate the Kerberos 5 clone being developed at
KTH as soon as it is stable, especially since Ker-
beros IV only supports DES [26] encryption.

2.4 S/Key

S/Key [11, 10] is a one-time password system used
for authentication. It provides protection against
replay attacks where a third party captured a pass-
word, e.g., by means of network sni�ng, and tries
to reuse it in a new authentication session.
S/Key uses a user supplied secret pass-phrase

which is processed by a one-way function to gener-
ate a sequence of one-time passwords. In OpenBSD
the one-way function can be chosen from a variety
of computationally non-invertible hash functions like
MD5 [34] or SHA1 [28], available in libc. S/Key is
still useful when other cryptographic protocols are
not available, or their implementations are not fully
trusted, e.g., when using a conference terminal room
to login to a home machine.

3 Pseudo Random Number Genera-

tors

A Pseudo Random Number Generator (PRNG)
provides applications with a stream of numbers
which have certain important properties for system
security:

� It should be impossible for an outsider to pre-
dict the output of the random number generator
even with knowledge of previous output.

� The generated numbers should not have repeat-
ing patterns which means the PRNG should
have a very long cycle length.

� A PRNG is normally just an algorithm where
the same initial starting values will yield the
same sequence of outputs.

Some applications have criteria which a�ect the
type of PRNG which is needed. For instance, later
on we will discuss IP datagram IDs and DNS [30]
query-IDs, both of these issues have qualities which
make it extremely desirable to have a PRNG which
makes e�orts to avoid emitting repetitions (thus rul-
ing out use of a true-random source).
Many other operating systems also have random

number device drivers and other related mecha-
nisms, but largely make no use of them. Some such
systems even provide such support only as optional



device drivers, therefore discouraging use (i.e., re-
liance). OpenBSD deviates by actually using these
mechanisms in numerous ways. A few major inter-
faces or techniques are used:

� /dev/?random and similar kernel interfaces

� arc4random(3) in libc

� non-repeating PRNG

Each of these, and their uses in OpenBSD, will be
covered in the following sections.

3.1 Kernel Randomness Pool

Computers are (generally) deterministic devices
making it very hard to produce real random num-
bers. The PRNGs we use in OpenBSD do not gen-
erate random numbers themselves. Rather, they ex-
pand the randomness they are given as input. For-
tunately, a multi-user operating system has many
external events from which it can derive some ran-
domness. In OpenBSD the kernel collects measure-
ments from various devices such as the inter-keypress
timing from terminals, the arrival time of network
packets, and the �nishing time of disk requests. The
randomness from these sources is mixed into the ker-
nel's entropy pool. When a userland program re-
quests random data from the kernel, an MD5 hash
is calculated over the whole entropy pool, \folded"
in half by XOR-ing the upper and lower word of the
MD5 output, and returned. The user can choose the
quality of the generated random numbers by reading
output from the di�erent /dev/?random devices.

3.2 arc4random(3)

The arc4random(3) interface, available in the
OpenBSD libc, makes use of the kernel random-
ness pool, described in the previous section, for
seeding the keystream generator employed by the
ARC4 cipher (a cipher equivalent to RSADSI's
RC4). The interface provides support for applica-
tions to \add" randomness to the pool maintained
by arc4random(3). This interface is intended as a
drop-in replacement for the traditional Unix ran-
dom(3) interface, for those applications that need
higher-quality random numbers.

3.3 Non-repeating Random Numbers

In OpenBSD, we designed a non-repeating
pseudo-random number generator that was very fast
and did not require additional resources.

For 16-bit non-repeating numbers, we used a
prime 214 < p < 215 and g a randomly chosen gen-
erator for Zp. Being a generator, g has the property
that any value 0 < x < p can be generated as x = gy

(mod p), for some value y.
We then pick random a, b and m with 214 < m <

215 so that

f(n) � a � f(n� 1) + b (mod m)

becomes a linear congruential generator (LCG).
We then determine the actual ID as

ID(n) = w � (gf(n) mod p);

where w is a random seed. After the linear con-
gruential generator has been exhausted, the most
signi�cant bit in ID(n) is toggled and all parame-
ters g, a, b, m, and w from above are chosen anew.
Because the linear congruential generator does not
repeat itself and a new number space is chosen af-
ter reinitialization, the generated IDs do not repeat
themselves. The PRNG is typically seeded with ma-
terial from the kernel randomness pool.

3.3.1 Randomness Used Inside the Kernel

� Dynamic sin port allocation in bind(2).

When an AF INET socket is bound to a speci�c
port number using the bind(2) system call, the
process can choose the speci�c port, or elect
that the system choose. Normal UNIX behavior
resulted in the system allocating port numbers
starting at 1024 and incrementing. Our new
code chooses a random port, in the range 1024
to 49151.

A similar issue existed with reserved port cre-
ation, using the bindresvport(3) and rresv-
port(3) library routines, which are supposed to
pick a free port in the reserved range (typically
between 600 and 1023). The old behavior was
to allocate decreasing port numbers starting at
1023. The old code for these library routines
e�ected this downward search using successive
calls to bind(2); we have replaced this with code
using a newer kernel interface which is much
more e�cient and chooses a random port num-
ber within the reserved range.

There are a number of poorly designed protocols
(e.g., rsh, ftp) which are a�ected by predictable
port allocation; we believe that our approach is
making it harder for attackers to gain an edge.

� Process PIDs.



char buf[20];

sprintf(buf, "/tmp/foo-%d", getpid());

(void) mkdir(buf, 0600);

Figure 3: The Wrong Way To Generate A

\Random" Directory

Programmers often use this value as if it is ran-
dom, possibly because of the compellingly at-
tractive argument that \pid numbers are e�ec-
tively random on a busy enough system." Code
like \srandom(getpid())" is quite common, as is
code similar to that shown in �gure 3.

In a normal system the attacker will have a very
easy time predicting the PID and thus the obvi-
ous race attack is trivial. The race is as follows:
the attacker creates the directory �rst, choos-
ing the mode and ownership; subsequently it is
possible to look at and replace �les in the direc-
tory.

In OpenBSD, we use randomized PIDs, with a
couple of obvious exceptions, e.g., init(8).

� RPC transaction IDs (XID).

Sun Microsystems Remote Procedure Call
(RPC) messages contain a Transaction Identi-
�er (XID) which matches a sent query against
its received reply. In most RPC systems, the
XID of the �rst message a process transmits will
be initialized using the code shown in �gure 4.

Subsequently, the XID for each packet is sim-
ply incremented from this. Previously we men-
tioned that a local user might be able to guess
what kind of range the next PID on the sys-
tem might fall into; here we see that an outside
attacker might also be able to determine this
information. Our new code uses arc4random()
to initialize the XID, and also avoids using two
identical numbers consecutively.

� NFS RPC transaction IDs (XID).

The NFS protocol uses RPC packets for com-
munication. The RPC XID issue also applied
to the NFS code we encountered, and we now
use the same mechanism for NFS XIDs.

� Inode generation numbers.

The fsirand(8) program makes use of
arc4random(3) to generate random inode

numbers for �lesystem objects (�les, direc-
tories, etc.). This increases the security of

struct timeval now;

gettimeofday(&now);

call_msg.rm_xid = getpid() ^ now.tv_sec ^

now.tv_usec;

Figure 4: Typical RPC Initialization Code

NFS-exported �lesystems by making it di�cult
for an attacker to guess �lehandles (which are
partially derived from inode numbers).

� IP datagram IDs.

Each IP packet contains a 16-bit identi�er
which is used, if the packet has been frag-
mented, for correctly performing reassembly at
the �nal destination. Previously, this identi-
�er simply incremented every time a new packet
was sent out. By looking at the identi�er in a
sequence of packets, an outsider can determine
how busy the target machine is. Another is-
sue was avoiding disclosure of information when
using IPsec in tunneling mode, as per section
2.2.2. A naive implementation might create a
new IP header with an ID one more than the
ID in the existing IP header. This could lead to
known-plaintext attacks [4] against IPsec.

To avoid these problems, we use the non-
repeating PRNG described in section 3.3.

� Randomness added to the TCP ISS value for
protection against spoo�ng attacks.

Inside the kernel, a 32-bit variable called tcp iss
declares the Initial Send Sequence Number
(ISS) to use on the next TCP [32] session.
The predictability of TCP ISS values has been
known to be a security problem for many years
[25]. Typical systems added either 32K, 64K,
or 128K to that value at various di�erent times.
Instead, our new algorithm adds a �xed amount
plus a random amount, signi�cantly decreasing
the chances of an attacker guessing the value
and thus being able to spoof connection con-
tents.

� Random data-block padding for cryptographic
transforms, as in RFC1827 IPsec ESP [2].

3.3.2 Randomness Used in Userland Li-

braries

� DNS query IDs typically start at 1 and incre-
ment for each subsequent query. An attacker



can cause a DNS lookup, e.g., by telneting to
the target host, and spoof the reply, since the
content of the query and the ID are known or
easily predictable. Since host authentication is
still in wide-spread use, this is a serious secu-
rity vulnerability present in virtually all sys-
tems. To avoid this issue, we have modi�ed our
in-tree copy of bind(8) and our libc resolver to
make use of the non-repeating PRNG.

� arc4random(3) seeding, as mentioned in section
3.2.

� Stronger temporary names.

Processes typically create temporary �les by
generating a random �lename via mktemp(3)
and then opening that �le in the /tmp di-
rectory. A more secure way for doing so is
through mkstemp(3), which generates the �le-
name and opens the �le in one atomic opera-
tion, thus eliminating the potential for races.
Both functions, which reside in libc, make use
of arc4random(3) to generate the random �le-
names, making it much harder for an attacker
to guess the names in advance.

� Generate salts for the various password algo-
rithms. For some more details, see section 4.1.

3.3.3 Randomness Used in Userland Pro-

grams

� For generating fake S/Key challenges.

One problem with most versions of RFC1938-
based one time password (OTP) systems is that
it is often possible to use them to determine
whether or not a user has an account on a ma-
chine. The most trivial example of this is sys-
tems that provide a di�erent prompt if the user
has an entry in the OTP database. However,
even for systems that always provide an OTP
prompt, the prompt itself is rarely convincing
and can be trivially identi�ed as a fake. To ad-
dress this problem, the OTP code in OpenBSD
generates a consistent, credible challenge for
non-existent users and users without an entry
in the OTP database. It does so by generating
the prompt based on the hostname and a hash
of the username and the contents of a �le gen-
erated from the kernel random pool. This �le
is usually created at install time and provides a
constant source of random data. Thus, all three
components of the challenge are constant, but
only the hostname and username are known to
the attacker.

� isakmpd and photurisd use the kernel random-
ness pool for generating IKE \exchange identi-
�ers" (i.e., protocol cookies and message IDs),
random Di�e-Hellman [7] values, and random
nonces.

� Certain games make use of the arc4random(3)
interface for higher quality random numbers.

4 Secure Storage

One of the areas of least development in OpenBSD
has been that of secure storage. While a number of
utilities (e.g., vi(1), ed(1), bdes(1), etc.) directly
support encryption services, our goal is to provide
this service as transparently as possible to users.
Ideally, we would like a layer either over or under
the current native �lesystem that would provide safe
storage services.
As an interim solution, CFS [5] is included in the

OpenBSD ports system and can be readily used.
However, it does not provide the level of trans-
parency we would like, and its performance is well
below what we consider acceptable for general use.
Clearly, more work is needed in this area.
Another issue related to secure storage is that

of secure logging. Logs (and especially security-
related logs) are extremely important in determin-
ing whether a system is under attack or has been
compromised. The current logging facility, syslog,
does not provide any facilities for detecting log-
tampering, other than the option to send log mes-
sages to another host's syslogd. We are currently
porting the ssyslog package [37] and are hoping to
seamlessly replace the currently-used syslogd.

The remainder of this section briey covers our
bcrypt, approach to protecting user passwords, de-
veloped inside OpenBSD.

4.1 Bcrypt

Increasing computational power makes the use of
cryptography to further system security more fea-
sible and allows for more tuneable security param-
eters such as public key length. However, one se-
curity parameter - the length and entropy of user-
chosen passwords - does not scale at all with comput-
ing power. Many systems still require user-chosen
secret passwords which are hashed to keep them
secret. When the UNIX password hash crypt(3)
was introduced in 1976, it could not hash more
than four passwords per second. With increasingly
more powerful attackers it is common to compute



more than 200,000 password hashes per second. In
OpenBSD we use the bcrypt algorithm to make the
cost of password hashing parameterizable. Its de-
sign makes it hard to optimize bcrypt's execution
speed or use commodity hardware instead of soft-
ware. bcrypt uses a 128-bit salt and encrypts a 192-
bit magic value. It takes advantage of the fact that
the Blow�sh algorithm (used in the core of bcrypt
for password hashing) needs a fairly expensive key
setup, thus considerably slowing down dictionary-
based attacks. bcrypt uses the arc4random(3) in-
terface for password salt-generation. A comparison
between this approach and the mechanism used in
certain other Unix systems for generating salts has
shown that while arc4random(3) behaved extremely
close to the statistical theoretical expectations; in
contrast, other systems produced large numbers of
collisions, making dictionary attacks faster.
A special con�guration �le, passwd.conf(5), is

used to determine which type of password scheme
is used for a given user or group. It is possible to
use di�erent password schemes for local or YP pass-
words. For bcrypt, the number of rounds is also in-
cluded. This facilitates adapting the password veri�-
cation time to increasing processor speed. Currently,
the default number of rounds for a normal user is 26,
and 28 for \root." bcrypt is used in OpenBSD as the
default password scheme since version 2.1. For more
details, see [33].

5 Conclusion

In this paper, we gave an overview of the cryp-
tography used in OpenBSD. We presented the sup-
ported network security mechanisms, with particu-
lar emphasis on IP security. We then discussed the
various uses of randomness throughout the system.
Finally, we briey covered our plans for future work
in the area of secure storage.
A lot of work remains to be done. In the short

term, we need to complete the remaining parts of
those mechanisms still under development, keeping
in mind of course that security (and standards) is
a moving target, and constant maintenance and up-
dating will be needed. Beyond that, integration with
existing and new utilities is a major item in our
agenda. Finally, we are considering new mechanisms
that address di�erent problems, e.g., untrusted-code
containment.
It is important to note that all the mechanisms

described in this paper are currently in use, solving
real problems. We hope that this paper will encour-
age others to add these or similar mechanisms in

their systems.

6 Acknowledgments

We would like to thank Hugh Graham, Todd
Miller, and Chris Turan who provided comments
(and sometimes text) in earlier versions of this pa-
per. We would also like to thank all the OpenBSD
developers for the work they contribute to the
project, and our users for their continuing support.

7 Availability

All the software described in the paper is available
through the OpenBSD web page at

http://www.openbsd.org/

8 Disclaimer

OpenBSD is based in Calgary, Canada. All indi-
viduals doing cryptography-related work do so out-
side countries that have limiting laws.

References

[1] R. Atkinson. IP Authentication Header. RFC 1826,
August 1995.

[2] R. Atkinson. IP Encapsulating Security Payload.
RFC 1827, August 1995.

[3] R. Atkinson. Security Architecture for the Internet
Protocol. RFC 1825, August 1995.

[4] S. Bellovin. Probable Plaintext Cryptanalysis of the
IP Security Protocols. In Proceedings of the Sympo-
sium on Network and Distributed System Security,
pages 155{160, February 1997.

[5] M. Blaze. A Cryptographic File System for Unix.
In Proc. of the 1st ACM Conference on Computer
and Communications Security, November 1993.

[6] T. Dierks and C. Allen. The TLS protocol ver-
sion 1.0. Request for Comments (Proposed Stan-
dard) 2246, Internet Engineering Task Force, Jan-
uary 1999.

[7] W. Di�e and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, IT{22(6):644{654, Nov 1976.

[8] W. Di�e, P.C. van Oorschot, and M.J. Wiener.
Authentication and Authenticated Key Exchanges.
Designs, Codes and Cryptography, 2:107{125, 1992.



[9] D. Eastlake, 3rd, and C. Kaufman. Domain name
system security extensions. Request for Comments
(Proposed Standard) 2065, Internet Engineering
Task Force, January 1997.

[10] N. Haller. The S/KEY one-time password system.
Request for Comments (Informational) 1760, Inter-
net Engineering Task Force, February 1995.

[11] Neil M. Haller. the s/key one-time password system.
In Proceedings of the ISOC Symposium on Network
and Distributed System Security, 1994.

[12] D. Harkins and D. Carrel. The internet key ex-
change (IKE). Request for Comments (Proposed
Standard) 2409, Internet Engineering Task Force,
November 1998.

[13] P. Karn and W. Simpson. Photuris: Session-key
management protocol. Request for Comments (Ex-
perimental) 2522, Internet Engineering Task Force,
March 1999.

[14] S. Kent and R. Atkinson. IP authentication header.
Request for Comments (Proposed Standard) 2402,
Internet Engineering Task Force, November 1998.

[15] S. Kent and R. Atkinson. IP encapsulating security
payload (ESP). Request for Comments (Proposed
Standard) 2406, Internet Engineering Task Force,
November 1998.

[16] S. Kent and R. Atkinson. Security architecture for
the internet protocol. Request for Comments (Pro-
posed Standard) 2401, Internet Engineering Task
Force, November 1998.

[17] A. Keromytis and N. Provos. The use of HMAC-
RIPEMD-160-96 within ESP and AH. Internet
Draft, Internet Engineering Task Force, February
1999. Work in progress.

[18] A. D. Keromytis, J. Ioannidis, and J. M. Smith.
Implementing IPsec. In Proceedings of Global Inter-
net (GlobeCom) '97, pages 1948 { 1952, November
1997.

[19] RSA Laboratories. PKCS #1: RSA Encryption
Standard, version 1.5 edition, 1993. November.

[20] C. Madson and R. Glenn. The use of HMAC-
MD5-96 within ESP and AH. Request for Com-
ments (Proposed Standard) 2403, Internet Engi-
neering Task Force, November 1998.

[21] C. Madson and R. Glenn. The use of HMAC-
SHA-1-96 within ESP and AH. Request for Com-
ments (Proposed Standard) 2404, Internet Engi-
neering Task Force, November 1998.

[22] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet security association and key
management protocol (ISAKMP). Request for
Comments (Proposed Standard) 2408, Internet En-
gineering Task Force, November 1998.

[23] D. McDonald, C. Metz, and B. Phan. PF KEY Key
Management API, Version 2. Request for Com-
ments (Informational) 2367, Internet Engineering
Task Force, July 1998.

[24] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.
Saltzer. Kerberos authentication and authorization
system. Technical report, MIT, December 1987.

[25] R. T. Morris. A Weakness in the 4.2BSD Unix
TCP/IP Software. Computing Science Technical
Report 117, AT&T Bell Laboratories, February
1985.

[26] Data Encryption Standard, January 1977.

[27] Digital Signature Standard, May 1994.

[28] Secure Hash Standard, April 1995. Also known as:
59 Fed Reg 35317 (1994).

[29] D. Piper. The internet IP security domain of in-
terpretation for ISAKMP. Request for Comments
(Proposed Standard) 2407, Internet Engineering
Task Force, November 1998.

[30] J. Postel. Domain name system structure and del-
egation. Request for Comments (Informational)
1591, Internet Engineering Task Force, March 1994.

[31] Jon Postel. Internet Protocol. Internet RFC 791,
1981.

[32] Jon Postel. Transmission Control Protocol. Internet
RFC 793, 1981.

[33] Niels Provos and David Mazi�eres. A Future-
Adaptable Password Scheme. In Proceedings of the
Annual USENIX Technical Conference, 1999.

[34] R. Rivest. The MD5 Message-Digest Algorithm.
Internet RFC 1321, April 1992.

[35] Bruce Schneier. Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blow�sh). In Fast
Software Encryption, Cambridge Security Work-
shop Proceedings, pages 191{204. Springer-Verlag,
December 1993.

[36] William Simpson. IP in IP Tunneling. Internet RFC
1853, October 1995.

[37] Secure Syslog. http://www.core-sdi.com/Core-SDI
/english/slogging/ssyslog.html.

[38] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH protocol architecture. Internet
Draft, Internet Engineering Task Force, February
1999. Work in progress.


