
The SwitchWare Active Network Implementation�

D. Scott Alexander, Michael W. Hicks, Pankaj Kakkar,

Angelos D. Keromytis, Marianne Shaw, Jonathan T. Moore,

Carl A. Gunter, Trevor Jim,

Scott M. Nettles, and Jonathan M. Smith

University of Pennsylvania

August 10, 1998

1 Introduction

This is an overview of work on the SwitchWare active
network project, which began two years ago based
on ideas about how to improve the exibility of net-
works by making the network programmable. The
original ideas for active networks as a whole and some
comparative analysis of possible architectures are sur-
veyed in [33]. A variety of technology trends in com-
puting power, communication speeds, programming
languages, and security have made it worthwhile to
investigate network programming interfaces that al-
low code to be downloaded into routers within the
network and invoked by the packets passing through
them. At the current time there are at least a
dozen AN prototype architectures under development
[34, 8, 22, 2, 19, 35], a few of which have released soft-
ware.

Our SwitchWare perspective was �rst described
in [16] and has been considerably re�ned as we gained
deeper insight into active networking. It was the �rst
active network prototype to be publically released,
and is implemented largely in the Caml [12] dialect
of the ML programming language, using the OCaml
implementation. We were instigated to use Caml be-
cause of its success in several other distributed com-
puting and networking projects such as Ensemble [15]
and MMM [26]. We found ourselves able to achieve

�Contact author: Carl A. Gunter, gunter@cis.upenn.edu

good results quickly because of the exible and rigor-
ous ML programming model, and the quality of the
OCaml compiler has allowed us to consistently out-
perform AN prototypes based on Java.

This note provides a very brief overview of the
SwitchWare architecture, then provides short expla-
nations of the major parts of SwitchWare. These
include: a dynamic loader, which serves as the ba-
sis of code mobility in SwitchWare; an active bridge,
which is able to download code that allows it to adapt
to changes in standards for network topology; the
PLANet active internet, in which all packets contain
programs written in PLAN, the Packet Language for
Active Networks; the SANE system for secure active
network elements; and the QCM (Query Certi�cate
Manager) system, which provides a security policy
language and certi�cate retrieval mechanism.

Most of the SwitchWare source code and papers
can be found on the WWW home page for the
project:
www.cis.upenn.edu/~switchware. SwitchWare has
produced a number of libraries that may be of general
interest, such as those for dynamic loading of Caml
programs and for cryptography. These are available
for downloading along with the applications them-
selves.

1



2 The SwitchWare Architec-

ture

SwitchWare is based on a three-level architecture
which is described in detail in [2]. The three layers
are depicted in Figure 1.

Network

Active

Packets

Active
Router

Infrastructure

Active
Extensions

Figure 1: SwitchWare Layers

At the top level, there are lightweight mobile pro-
grams that �t within a packet, which we call active
packets. We have experimented with both PLAN
(Packet Language for Active Networks) and Caml as
the language at the active packet level. PLAN is a
scripting language that was developed at UPenn. A
complete PLAN programmust �t within each packet.
However, using a fragmentation/reassembly service,
larger programs can be transfered in small pieces, re-
constructed at the destination, and subsequently be
executed. Programs in active packets are very limited
in capabilities, since they are untrusted and often do
not (or cannot) make use of security services.

The second layer is called the active extension
layer. This layer consists of Caml programs that can
be dynamically loaded (over the network, or from the
local disk on an on-demand basis) into SwitchWare
active nodes. The extensions are used to provide ser-
vices, which can be invoked by active packets. A
number of services are also o�ered by the underlying
runtime system.

The lowest layer of the SwitchWare architecture
is the infrastructure which supports resource alloca-
tion and enforces the rules for downloading switchlets
(active packets and extensions). This is implemented
by a modi�ed version of the OCaml runtime system

running on top of an operating system such as Linux.

Using this basic architecture, we've built a num-
ber of standalone systems and system components.
PLANet is our active internet in which all packets
contain PLAN programs while basic network services
(such as routing, address resolution, etc.) are im-
plemented as active extensions. PLANet may be
run directly on top of Ethernet without the aid of
IP [32]. Alien is node architecture which di�ers from
PLANet in that active packets consist of Caml byte-
codes. As our �rst experiment with Alien we built
an Active Bridge [4] to experiment with node exten-
sibility.

We have also developed a security-services infras-
tructure, called SANE [3] which has been nearly
fully implemented in the context of Alien, and
partially implemented in the context of PLANet.
Among the services o�ered by SANE are secure
bootstrapping [5, 6], cryptographic primitives (dig-
ital signatures [29], hashes [30], secret key encryp-
tion [28]), key establishment and principal 1 authen-
tication [14], a safe distributed naming scheme, and
policy-controlled resource and access control through
language restrictions and use of KeyNote [9] and Pol-
icyMaker [10, 11] policy certi�cates.

We have also implemented a second security in-
frastructure called QCM. Like KeyNote and Poli-
cyMaker, QCM provides a general language for ex-
pressing security policies and a veri�er for checking
that policies are satis�ed. In addition, QCM can au-
tomatically retrieve certi�cates from the network us-
ing PLAN packets. QCM thus supports transparent,
application-independent, distributed security policies
in the active network.

3 alien: An Active Loader for

Caml

Alien is a program that we have built to allow load-
ing Caml programs into a running Active Network
system and to provide the support necessary for the
loaded switchlets to access (carefully limited) parts

1By principal we mean the holder of a public key, in some
public key cryptosystem, such as DSA[29].



of the system. In essence, it consists of Objective
Caml's Dynlink library wrapped by the additional
functions needed by our system. Logically, alien is
divided into three pieces: the Active Loader, the Core
Switchlet, and a set of libraries.
The Active Loader is the small, �xed part of the

system which takes control initially and coordinates
the activities of alien and its loaded switchlets. Its
core is a loop which reads from its standard input
looking for directives which will load a new switch-
let from disk or execute a `well-known' function from
a previously loaded switchlet. A load request calls
Dynlink which evaluates the byte-code �le. In a man-
ner similar to MMM, we provide a function which
can be called to arrange to add a mapping between
a string and a function into a hash table. When a
request to execute a function is entered, we use this
table to map from the name of the requested func-
tion to an actual function which is then executed.
The loading and executing functionality along with a
function that we added which will dynamically load
from memory instead of from disk are then available
to functions within the Core Switchlet and the Active
Loader once the system is running.
The Core Switchlet is the set of modules we have

found necessary to support our Active Networks ap-
plications. It is privileged which means that it can
access any facility provided by Objective Caml. It
provides an interface which borrows heavily from
the structure of MMM: we use module thinning to
control the functionality available to loaded switch-
lets. (We discuss the safety aspects in Section 6
when we describe SANE.) We have �ve major mod-
ules in this part of the system: Safestd, Safeunix,
Log, Unixnet, and Safethread. The Safe� modules
are slightly modi�ed versions of those provided with
MMM. In particular, we go further in excising I/O
functions since we do not have a user to whom a dia-
log box can be presented. The Log module is a sim-
ple facility that allows a switchlet to log a message.
Where, how often, and by what method such mes-
sages are logged in is deliberately unspeci�ed. While
debugging, we log all messages to a �le. Obviously,
an attacker could use such a mechanism to �ll the
disk, so we anticipate a production version which
limits the number of messages per unit time by ei-

ther discarding messages or delaying the thread that
is overproducing messages.

The Unixnet module is our facility for accessing the
network. To provide the access we required, we had
to make some small changes to the Objective Caml
runtime system. The �rst of these changes allows
access to raw Ethernet frames as provided through
the (idiosyncratic) Linux socket interface. This is
critical for those times that we do not use IP as an
infrastructure. We also provide some additions that
allow changing characteristics of network interfaces
(e.g., putting an interface into promiscuous mode so
that it will receive all packets on the Ethernet instead
of only those addressed to it).

The libraries are the least well-de�ned portion of
the system because they are unprivileged and thus
completely loadable. Some of the pieces that we
have built range from a (skeletal) IP implementation
to implementations of some cryptographic routines.
Switchlets that are considered libraries di�er from
other switchlets only in the intent of the program-
mer. For more details on the architecture, see [1].

Objective Caml provided several characteristics
that were needed for alien: the ability to load code
dynamically, strong typing, module thinning, and
a homogeneous representation for switchlets moving
between di�erent machine architectures. Dynamic
loading and architecture independence simplify the
implementation of any Active Network system dra-
matically; given the time constraints for implement-
ing alien, they were required. The importance of
strong typing has been widely discussed generally;
we particularly were interested in using it qto pre-
vent unwanted interactions between switchlets and
to ease the distributed debugging problem. Finally,
module thinning allows us to control what pieces of
the Objective Caml runtime system are accessible to
an anonymous switchlet. With the advent of SANE,
we now have switchlets which are not (necessarily)
anonymous and intend to explore extending our cur-
rent two level privilege scheme into a scheme where
the privileges available to a switchlet vary based on
the credentials presented by that switchlet.

Some performance issues are discussed in section
5.



4 An Active Bridge

The Active Bridge [4] is an experiment with active
extensions that provides a bridge for 100 Mbps Ether-
net LANs and an automated mechanism for installing
new software versions with minimal disruption. We
build the bridge in three layers, echoing the descrip-
tion of a bridge in [31]. These layers are a bu�ered
repeater, a learning algorithm, and a spanning tree
algorithm. See [31] for more details on each of these.

To show the utility of building the bridge piecewise,
we demonstrate the ability to transition between in-
compatible protocols, in this case spanning tree algo-
rithms (STAs). We have implemented two di�erent
STAs, an old and a new. With the old STA run-
ning, we load (but do not start) the new STA. We
also load a control switchlet. The control switchlet
watches for a speci�c signal, `suspends' the old STA,
collects information from it, and starts the new STA.
The network is given time to restabilize and then the
information collected is used to check if the new STA
is running properly. If not, the control switchlet kills
it, restarts the old switchlet, and signals the control
switchlets running on the other nodes of the network
that they should also transition back to the old (sta-
ble) STA.

With the Active Bridge, we have done a set of ex-
periments to understand both the costs of loadable
modules and the cost of our demultiplexing architec-
ture. To test the �rst case, we have a version of the
Active Loader which supports only the Bridge. In
this case, we see a throughput as measured by ttcp

of 61 Mbps. Our second experiment used the general
Active Loader and gave a throughput of 54 Mbps. Of
the per-packet processing time, approximately 70 �s
is calling recvfrom(), 70 �s is processing in the
Bridge, and 30-40 �s is calling sendto().

5 PLANet

PLANet is our active internet in which all packets
contain programs written in PLAN, the Packet Lan-
guage for Active Networks. A PLAN program can
conceptually be viewed as a replacement for a packet
header. If one thinks of IP headers as programs and

Packet level Service level
Language PLAN exible
Code location in packet on node
Expressibility limited general purpose
Authentication? no when needed

Table 1: Comparison of the Packet and Service levels

IP routers as interpreters of these programs, then one
can see that IP de�nes a very restricted program-
ming language. Replacing the header with a small
program seems feasible, but once one has gone that
far there seems to be less need to distinguish between
the header and the payload, since the program can
contain the payload as a datastructure. Thus PLAN
allows a packet to simply contain a program to be
evaluated by a PLAN active node; the evaluation
may cause the packet to be routed or delivered, or
may have some more interesting e�ect, like changing
the router behavior or creating new packets. With
this increased exibility comes increased risk since a
packet that could replicate or execute itself without
bound could swamp the network. Privacy is clearly
also a concern, depending on what the more general
kinds of packets are allowed to do.

We designed PLAN to be essentially a scripting
language which can be viewed as being a modest ex-
tension of a remote evaluation mechanism. What
PLAN `scripts' together are calls to more general-
purpose, router-resident service routines. In PLAN,
calls to service routines resemble normal function
calls except that service routine names are resolved
dynamically, at PLAN evaluation time. In PLANet,
service routines are implemented as active extensions
written in Caml. This two-level architecture of PLAN
and service routines is summarized in Table 1, which
is drawn from [22]. This combination provides a pow-
erful programming style which we describe in [21] and
have illustrated in PLANet. PLAN provides very e�-
cient, light-weight mobile agents that invoke services
to achieve exible network utilization that can be cus-
tomized to the needs of particular users or applica-
tions.

PLANet [23] is our implementation of an internet-



work in which PLAN forms the interoperability layer
over various (virtual) link layers (currently we sup-
port Ethernet and IP). In order to implement the
PLAN semantics of remote evaluation, we provide
active extension-based implementations of various in-
ternetworking tasks, such as routing, address resolu-
tion, name resolution, etc. Each PLANet active node
has the following components:
(1) packet processing core
(2) network functions
(3) the PLAN interpreter
(4) library of service routines

Packet Processing Core

The operation of a PLANet node is depicted in Fig-
ure 2, which is drawn from [23]. In its idle state, an

Routing Extension

PLAN interpreter

PLAN program(s) PLAN layer

Link layer

Extensions
Active

EthernetIP

Figure 2: PLANet node architecture

active node has one thread running for each network
interface type, waiting for input on that interface2.
Once a packet arrives, the thread makes an upcall to
the appropriate handler to process the packet (cur-
rently, all packets that are not PLAN packets are
discarded). This code is a slight extension to the
Unixnet module described earlier (which makes use
of a queue rather than an upcall). If the packet
has reached its evaluation destination, it is passed

2We would rather have one thread per interface, as opposed
to interface-type, but our use of the Linux special socket for
receiving Ethernet packets would make that ine�cient.

to the PLAN interpreter to be evaluated; otherwise,
it is routed onwards. Evaluation consists of unmar-
shalling the packet into a structured type followed
by the actual interpretation. During interpretation,
PLAN programs may make service calls, perform re-
mote evaluations, recursively call the PLAN inter-
preter, etc. If a remote evaluation occurs, a PLAN
packet is constructed, the next hop determined, and
is �nally sent out the appropriate network interface.
Once packet processing completes, the upcall returns,
and the network-interface thread continues to look for
new packets.

This architecture arose after some analysis which
shed light on our misimpressions of the costs of cer-
tain OCaml operations. For instance, we initially
thought that thread overheads would be fairly low,
since the byte-code interpreter employs a user-level
thread scheduler. For this reason, our initial packet-
processing approach forked a thread for every new
packet that arrived, rather than performing an up-
call. This approach is preferable in that the amount
of time required to execute a PLAN program is
not tightly bounded, which means that in our cur-
rent implementation we could lose packets because
the network interfaces are not being serviced fast
enough. However, we found this potential problem
to be far less than excessive overhead of context-
switching among many (> 20) threads; on our 300
mHz Pentium-II's, context switching typically took
about 110 �s. Since a context-switch is favored to
occur whenever I/O is ready, this meant that the in-
terpretation threads rarely got the CPU under high
packet loads: the majority of the CPU time was spent
reading in packets and context-switching.

We also found garbage collector overhead to be
more than we'd suspected. The fact is that the
OCaml collector is very good, but that any additional
overhead seriously impacts performance { each 130 or
so �s spent out of the packet processing loop meant
a lost packet. We managed to cut GC cost dramat-
ically by not incurring additional copies where pos-
sible, meaning that we would GC less often. Caml's
mutable strings were helpful in this regard.



Network Functions

In order to maintain the routing tables needed to im-
plement remote evaluation, we needed to implement
a routing protocol. We based our implementation on
RIP [20] with the exception that rather than using
special packet formats to advertise routes, we used
PLAN programs. Thus, the majority of the routing
protocol implementation was done in Caml.

The routing software updates its routing table
based on two forms of events: received advertise-
ments and entry expirations. To handle the expi-
rations, we simply wrote a thread which wakes up
periodically and times out expired entries. Another
thread broadcasts the node's route advertisements
periodically: either every 30 seconds, or when some
other change occurs in the table (such as a route times
our, or a new route is received). Here it would have
been useful to have a version of wait which could
timeout, as is supplied with Java. As it was, we had
to simulate this by forking a timing thread (which as
we have indicated is expensive).

The implementation of the routing protocol shares
common themes with other table-based network ser-
vices we've written, such as address resolution, frag-
mentation/reassembly, reliable transport, etc. In all
of these, a maintenance thread is used to time out
expired entries, while the contents of the table are
modi�ed via service calls from PLAN programs. In
the address resolution protocol, a similar technique
for broadcasting remote evaluations is used.

The PLAN Interpreter

The PLAN interpreter itself is fairly simple { it was
written in only a few days with the help of OCaml's
ocamllex and ocamlyacc. Programs are compiled
at the source into abstract syntax trees which are
marshalled and transmitted to the evaluation desti-
nation. This approach improves both space and time
e�ciency on the routers. Type-checking is done dy-
namically during interpretation (since the AST is al-
ready type-tagged). This was originally to simplify
our implementation, but there is some belief that the
overall packet processing time might improved this
way.

The interpreter is augmented by a hierarchical
symbol table which maps identi�ers to either PLAN
or service functions. The topmost portion of the ta-
ble is implemented as a Hashtable and maps to ser-
vice routines (stored as �rst-class functions). As the
PLAN program evaluates, association lists are used
to perform local bindings.
Perhaps the biggest payo� to using Caml was in the

development of the interpreter. The implementation
was greatly simpli�ed through the use of structured
types (for the AST) and higher-order functions (to
store the service routines). A subsequent develop-
ment of the interpreter in Java took 3 weeks as op-
posed to 3 days, and required about 3 times as much
code.

Service Routine Libraries

In order to augment the limited abilities of PLAN
programs, we needed to provide a fairly rich library
of service routines, all of which were implemented in
Caml. Typically this was a straightforward a�air in
which we wrapped an Caml function with a wrapper
that allowed it to recieve and return PLAN argu-
ments. Some of the services that we provide include
packet interrogation functions (get the source of the
current packet), network service functions (show me
the routing table, get the name of the current host),
cryptographic functions for security (as described in
Section 6), and a service loading new services. In
many cases, OCaml libraries existed to allow easy
implementation of these services. The Unix module
was especially useful. In the case no library function
was available, we found the interface to C to be very
convenient. In fact, it was these features that made
programming PLANet possible { while ML provides
many language level advantages, it would have been
of no use to us without adequate libraries and a solid
foreign-function interface.

6 SANE

The SANE3 architecture aims to provide security
services and guarantees to mobile programs and

3SANE stands for Secure Active Network Environment.



switches in an active network. It achieves this
through use of a number of di�erent mechanisms,
cryptographic and otherwise.
Arguably the most important Caml features used

in SANE are strong typing and module thinning.
Since switchlets run in the same address space, imple-
mented as threads, we need to guarantee process iso-
lation through mechanisms other than virtual mem-
ory protection. Caml's strong typing and dynamic
checks (such as array bound checking), and the lack
of arbitrary memory pointers, allow us to make that
guarantee.
Module thinning allows us to control access to

parts of the runtime system based on privileges.
Those privileges take the form of KeyNote [9] and
PolicyMaker [10] assertions (roughly corresponding
to certi�cates). Privileges are checked once when the
Caml switchlets are linked into the system (to de-
termine whether a switchlet has the right to access
a facility), and then as necessary (e.g., when more
memory is needed, or after a certain number of CPU
cycles has been consumed, etc.).
Caml was very useful in developing the key man-

agement protocol used in SANE in a very short
time. Implementations of similar (albeit somewhat
more featureful) protocols [27, 24] in the past have
taken considerably more time to develop and de-
bug, and required about one order of magnitude
more C code. For comparison purposes, develop-
ing a roughly equivalent in capabilities version of the
ISAKMP/Oakley protocol (the key management pro-
tocol in IPsec [7]) took a full month, and resulted in
about 10000 lines of C code; developing the SANE
key management protocol took half as long, with
the code being less than 1000 lines of code. Per-
formance was not perceptibly impacted either; the
ISAKMP protocol performed a Di�e-Hellman [13]
key agreement and a number of cryptographic hash
operations for authentication, in an average of 5 sec-
onds. The SANE protocol performed the same Di�e-
Hellman operation and two additional DSA [29] sig-
natures/veri�cations (but less cryptographic hash op-
erations) in 4.8 seconds.
We also implemented and measured the perfor-

mance of a number of cryptographic primitives. In
particular, we implemented the DSA digital signature

algorithm, the DES [28] encryption algorithm, and
the SHA1 [30] cryptographic hash. The tables 2, 3,
and 4 show some performance measurements among

Caml Int32 bytecode 86.4 s
native 61.9 s

Alpha ints bytecode 36.0 s
native 2.4 s

C 0.3 s

Table 2: Time to SHA-1 hash 4MB of data

Caml Alpha ints bytecode 99.3 s
native 16.7 s

C 1.0 s

Table 3: Time to DES encrypt 4MB of data

sign Caml Int32 bytecode 27.0 ms
native 12.9 ms

Alpha ints bytecode 20.9 ms
native 11.8 ms

C 2.8 ms
verify Caml Int32 bytecode 41.4 ms

native 22.1 ms
Alpha ints bytecode 35.1 ms

native 20.6 ms
C 5.0 ms

Table 4: Digital Signature Timings

the bytecode and native Caml versions and some fully
optimized C implementations. The measurements
were taken on an Alpha 21164SX at 533MHz. The
SHA1 and DSA algorithms were implemented using
both the Int32 package (which allows the same code
to run on both Alpha and Pentium platforms) and
the native Alpha integers.
In practice, to use the dynamic loader in Caml,

we must use the bytecode interpreter. This imposes
a very high overhead on authenticating packets, an
operation which relies on the SHA-1 hash function,



so we have resorted to a C implementation. While
this greatly speeds the authentication, it may inter-
fere with the Caml runtime thread scheduler. Specif-
ically, when the end of a quantum occurs, if the cur-
rent thread is executing C code, no call to the sched-
uler occurs and the thread will get an extra quantum.
Furthermore, when using a C code implementation,
we cannot catch type-system errors internal to that
code, nor take advantage of the garbage collection
mechanism available in the runtime. For these rea-
sons, we tried to limit the amount of non-Caml code
in our system. Thus we opted to keep the Caml DSA
and DES implementations. In the future, we intend
to investigate the feasibility of statically integrating
Caml native code into the bytecode interpreter in the
same way that we currently are able to integrate C
code. This would allow us to regain the advantages
of strong types and garbage collection with a more
acceptable overhead. We also believe that in the fu-
ture, `Just-In-Time' compilation techniques can nar-
row this gap in performance.

7 QCM

Any large scale security architecture that uses certi�-
cates to provide security in a distributed system will
need some automated support for moving certi�cates
around in the network. This is especially likely for
active networks, where authorization for the instal-
lation and use of services is likely to involve many
administrative domains and users. We have devel-
oped a system called a Query Certi�cate Manager
(QCM) which supports automated retrieval of cer-
ti�cates in a distributed context, driven by a QCM
policy veri�er. Like other veri�ers, QCM takes a pol-
icy and certi�cates supplied by a requester and de-
termines whether the policy is satis�ed. However,
if the policy is not satis�ed, QCM can examine the
policy to decide what certi�cates might help satisfy
it and obtain them from remote servers on behalf of
the requester. The QCM policy language is based on
set comprehensions and standard distributed query
optimizations are used to minimize network tra�c.
Retrieval is secured through the use of digital signa-
tures, which are checked automatically. A novelty

of QCM is its ability to combine certi�cates that it
retrieves with certi�cates supplied by a client; sup-
plied certi�cates are used to short-circuit remote re-
trieval or deal with QCM when the veri�er has its
automatic retrieval ability `turned o�'. A network of
QCM nodes can contain a mixture of servers that do
online and o�ine signing of the cert�cates they pro-
vide. QCM is designed to deal with failure on a `best
e�ort' model: a subset of the desired certi�cates are
delivered if some servers are not responding.
We have implemented several variants of QCM; the

primary implementation uses IP sockets to send mes-
sages between QCM servers. Another variant runs in
a single-machine mode, simulating distributed com-
puting using threads. This variant is useful for pro-
totyping, debugging, and simulating QCM computa-
tions conveniently. A third variant of QCM was built
to run on top of the PLANet. In this implementa-
tion QCM carries out network communication using
PLAN active packets. We have used this system to
implement a security infrastructure for access control
of PLANet switchlets. We have also implemented a
graphical user interface for instigating and observing
QCM computations. The GUI allows QCM nodes
to be registered and report events; these are used to
create a `movie' tracing the QCM queries. The GUI
was built using CamlTk, Caml's interface to the Tk
graphics toolkit. Since both Caml and Tk run on a
number of systems, the QCM system and its GUI are
portable; we have it running under Windows and sev-
eral variants of Unix. This wouldn't be possible if we
were forced to use an OS-speci�c graphics package.
The QCM implementation is essentially an inter-

preter, so as you might expect, Caml's data types,
pattern-matching, and automatic memory manage-
ment allowed us to quickly build the system with
relatively little code. Although it o�ers both ver-
i�cation and certi�cate retrieval, QCM is about the
same size as other systems that only o�er veri�cation.
The IP, PLANet, and simulated variants of QCM
combined take up about 9,000 lines of Caml; this
includes approximately 2,000 lines for basic crypto-
graphic algorithms (SHA, DSA, and key generation).
The GUI adds another 2,500 lines of code. In com-
parison, the SDSI 2.0 distribution [25] is about 13,000
lines of C and Perl, not including basic cryptographic



algorithms or GUI support.
Thread management in Caml, which caused many

performance problems for PLANet, is also crucial
for QCM. QCM must be multi-threaded: in pro-
cessing a request the veri�er might have to make
time-consuming remote queries for certi�cates. Other
threads shouldn't be stopped while QCM waits for
a reply. Lowering the thread overhead will be im-
portant since we are competing with veri�cation and
retrieval systems written in C.
Work on QCM is described in [17, 18].

8 Summary

Caml has been an e�ective tool for producing reli-
able and e�cient networking software quickly. We
have mentioned a number of areas where we think
improvements in Caml would translate directly into
beni�ts for our software, and we hope that some of
these opportunities can be pursued in the future. De-
velopments like the Ensemble group enabling Caml
bytecode to run in the Windows NT kernel may well
yield other substantial gains.

9 Acknowledgements

We would like to acknowledge William Arbaugh, who
was a co-designer of the SANE system, and architect
of our secure bootstrapping method.

References

[1] D. Scott Alexander. Alien: A Generalized Comput-
ing Model of Active Networks. PhD thesis, University
of Pennsylvania, to appear December 1998.

[2] D. Scott Alexander, William A. Arbaugh, Michael
Hicks, Pankaj Kakkar, Angelos Keromytis,
Jonathan T. Moore, Carl A. Gunter, Scott M.
Nettles, and Jonathan M. Smith. The switchware
active network architecture. IEEE Network Maga-
zine, 1998. To appear in the special issue on Active
and Controllable Networks.

[3] D. Scott Alexander, William A. Arbaugh, Angelos D.
Keromyts, and Jonathan M. Smith. A secure ac-
tive network environment architecture: Realization

in SwitchWare. IEEE Network Magazine, 1998. To
appear in the special issue on Active and Control-
lable Networks.

[4] D. Scott Alexander, Marianne Shaw, Scott M. Net-
tles, and Jonathan M. Smith. Active Bridging.
In Proceedings, 1997 SIGCOMM Conference. ACM,
1997.

[5] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A Secure and Reliable Boot-
strap Architecture. In Proceedings 1997 IEEE Sym-
posium on Security and Privacy, pages 65{71, May
1997.

[6] William A. Arbaugh, Angelos D. Keromytis, David
J. Farbe r, and Jonathan M. Smith. Automated Re-
covery in a Secure Bootstrap Process. In To appear
in Network and Distributed System Security Sympo-
sium, pages 155{167. Internet Society, March 1998.

[7] R. Atkinson. Security architecture for the internet
protocol. RFC 1825, August 1995.

[8] Smart packets. http://www.net-tech.bbn.com/

smtpkts/ smtpkts-index.html.

[9] M. Blaze, J. Feigenbaum, , J. Ioannidis, and A.D.
Keromytis. The keynote trust management system.
Work in Progress, June 1998.

[10] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc. of the 17th Symposium
on Security and Privacy, pages 164{173. IEEE Com-
puter Society Press, 1996.

[11] M. Blaze, J. Feigenbaum, and M. Strauss. Compli-
ance checking in the policymaker trust management
system. In Proc. of the Financial Cryptography '98
Conference. Springer, 1998.

[12] Caml home page. http://pauillac.inria.fr/

caml/ index- eng.html.

[13] W. Di�e and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, IT{22(6):644{654, Nov 1976.

[14] W. Di�e, P.C. van Oorschot, and M.J. Wiener. Au-
thentication and Authenticated Key Exchanges. De-
signs, Codes and Cryptography, 2:107{125, 1992.

[15] Ensemble home page.
http://simon.cs.cornell.edu/Info

/Projects/Ensemble.

[16] Dave J. Farber, David C. Feldmeier, Carl A.
Gunter, Scott M. Nettles, William D. Sincoskie, and



Jonathan M. Smith. Switchware: Accelerating net-
work evolution with a software switch for active net-
works.

[17] Carl A. Gunter and Trevor Jim. Design of an
application-level security infrastructure. In Cather-
ine Meadows and Hilarie Orman, editors, DIMACS
Workshop on Design and Formal Veri�cation of Se-
curity Protocols, September, 1997.

[18] Carl A. Gunter and Trevor Jim. Policy directed cer-
ti�cate retrieval, July 1998.

[19] John Hartman, Udi Manber, Larry Peterson,
and Todd Proebsting. Liquid software: A new
paradigm for networked systems. Technical Re-
port TR 96-11, University of Arizona, June 1996.
http://www.cs.arizona.edu/liquid/.

[20] C. Hedrick. Routing information protocol. Technical
report, RFC 1058, June 1988.

[21] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore,
Carl A. Gunter, and Scott Nettles. Network pro-
gramming with PLAN. In Workshop on Internet
Programming Languages. Springer, 1998. To appear.

[22] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore,
Carl A. Gunter, and Scott Nettles. PLAN: A packet
language for active networks. In Proceedings of the
International Conference on Functional Program-
ming Languages. ACM, 1998.

[23] Michael Hicks, Jonathan T. Moore, Scott Alexander,
Carl A. Gunter, and Scott Nettles. Planet: A active
network testbed. 1998.

[24] P. Karn and W. A. Simpson. The Photuris Session
Key Management Protocol. Work in Progress.

[25] Butler Lampson and Ron Rivest. SDSI|a sim-
ple distributed security infrastructure. http://

theory.lcs.mit.edu/~cis/sdsi.html.

[26] Fran�cois Louaix. A web navigator with applets in
Caml. In Fifth WWW Conference, 1996.

[27] Douglas Maughan, Mark Schertler, Mark Schneider,
and Je� Turner. Internet Security Association and
Key Management Protocol (ISAKMP). Internet{
draft, IPSEC Working Group, June 1996.

[28] Data Encryption Standard. Technical Report FIPS-
46, U.S. Department of Commerce, January 1977.

[29] Digital Signature Standard. Technical Report FIPS-
186, U.S. Department of Commerce, May 1994.

[30] Secure Hash Standard. Technical Report FIPS-180-
1, U.S. Department of Commerce, April 1995. Also
known as: 59 Fed Reg 35317 (1994).

[31] Radia Perlman. Interconnections: Bridges and
Routers. Addison-Wesley, 1992.

[32] Jon Postel. INTERNET protocol. Internet RFC 791,
1981.

[33] David L. Tennenhouse, Jonathan M. Smith,
W. David Sincoskie, David J. Wetherall, and Gary J.
Minden. A Survey of Active Network Research.
IEEE Communications Magazine, 35(1):80{86, Jan-
uary 1997.

[34] David J. Wetherall, John Guttag, and David L. Ten-
nenhouse. ANTS: A Toolkit for Building and Dy-
namically Deploying Network Protocols. In IEEE
OPENARCH, April 1998.

[35] Y. Yemini and S. daSilva. Towards programmable
networks. In IFIP/IEEE International Workshop
on Distributed Systems: Operations and Manage-
ment, October 1996. http://www.cs.columbia.edu-
/~dasilva/netscript.html.


