
EasyVPN: IPsec Remote Access Made Easy

Mark C. Benvenuto, Angelos D. Keromytis
{markb,angelos}@cs.columbia.edu

Computer Science Department, Columbia University, USA

Abstract

Telecommuting and access over a Wireless LAN require
strong security at the network level. Although IPsec is
well-suited for this task, it is difficult to configure and
operate a large number of clients. To address this prob-
lem, we leverage the almost universal deployment and
use of web browsers capable of SSL/TLS connections to
web servers and the familiarity of users with such an in-
terface. We use this mechanism to create configurations
and certificates that will be downloaded to the user’s ma-
chine and be used by a program to perform all configu-
ration on the user’s system.

Our system builds on common security protocols and
standards such as IKE, X.509, and SSL/TLS to pro-
vide users with a secure-access environment that “just
works.” One of the main goals of the system is ease of
use both for the users and the system administrators that
maintain the infrastructure. We describe our implemen-
tation that uses Linux FreeS/WAN and Windows to show
the practicality of the approach.

1 Introduction/Purpose

The growth of untrusted networks, e.g., the Internet and
Wireless LANs, has created a problem for system ad-
ministrators who need to provide secure access to corpo-
rate LANs for their users. While these problems super-
ficially seem different, they can both be solved by using
a virtual private network.

Native support for IPsec [12] in most operating systems
allows most groups to create their own IPsec VPN so-
lutions. Operating systems such as Windows 2000/XP,
Linux, OpenBSD, and others support the ability to be
IPsec clients and servers. While these systems are pow-
erful and flexible, the configuration is often confusing
and time-consuming. A tool that simplifies configura-
tion is particularly important, because it allows system

administrators to enforce policy in a transparent fashion,
and it prevents user misconfiguration problems which
are time consuming and expensive to fix.

The proposed framework is designed to eliminate those
problems while remaining adaptable to the requirements
of different sites. Because of the interoperability of
IPsec, the server platform can be any platform, such
as Linux or OpenBSD. The client platform chosen was
Windows 2000/XP, because it has native IPsec support
unlike Windows 9x/ME, and because it is the most com-
mon commodity OS platform. Our tool, like most VPN
systems, models a remote access server (RAS) that is
both simple and familiar to most users.

2 Background

Using IPsec for Remote Access is becoming important,
but requires additional extensions and application sup-
port to become truly useful. IPsec is an appealing tech-
nology for VPN, remote access, and other uses because
it is a proven standard that can be used as a trusted com-
ponent in a larger security infrastructure.

The concluded IETF Working Group for IP Security
Remote Access (IPSRA) [7] investigated the applica-
tion of IPsec for Remote Access. This resulted in the
PIC [14] proposal based on ISAKMP, and the (now ex-
pired) GetCert work [3]. The IPSRA working group
also produced a set of requirements for IPsec Remote
Access [16] to serve as guidelines for any standard.
These guidelines divide remote access into a few cate-
gories, according to requirements such as location and
level of security. This paper presents a system designed
to fulfill the requirements for the “Telecommuters (Di-
alup/DSL/Cablemodem)” scenario.

The proposed GetCert uses a similar design to this pa-
per, but it differs in that it uses a subset of the Simple
Certificate Enrollment Protocol (SCEP) [13] as the cer-



tificate protocol which has support for root certificate,
and CRL retrieval. Authentication is handled using a
RADIUS server over a HTTP/TLS connection. This au-
thentication scheme supports a variety of authentication
techniques, but the protocol has no support for exchang-
ing IPsec policy information with the client.

One early solution to the remote access problem was
Moat [4], which was created by AT&T Laboratories and
the FreeS/WAN project. Instead of requiring the client
machine to run VPN software, Moat is a VPN/NAT ap-
pliance that contains an x86 machine running Linux and
FreeS/WAN designed to provide a dedicated VPN to a
pre-configured corporate network. While it is a good
solution for telecommuters who always work from the
same place, it does not help in the “roaming salesman”
access scenario. Also, because of its dedicated hardware
and configuration, it is difficult to upgrade the software
or use at other locations.

Another way to create IPsec tunnels is by using DNS
KEY records such as the FreeS/WAN Opportunistic
Encryption (OE). This system will initiate IPsec con-
nections with a potential host that has KEY and TXT
records in its forward and reverse DNS zone files. This
system makes creating tunnels easy as the system will
make tunnels to any machine it can without any user in-
volvement after the initial setup. The difficulty with this
system is that it requires access to a forward domain to
initiate connections, and the reverse DNS for it to be able
to receive connections. These are steep initial setup re-
quirements for inexperienced users.

Every time a connection is made to a new machine, the
originator will have to do a reverse DNS lookup for the
destination host to determine if a new connection can be
made, a process that can be time consuming. Because of
the need for frequent DNS lookups, the documentation
recommends using a local caching DNS server for per-
formance reasons. Finally, it is difficult for the user to
determine which connections are protected without us-
ing FreeS/WAN status commands.

Wireless LANs (WLANs) have become increasingly
popular in the last few years. Developed by the IEEE
in standard 802.11, the WLANs have little security due
to weaknesses in the wireless encryption [18], and other
security features of the protocol. Because of the lack
of security at the link-level, application and/or network
level security protocols are used to address the problem,
such as SSH, SSL/TLS, and IPsec. WLAN also lacks
the benefits of some of the inherent physical security as-
sociated with wired networks since anyone in range of a
wireless Access Point can potentially sniff network traf-

fic or launch attacks.

One solution to the WLAN authentication problem was
developed by the NASA Advanced Supercomputing Di-
vision. The “Wireless Firewall Gateway” (WFG) [1]
serves the dual role of protecting the corporate LAN via
a firewall and providing network configuration to clients
via DHCP.

The WFG is an OpenBSD PC which runs a web-server
that authenticates users over HTTPS against a RADIUS
server with MD5 digest encryption, and then modifies
firewall rules to allow client machines through the fire-
wall. This machine relies on providing DHCP to the
wireless clients so that it can be notified as clients con-
nect and disconnect from the network. When a client
releases or loses its DHCP lease, the WFG machine will
remove the associated firewall rules. The system does
not provide any additional protections to the clients be-
cause it is designed to protect access to the corporate
network. WFG uses mutual authentication using an SSL
certificate signed by VeriSign so clients can be reason-
ably assured that they are connecting to the server.

The power of this system is the hierarchy of security lev-
els that are allowed. It is configured so that unauthen-
ticated clients can be given limited access to only use
email, VPN, and web access, while authenticated clients
are given full access. The authentication relies on a mod-
ified ISC DHCPv3 server that will automatically update
firewall rules as clients disconnect. One issue is that
there is a small window of time between when a client
that disconnects without properly notifying the DHCP
server, and the DHCP server terminating the lease. In
this window of time, it is possible for another client to
spoof the identity of the recently disconnected user, and
therefore gain authenticated access. Finally, this system
relies on the user to properly use the network connec-
tion, which does not always happen as users often will
use insecure protocols such as unencrypted email over
the unsecured wireless network. This system is similar
to the freely distributed NoCatAuth project from the No-
CatNet project (http://nocat.net/).

WAVElan SECurity using IPsec (WAVEsec) (http://
www.wavesec.org/) is a system designed to secure
WLAN traffic by creating IPsec tunnels to a gateway
on a local LAN. This system was designed for confer-
ences to provide encrypted connections over WLAN to
the public Internet. It does not authenticate users and re-
quires custom software to configure connections. It pro-
vides initial IPsec connection information over DHCP
packets such as the gateway IP. The server then sends its
public key to the DHCP client as part of a dynamic DNS



update request. Finally, the client creates the tunnel us-
ing the provided information, and the public key for the
gateway from a DNS KEY record.

This system requires modifications to both the DHCP
client and server to exchange configuration information
and keys. It is designed to make it easy to create tun-
nels without exchanging keys or configuration out-of-
band after the software is setup. It is designed to be
used by experienced Linux users since the client setup
requires installing custom scripts. Finally, this system
is designed to only provide secure unauthenticated con-
nections.

3 Problem

IPsec is a good solution for both remote access and wire-
less LAN access. Those two domains are similar enough
that a common solution is feasible, without introducing
undue complexity. This allows a system administrator to
use a common set of software and hardware to provide
IPsec for both sets of clients while being able to add ad-
ditional security features as needed in the form of IPsec
policies, firewalls, and DHCP servers, depending on the
domain.

IPsec will only be practically useful to users if they
can simply just use it without worrying about how it
works. Ideally, users will be presented with some lo-
gin screen where they will provide authentication in-
formation which is passed to an authentication server,
and then the client machine will create a tunnel with the
IPsec server. This ideal system will fit the two conflict-
ing goals of providing a secure connection, yet be easy
to use. The user should be confident that he is connect-
ing to the correct server without danger of man-in-the-
middle or impersonation attacks.

A current problem with IPsec is the many different im-
plementations which all implement a different set of fea-
tures for Internet Key Exchange (IKE) [11], and have
distinctly different ways of configuring them. Imple-
mentations support some or all of the following authenti-
cation methods: private shared key, RSA public/private
key, X.509, and manual keying. Many implement pri-
vate key exchange, but this can be difficult to manage
as the number of distinct users grows, difficult to work
with in dynamic environments, and requires out-of-band
cooperation from both client and server to setup. X.509
certificates solve many of these problems, but also re-
quire cooperation to configure.

The biggest problem in the configuration process is con-
figuring the correct set of certificates to use, especially
for someone who is not familiar with the details of X.509
certificates [2] and the intricacies of the different imple-
mentations. One of the authors spent many hours deal-
ing with certificate problems in order to make an IPsec
tunnel. There problems provided good evidence of the
problems people may have and motivation to solve them.
The complexity in the process can be eliminated with
a client-side tool that will do all the certificate config-
uration and additional sanity checking as needed. On
the server side, scripts can validate the setup with use-
ful and instructive error messages about incorrect cer-
tificates without requiring that the system administrator
become an IPsec expert to diagnose the logs. Such tools
will only check each system in isolation for configura-
tion problems but not large end-to-end problems such as
firewalls.

To verify the security of the network configuration, the
system administrator should use a tool such as IPSEC-
validate [17] or other verification approaches [5]. Ver-
ifying the actual configuration is an important part of
setting up an IPsec solution so users can correct security
lapses, and it prevents unwanted access to the corporate
network.

Other important features for system administrators in-
clude easy manageability, such as a system that will
warn users about expiring tickets and performance met-
rics so usage growth can be anticipated. SNMP is the tra-
ditional mechanism used to monitor systems and MIBS
for both IKE [6] and IPsec [8] [9] are in development.

4 Architecture

The system architecture, shown in Figure 1, is composed
of three systems: client, gateway, and VPN Server. In
our approach, we leverage the almost universal deploy-
ment and use of web browsers capable of SSL/TLS con-
nections to web servers, and the familiarity of users with
such an interface. We use this mechanism to create con-
figurations and certificates that will be downloaded to
the user’s machine. This information is used by a pro-
gram that will perform all IPsec configuration on the
user’s system using the server-provided configuration.
The client and servers do all authentication via X.509
certificates in both IKE and SSL/TLS.

The client is the IPsec client that will create a certifi-
cate with the gateway, retrieve IPsec tunnel configura-



Gateway

VPN Server

Client/EasyVPN

Certifcate Signing Request

Configuration Information and Signed Certificate

IKE & IPsec

Figure 1: System Architecture

tion information, and then create the IPsec tunnel with
the VPN Server. The client program will generate a cer-
tificate signing request (CSR) and private key. The client
chooses the gateway either by a hard-coded IP or host-
name, or via an SRV DNS record for the destination do-
main. An SSL/TLS connection is then made to the gate-
way machine that receives the user’s username, pass-
word, and CSR as part of a HTTP POST operation. The
client then receives the signed certificate back in a HTTP
response, with configuration information indicating var-
ious network parameters such as the tunnel destination
IP address and network mask. The client is responsible
for initializing the IPsec connection to the server with
these network parameters and the freshly-minted certifi-
cate.

There are two important details. First, the SSL/TLS con-
nection establishes the identity of the gateway server ei-
ther via the system certificate store in the case of Win-
dows or via an embedded certificate in the application.
If a system certificate store is used, then either a third-
party certificate authority such as VeriSign or a local cer-
tificate authority must sign the gateway certificate. In the
second case, either the user must configure the new CA
or the application can configure the CA for the user. If
the application needs to configure the certificate, then
the CA certificate needs to be embedded in the applica-
tion, which requires the user to be able to initially obtain
the client in a secure manner such as a floppy disk from
friends or via a trusted network before trying remote ac-
cess. Second, the configuration information is extensi-
ble. Currently, it is a simple text format, but other for-
mats can be used, such as XML. There are no restrictions
on the content of the policy passed to the client. Useful

information could be preferred ciphers, a message of the
day, or other additional parameters needed to configure
the tunnel. This allows the protocol to adapt to the needs
of the client/server configurations.

The gateway is running an HTTPS-enabled web server
that serves as a Certificate Authority. Its task is to pro-
duce X.509 certificates for use in user authentication
during IKE exchanges. The requests are received via
HTTP POST requests, which are then processed by a
CGI script to authenticate the user and sign the certifi-
cate after successful authentication. The user can be
authenticated in any appropriate manner such as Unix
PAM, or a RADIUS server.

The gateway also serves as a policy server such that it
provides configuration information for the client to use
to create the IPsec tunnel with the IPsec server. This
allows it to dynamically load-balance clients between
servers, favor certain users, or restrict users differently
according to predefined classes such as user groups or
location. While it is desirable to simply enforce these
policies only on the client side, because of the open na-
ture of the protocol, the policies need to be enforced on
the server side in the form of firewall rules, additional
X.509 certificate rules, etc.

The VPN Server is simply required to negotiate with
clients that present valid certificates signed by the CA.
Clients verify the server’s authenticity via a certificate
signed by the certificate authority. The VPN server also
authenticates the client in the same manner. This means
that the VPN server is not required to keep a list of
clients or exchange any state explicitly with the gateway.

This architecture is very powerful because neither the
gateway nor the VPN server need to keep state about
the allowed users. The VPN server will accept users
because their certificates are signed by the CA, and the
client accepts the server because its certificate is signed
by the same CA. The certificates can be used to imple-
ment policies that require state by treating it as a token.
Since the certificate is passed to the server for new con-
nections, digitally signed by the CA, and supports cus-
tom fields, it provides a secure extensible token to use
to exchange simple policy information. For instance, a
timeout for the IPsec connection can be implemented by
using a short lifetime for the certificate to force the VPN
server to deny the client connections after the timeout or
attempts by the client to re-key the connection.

This stateless interaction between the gateway and the
VPN server allows for multiple gateways and servers.
Since the gateway is simply an HTTPS server, the



servers can be load balanced with fail-over support us-
ing existing techniques to improve the reliability of the
system. For the VPN servers, the CGI script used to gen-
erate the policy can choose a VPN server for the client
to use from a collection of such servers. The criteria
for choosing the VPN server to use may be round robin,
smallest number of IPsec connections, network locality,
etc.

4.1 Application Models

There are two models for building the client. The client
can either be a separate application that resides on the
client machine or be a browser-based plug-in that in-
teracts with the system only when the user accesses a
specific page. Each model has specific advantages and
disadvantages, but only the application model is easily
adaptable to multiple operating systems. A common
problem to both models is developing new client soft-
ware. Since IPsec configuration is platform specific, de-
velopers are still faced with creating different solutions
for each platform. The IETF has started the process of
developing an API to solve this problem [15].

4.1.1 Standalone Application

The stand-alone application is the original design of the
application. The core requirements are to keep the bi-
nary size small and to minimize the installation com-
plexity. In our implementation, the size was kept to a
minimum by using only native Win32 API for all GUI,
cryptography, certificate and HTTPS tasks, instead of
external libraries or frameworks.

This approach has two advantages. First, the client re-
sides on the client machine, making it easy for the user
to access it without requiring a web browser. Second, the
application model is a portable concept that can apply to
other operating systems and user environments without
forcing the user to use a particular web browser.

There are also two disadvantages. First, in order to build
the first stage of trust, the client has to trust the CA
certificate used by the system which either needs to be
signed by a well-known CA so that the CA already ex-
ists in the system store or embedded so that the client
application can create the trust itself. If an embedded
certificate is used, then that means the client itself has to
be trusted beforehand. Second, updating the client be-
comes difficult since this requires special client support

to do automatic updates or user intervention to download
a new client.

4.1.2 Browser Plug-in

The browser-based plug-in is an extension of the stand-
alone application. It operates in a different way than the
stand-alone application, but must meet the same require-
ments.

The most important requirement for a browser plug-in
is what browser and operating system combination to
use. Two of the more popular browsers are Microsoft
Internet Explorer and Mozilla, which implement differ-
ent approaches for supporting plug-ins, each with differ-
ent limitations. Both support ActiveX components on
Windows that can be downloaded from the network and
installed by the browser. These ActiveX components
have full access to the operating system services after
the digital signature of the component is verified. On
other platforms, such as Linux, Mozilla is not a suitable
platform for this task. The only dynamic plug-in support
is through its JavaScript and XPCOM system. Unfortu-
nately, the system requires lower level access to system
functionality than provided by the Mozilla platform.

This approach has three advantages. First, updates are
easy as the client accesses the web site to get the client
each time. Second, the user is required to trust the web
site he is accessing and this trust has been setup out-of-
band via a third party CA or other arrangement. Third,
the plug-in can be more adaptable by simply trusting the
location of its download as a trusted source instead of
requiring hard-coded configuration parameters.

There are also two disadvantages. First, we require
the user to establish trust with the gateway web server,
which can be difficult to do correctly if the user mis-
configures their web browser to trust the wrong set of
certificates. This flexibility may be too much for system
administrators to give to users for fear of users incor-
rectly configuring their certificates, and therefore being
open to attacks from imposter servers. Second, the flexi-
bility required to support the plug-in approach is limited
to browsers on Windows because no other web browser
and operating system pair supports dynamic plug-ins
that can access systems services. This is also difficult
on multi-user operating systems because users usually
need an elevated level of access to be able to manipulate
the IPsec subsystem.



5 Implementation

The architecture is a framework in which any implemen-
tation can fit as long as it uses the correct set of proto-
cols. For instance, there are several operating systems
that support IPsec and IKE, and the choice may be made
simply because of familiarity or availability. The client,
on the other hand, depends on the individual user. For
our implementation, we used Linux with FreeS/WAN
on the server because of our familiarity with it and its
availability. For the client, we chose Windows 2000/XP
because of its support for IPsec and its popularity as a
client platform. We believe that the ability to support
such diverse platforms demonstrates the flexibility of the
architecture.

5.1 Client

This implementation supports any x86 system running
Windows 2000 SP2 or Windows XP. These clients sup-
port IPsec tunneling natively as opposed to the Windows
9x series. In order to configure the IPsec subsystem for
Windows, the user must either manipulate it with dialog
boxes and property pages via the Microsoft Management
Console (MMC) or with the Internet Protocol Security
Policies Tool (Ipsecpol.exe). There is no public API to
access the IPsec subsystem and so the only practical way
to configure IPsec is through the command line tool [10].

A unique advantage of using Windows as the client is
the centralized Certificate Store. The certificate store
can be accessed through MMC, and is used by both In-
ternet Explorer and the IPsec subsystem. This makes
it easy to manage certificates since there is one compre-
hensive place to establish and analyze trust relationships.
This was useful while developing the client because it
allowed flexibility in testing and made it easy to check
what the system trusted. Once a certificate is placed on
the certificate store, it can be accessed by the WinInet
API, Internet Explorer, and the IPsec subsystem.

5.2 Server

The IPsec server can be any system that supports IPsec
and has an IKE daemon capable of supporting X.509
authentication via a Certificate Authority certificate.
Systems that support this include Linux/FreeS/WAN,
OpenBSD, and {Net,Free}BSD with the Raccoon IKE
engine.

For our implementation, a Linux x86 Redhat 7.3 system
with FreeS/WAN and the FreeS/WAN X.509 patch was
used. To simplify the configuration, the gateway and
VPN server ran on the same machine. For the gateway
web server, we used Apache with the mod ssl module.
The Certificate Authority was a Perl script that manipu-
lated the certificates using OpenSSL.

6 Security

The security of this system depends on its design, its im-
plementation, and use. The design uses well-understood
protocols as building blocks with a minimal trust rela-
tionship between the various machines comprising the
framework. Each of the protocols has been evaluated for
several years, so their weaknesses are well-understood.
The implementation is built on proven system libraries.
Overall, the system is secure when used by intelligent
users.

SSLv3 and TLS have been resistant to many attacks and
there are several implementations such as OpenSSL, Mi-
crosoft WinInet API, etc. Its security relies on the user
being acquiring and using valid certificates.

X.509 has also not been successfully attacked, but its
security relies on the ability to establish trust and the
secrecy of the private keys. While it is recommended
that the Certificate Authority be kept separate from the
network, our system requires the CA to be connected.
The security risks involved can be mitigated by keeping
even the CA separate from the gateway, and by creating
a separate certificate hierarchy to handle certificates for
IPsec. For instance, the CA used to generate certificates
for the IPsec gateway and server should not be used to
sign the certificate for a company’s main web site. Either
a separate subtree or disjoint certification tree should be
used, instead of the normal CA tree.

Finally, IPsec is composed of the IPsec protocol, and
the key exchange. The IPsec protocol is built on simple
symmetric cipher and hash operations. While its security
is well understood, IKE is a complex protocol, whose
security properties are still not entirely understood. This
complexity also leads to large and bug-prone software
implementations, which introduce additional risks.

While the protocols can be shown to be secure against
cryptanalytic attacks, the system is still vulnerable to
problems created by careless users. For instance, by
allowing users’ computers access to the internal net-



work, we could allow worms to spread, or increase the
network’s exposure to attack. Many windows viruses
spread via HTTP (Code Red, Nimda) or SMB file shares
(Klez, BugBear). Also, the new tunnel is another poten-
tial liability, since it presents another computer which an
attacker can compromise and thereby access the corpo-
rate network.

7 Conclusions and Future Work

We presented a framework for providing strong security
at the network layer to telecommuters and Wireless LAN
users by using IPsec. Our contribution is in the ease of
use for end users and administrators, by using familiar
tools and interfaces (such as a web browser and SSL
authentication), which we use to automatically config-
ure the end-user’s system with the appropriate param-
eters. Our system thus removes a large impediment to
the use of secure protocols such as IPsec, which are oth-
erwise difficult to configure. The proposed architecture
can support any combination of server and client plat-
forms, and can be tailored to the specific needs of indi-
vidual sites and organizations.

There is more work to be done on implementing this
system for other operating systems. Also, the protocol
needs to be improved and formalized possibly by using
a language like XML. Finally, the system would be inte-
grated with a firewall and/or network appliance, to pro-
vide a turn-key solution for telecommuters and users of
wireless LANs.

Author Information

Mark Benvenuto received his B.S. in Computer Sci-
ence from Columbia University (2003). While a stu-
dent, he worked part-time as a junior system adminis-
trator for the Computer Science Department. He cur-
rently works as a Software Design Engineer in the SQL
Server Engine group at Microsoft. He can be reached at
markb@cs.columbia.edu.

Angelos Keromytis has been an Assistant Professor in
the Computer Science Department at Columbia Univer-
sity since 2001. He received his M.Sc. and Ph.D. in
Computer Science from the University of Pennsylva-
nia (2001), and his B.Sc. from the University of Crete,
Greece (1996). His research revolves around end-point

security mechanisms, cryptographic protocols, and op-
erating system support for security. He can be reached
at angelos@cs.columbia.edu.

Acknowledgements

This work was supported in part by NSF under Contract
CCR-TC-0208972.

References

[1] N. Boscia, D. Shaw “Wireless Firewall Gateway
White Paper”, NASA Advanced Supercom-
puting Division, White Paper, http://www.
nas.nasa.gov/Groups/Networks/
Projects/Wireless/index.html, March
2003.

[2] CCITT. X.509: The Directory Authentication
Framework. International Telecommunications
Union, 1989.

[3] “Client Certificate and Key Retrieval
for IKE”, IETF draft, work in progress,
http://www.ietf.org/proceedings/
01mar/I-D/ipsra-getcert-00.txt

[4] John S. Denker, Steven M. Bellovin, Hugh Daniel,
Nancy L. Mintz, Tom Killian, Mark Plotnick.
“Moat: a Virtual Private Network Appliance and
Services Platform” Proceedings of LISA, pp. 251-
260, 1999.

[5] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong,
“IPsec/VPN Security Policy: Correctness, Con-
flict Detection and Resolution”, IEEE Policy 2001
Workshop, Jan. 2001.

[6] “Internet Key Exchange (IKE) Monitoring
MIB”, IETF draft, work in progress, http:
//www.ietf.org/internet-drafts/
draft-ietf-ipsec-ike-monitor-mib-04.
txt

[7] IP Security Remote Access (ipsra) Working
Group, http://www.ietf.org/html.
charters/OLD/ipsra-charter.html

[8] “IPsec Flow Monitoring MIB”, IETF
draft, work in progress, http://www.
ietf.org/internet-drafts/



draft-ietf-ipsec-flow-monitoring-mib-02.
txt

[9] “IPsec Monitoring MIB”, IETF draft,
work in progress, http://www.
ietf.org/internet-drafts/
draft-ietf-ipsec-monitor-mib-06.
txt

[10] “KB265112: IPsec and L2TP Implementation in
Windows 2000.” Microsoft Knowledge Base. June
2003.

[11] S. Kent and R. Atkinson. “ The Internet Key Ex-
change (IKE).” RFC (Proposed Standard) 2409,
IETF, November 1998.

[12] S. Kent and R. Atkinson. “Security Architecture
for the Internet Protocol.” RFC (Proposed Stan-
dard) 2401, IETF, November 1998.

[13] X. Liu, C. Madsen, D. McDrew, A. Nourse. “Cisco
Systems’ Simple Certificate Enrollment Protocol
(SCEP)”, IETF draft, work in progress, http:
//www.ietf.org/internet-drafts/
draft-nourse-scep-06.txt, May 2002.

[14] “PIC, A Pre-IKE Credential Provisioning Pro-
tocol”, IETF draft, work in progress, http:
//www.ietf.org/internet-drafts/
draft-ietf-ipsra-pic-06.txt

[15] “Requirements for an IPsec API”,
IETF draft, work in progress, http:
//www.ietf.org/internet-drafts/
draft-ietf-ipsp-ipsec-apireq-00.
txt

[16] “RFC 3457: Requirements for IPsec Remote
Access Scenarios”http://www.ietf.org/
rfc/rfc3457.txt

[17] Sailer, R., et al. “IPSECvalidate - A Tool to Vali-
date IPsec Configurations”. Proceedings of LISA,
2001.

[18] Adam Stubblefield, John Ioannidis, Aviel D. Ru-
bin. “Using the Fluhrer, Mantin, and Shamir At-
tack to Break WEP.” Network and Distributed Sys-
tem Security Symposium Conference Proceedings,
2002.


