
Accelerating Application-Level Security Protocols
Matthew Burnside

Department of Computer Science
Columbia University
mb@cs.columbia.edu

Angelos D. Keromytis
Computer Science Department

Columbia University
angelos@cs.columbia.edu

Abstract— We present a minimal extension to the BSD socket
layer that can improve the performance of application-level
security protocols, such as SSH or SSL/TLS, by 10%, when
hardware cryptographic accelerators are available in the sys-
tem. Applications specify what cryptographic transforms must
be applied to incoming and outgoing data frames, and such
processing is applied by the operating system itself (exploiting
hardware accelerators) when the application sends or receives
data. Under this scheme, we can reduce the number of system
calls and context switches by 50%, and the amount of data
copying by 66%. We describe our prototype implementation for
the OpenBSD system and quantify its performance implications.
We conclude with a discussion of further possible performance
improvements that our approach enables.

Keywords: Cryptography, SSL/TLS, operating system ker-
nel, sockets, zero-copy.

I. INTRODUCTION

Cryptographic protocols are a fundamental building block
for securing distributed systems. With the increasing need to
secure Internet traffic, a variety of such protocols has emerged
and is seeing increasing use. SSL/TLS [1], SSH, and IPsec [2]
are increasingly in use, as recent measurements indicate [3].

To further facilitate wide-spread adoption of such protocols,
it is important to address specific concerns users of this
technology have raised. These concerns can be distinguished
in two broad categories: management and performance. While
the former is an extremely important issue, in this paper
we focus on performance. In particular, we examine two of
the most widely-used network security protocols: TLS and
SSH. More generally, we are interested in accelerating security
protocols that are implemented as user-level processes, in
contrast to protocols implemented inside the operating system
kernel (e.g., IPsec). Previous work in accelerating IPsec [4] is
not applicable here because of the different set of constraints.

Other work has investigated performance improvements of
TLS [5], [6], [7], [8] and offered recommendations on how
to improve the performance of the session initialization phase
of the protocol, which contains several heavy-weight public
key operations. Similar improvements can be applied to the
key exchange phase of SSH. Furthermore, recognizing the
increasing importance of TLS, several hardware vendors have
produced cryptographic accelerator cards that can be used both
for the public-key (e.g., RSA) and the data-encryption (using
symmetric-key ciphers such as DES, RC4, etc.). operations.
The OpenBSD Cryptographic Framework (OCF) [9] offers

a general interface to such accelerators that can be used to
improve the overall performance of such protocols.

 PCI bus)

Network Cryptography

Data copying
(memory and

Fig. 1. Cost breakdown for bulk-data transfer using TLS and a
hardware accelerator.

[4] investigated the overheads of the data-transfer com-
ponent of TLS and determined that such acceleration can
greatly improve the throughput of bulk data-transfer over the
software-only case by up to 100% when such computationally-
expensive algorithms as 3DES are used, and even up to
400% with slow CPUs. In [9], we determined that the key
limiting factors to faster operation are the bandwidths of
the PCI and the memory bus. Our cost-breakdown for the
various costs, summarized in Figure 1, shows that over 20%
of the processing time is spent copying data over these two
buses. Such findings have been reported in the past for other
systems [10], [11], [12], [13], and are by no means limited to
cryptography or network I/O.

The solution to these problems is conceptually straight-
forward: integrate network and cryptographic processing, as
shown in Figure 2, such that there are no diversions from
the regular data path. Another proposal, when a separate
accelerator card is used (as is most common in practice), is to
minimize data copying between the user-level application (e.g.,
the web server) and the kernel. Zero-copy I/O, whereby the
kernel uses the MMU to re-map user-process memory pages in
the kernel address space and vice versa, thus greatly reducing
data copying and memory-bus contention, can be used to
implement the latter. Unfortunately, implementing zero-copy
I/O has great implications for all of the operating system and
it requires extensive modifications to applications to achieve
the best performance. Furthermore, zero-copy by itself cannot
be used to take advantage of integrated network/crypto cards.



Kernel

Web Server

1

2

(onboard crypto)
NIC

User memory

Kernel memory

stack
Network

Fig. 2. Integrated NIC / cryptographic accelerator card.

We present a simple extension to the OpenBSD kernel
that immediately improves the performance of TLS and other
similar protocols by 10%, compared to the case of using the
OCF directly from the web server. The necessary changes to
the operating system kernel consisted of less than 80 lines of C

code. Our scheme is to instrument the socket processing code
to perform the needed cryptographic processing as data are
sent to or received from the network. Applications simply in-
struct the kernel when to start and stop applying the transforms
and provide the necessary keying material. Our extension can
also be used in the presence of integrated network/crypto
cards, by attaching a description of the necessary transforms
to the mbuf using the OpenBSD mbuf tags. Although our
implementation was done for OpenBSD, it is easily portable
to other operating systems, especially those that implement
System V STREAMS functionality (e.g., Solaris).

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of related work. Section III
presents the OpenBSD Cryptographic Framework (OCF) and
Section IV describes our extensions to the OpenBSD kernel
and gives a preliminary evaluation of its performance. We
discuss potential improvements and future work in Section V
and conclude in Section VI.

II. RELATED WORK

There has been a considerable amount of work on the
enhancement of system performance through the addition of
cryptographic hardware [14]. This early work was charac-
terized by its focus on the hardware accelerator rather than
its implications for overall system performance. [15] began
examining cryptographic subsystem issues in the context of
securing high-speed networks, and observed that the bus-
attached cards would be limited by bus-sharing with a network
adapter on systems with a single I/O bus. A second issue
pointed out in that time frame [16] was the cost of system
calls, and a third [10], [11], [12], [13] the cost of buffer
copying. These issues are still with us, and continue to require
aggressive design to reduce their impacts.

As interest in security is currently in an upswing, recent

work has been examining the overall performance impact of
security technologies in real systems. Work by Coarfa, et al.
[6] has focused on the impact of hardware accelerators in the
context of TLS web servers using a trace-based methodology,
and concludes that there is some opportunity for acceleration,
but given the choice one might prefer a second processor as it
also assists with the substantial (and perhaps dominant) non-
cryptographic overheads. [4] provides some basic performance
characterizations of IPsec as well as other network security
protocols, and the impact acceleration has on throughput.
The authors conclude that the relative cost of high-grade
cryptography is low enough that it should be the default
configuration.

[5] describes a technique for improving SSL handshake
performance. It demonstrates that it is faster to do n SSL
handshakes as a batch than n handshakes individually, based
on a technique for batching RSA decryptions. It also shows a
speedup factor of 2.5 for n = 4. It is important to note that
this speedup only applies to the handshake portion of the SSL
connection, not to the data transport itself. By caching session
keys, the authors of [7] demonstrate a reduction in download
time of secure web documents of between 15% and 50%.
Again, this technique only accelerates the handshake portion
of the SSL connection, without reducing the data transport
time.

III. THE OPENBSD CRYPTOGRAPHIC FRAMEWORK

The OpenBSD cryptographic framework (OCF) [9] is an
asynchronous service virtualization layer inside the kernel, that
provides uniform access to cryptographic hardware accelerator
cards. It supports two classes of algorithms: symmetric (e.g.,
DES, AES, MD5) and asymmetric (e.g., RSA). Symmetric-
algorithm (e.g., DES, AES, MD5) operations are built around
the concept of the session, so as to take advantage of session-
caching features available in many hardware accelerators.
Asymmetric algorithms are implemented as individual oper-
ations.

To use the OCF, other kernel subsystems (consumers)
first create a session with the OCF specifying the algo-
rithm(s) to use, mode of operation (e.g., CBC, HMAC, etc.),
cryptographic keys, initialization vectors. The OCF supports
algorithm-chaining, i.e., performing encryption and integrity-
protection in one operation. Such combined operations are
heavily used by almost all data-transfer security protocols,
such as TLS, SSH, and IPsec. The OCF determines which
card to use based on its capabilities, and creates the relevant
state by invoking the driver.

For the actual encryption/decryption, consumers specify the
data to be processed, a callback function, and various offsets
that indicate where the encryption should start and end, where
the message authentication code (MAC) should be placed,
where the initialization vector can be found (if it is already
present on the buffer) or where on the output buffer it should
be written (if at all). Once the request is processed, the callback
routine is called by the kernel. If an error has occurred, the
callback routine is responsible for any corrective action. When



multiple producers implement the same algorithms, the OCF
can load-balance sessions across them.

A. The /dev/crypto Interface

To allow user-level processes to take advantage of hard-
ware acceleration facilities, a /dev/crypto device driver
abstracts all the OCF functionality and provides a command
set that can be used by OpenSSL (or other software using the
/dev/crypto interface directly). This interface is based on
ioctl() calls. Similar to the OCF itself, this uses a session-
based model, since the general case assumes that keys will
be reused for a sequence of operations. After opening the
/dev/crypto device and gaining a file descriptor fd, the
caller requests that a new session be created for a certain
cryptographic operation, and specifies all related parameters
(e.g., keys). A single session can support both a cipher and a
MAC.

Once a session is established, blocks can be encrypted or
decrypted using the CIOCCRYPT ioctl(). Each time this is
used, the caller can specify a new IV or MAC information
that they wish to fold into the operation. Input and output
buffers are specified via separate pointers, but they can point
to the same buffer for in-place encryption. Naturally, the data
size provided by the caller must be rounded to the default
block size of the algorithm being used. A data size limit of
262,140 bytes exists at the moment, to hide a similar limit
found in some chipsets. The userland data blocks are copied
into memory allocated inside the kernel. The OCF is then
called to perform the operation using the initialization infor-
mation stored in the application’s /dev/crypto session.
If the operation succeeds, the results are copied back to the
application buffers. The cost of these copies is high for large
block sizes.

3

1

2 6

5

User memory

Kernel memory

Web Server

OCF stack
Network

card
Crypto NIC

4

Kernel

Fig. 3. Encrypting and transferring a buffer.

IV. OUR APPROACH

In network-security protocols that use cryptographic accel-
erators, the user-level process that implements the protocol,
e.g., a web server serving HTTPS requests, issues one or more

crypto requests via /dev/crypto, followed by a write() or
send() call to transmit the data, as shown in Figure 3. The
server uses the previously described/dev/crypto device
driver to pass data to the OCF (step 1), which delegates the
SSL encryption and MAC’ing to the cryptographic accelerator
card (step 2). The card performs the requested operations and
the data are returned to the server (steps 3 and 4). The server
uses the write() system call to pass the data to the network
stack (step 5), which transmits the data on the wire using a
network interface card (step 6). Similarly, a read() or recv() is
followed by a number of requests to /dev/crypto.

This implies considerable data copying to and from the
kernel, and unnecessary process context switching. An alter-
native approach is to “link” some crypto context to a socket
or file descriptor, such that data sent or received on that
file descriptor are processed appropriately by the kernel. The
impact of such data copying has been recognized in the past,
as we saw in Section II, and has impacted TLS performance,
as shown in [4]. Recalling Figure 1, as much as 25% of the
overhead can be attributed to data copying. As cryptographic
hardware improves, the relative importance of this overhead
will increase.

User memory

Kernel memory

Web Server

OCF stack
Network

card

4

Crypto NIC

5

1

2

3 6

Kernel

Fig. 4. Encrypting and transferring a buffer, with socket layer
extensions.

Our approach reduces the per-buffer cost down to a single
write() and two context switches. (This is the same penalty
as sending a buffer over the network with no crypto at all.)
The fundamental change is that the network stack is crypto-
aware. Figure 4 demonstrates how a buffer is encrypted and
transferred using our extensions to the socket layer; the web
server passes the buffer to the network stack using write() (step
1), which passes the data directly to the OCF (step 2). The
OCF delegates the crypto to the accelerator card (step 3), as
before, but the data are returned to the network stack (step
5) rather than application memory. The network stack then
finishes processing the data and transmits it (step 6).

A. Implementation

We implemented the extension by modifying the socket
layer of the OpenBSD network stack. Using a new socket



option, SO CRYPT, an application-level crypto consumer de-
fines the cryptographic transforms for each packet (e.g., where
the encryption should start and end, where the MAC should
be placed, and so on). Then, when sosend() is called with
SO CRYPT set, sosend() passes the mbuf containing the data
to be sent, along with the cryptographic transforms, to the
OCF. At this time, sosend() calls tsleep(), and waits for OCF’s
callback. When the callback arrives, we replace the mbuf
data with the newly encrypted data, and allow the control
flow to continue with the network processing. The complete
implementation comes to less than 100 lines of code.

The only complication arises from a quirk of OpenBSD’s
write() system call1: sosend() only receives at most 4088 bytes
per invocation. Larger write() operations on a socket or file
descriptor result in multiple invocations of sosend(). Since TLS
frames can be up to almost 2

16
− 2 bytes, we must handle

logical frames larger than the data buffer handed to sosend().
We can detect the fact that a frame that spans multiple

write() invocation is being transmitted by examining the TLS
or SSH header, as discussed in Section IV-B. To solve the
problem, we can use either of two approaches:

• The easiest solution involves incrementally computing the
frame MAC from its component buffers, and linking the
CBC encryption across different packets by keeping the
last block of each for use as the initialization vector
(IV) of the next. This way, we can process the TLS
frame piece-meal. The drawback is that we incur a higher
overhead than if we performed a single large transaction
with the OCF.

• The best solution is to buffer data in the socket until
a complete frame can be reconstructed, thus allowing a
single request to be issued to the OCF.

In the interest of time, we decided to implement the first
solution. This, unfortunately, has had a negative impact to our
benchmarks for large transactions (8KB and 16KB), as we
discuss in Section IV-C.

B. SSH and SSL/TLS

Since the OCF allows the composition of cryptographic
transforms, the above scheme integrates seamlessly with SSH
and SSL/TLS. Connection setup for both protocols is quite
complex, as it must protect against various attacks. However,
once the setup protocol is completed, the much simpler data
exchange phase begins. The binary packet protocol for the data
exchange phase of TLS using a CBC block cipher (such as
DES or RC2) is [1]:

byte type
byte MajorVersionNumber
byte MinorVersionNumber
uint16 length
byte[] data
byte[] MAC
byte[] padding
byte padding length

1We have not investigated whether other BSDs exhibit the same behavior.

When the data exchange begins, we set the SO CRYPTO
option with the appropriate MAC and encryption algorithms
and keys. The MAC covers from the beginning to the end of
data, and is placed at the field called MAC. Encryption covers
the data, MAC, the padding, and the padding length.
Similarly, with the binary packet protocol for SSH version 2:

uint32 packet length
byte padding length
byte[] data
byte[] padding
byte[] MAC

When the data exchange begins, we enable the SO CRYPTO
option in the socket, and set the offsets for the start of the MAC
and encryption cipher to the first byte of data, and for the
end to the last byte of padding. We set the offset for placing
the MAC to the MAC field.

C. Evaluation

For our tests, we use two identical machines. The ma-
chines have 1.4 Ghz Pentium III processors on Tyan Thun-
der HEsl-T motherboards. These motherboards have three
independent PCI buses: 32bit/33Mhz/5V, 64bit/66Mhz/5V, and
64bit/66Mhz/3.3V. The boards use 512MB of 133Mhz reg-
istered SDRAM and are based on the ServerWorks HESL
chipset. For network testing, we use SysKonnect 9843 mul-
timode fiber Gbit Ethernet cards. The machines are intercon-
nected directly with a cross-over fiber cable. We placed a Gbit
Ethernet card and a Broadcom 5820 cryptographic accelerator
on the 64/66 bus of each machine. The peak performance of
the 5820 card, as given by the manufacturer, is 310 Mbps
of 3DES-SHA1 in IPsec (no other performance indications
are given, but IPsec processing is very close in terms of
cryptographic operations to that of TLS and SSH).

We ran three tests: encrypt a file in user space
(with the OpenSSL EVP framework), encrypt a file using
/dev/crypto, and encrypt a file in the kernel using our
extension. In all cases, the encrypted data is then transmitted
to a remote machine over a TCP connection. Table I contains
the raw data; how many seconds it took to transfer the file
in 4KB, 8KB, and 16KB packets2, using each of the three
methods. Table II shows that our approach gives a 6-10%
improvement over /dev/crypto.

As we mentioned in Section IV-A, during the evaluation we
discovered that OpenBSD fragments large write() operations
into 4088 byte chunks before transmitting them. This likely
reduces the benefits of our approach when transmitting packets
larger than the 4088 byte limit.

V. DISCUSSION AND FUTURE WORK

The prototype implementation we described in Section IV
does not currently handle incoming data decryption. Such
data are passed on directly to the application. Implementing
this feature is relatively simple: once the application turns on

2To be precise, we used multiples of the write() quantum, 4088 bytes, as
discussed in Section IV-A.



TABLE I

Time to encrypt and transfer a 100MB file (in seconds), for 4k,
8k, and 16k packets. The file is encrypted with OpenSSL’s EVP
framework, the /dev/crypto device driver, or our in-kernel

approach.

Scenario/Buffer size 4k 8k 16k

EVP 32.79 31.84 32.38

/dev/crypto 4.13 4.23 4.72

kernel 3.80 3.97 4.27

TABLE II

Percentage improvement of our in-kernel approach vs.
encryption in user space and /dev/crypto.

Scenario/Buffer size 4k 8k 16k

EVP 88% 88% 87%

/dev/crypto 8% 6% 10%

socket encryption, we start examining the first few bytes of the
incoming data stream, depending on the protocol type (e.g.,
TLS or SSH, as indicated by the application). These include
the total length of the incoming security protocol frame. The
kernel will then wait until all the packets carrying data of
that frame have arrived before passing them to the OCF for
decryption and validation. Once the request is processed, the
decrypted frame is passed on to the application.

While the implementation is as straightforward as the data-
send case of our prototype, it offers only limited benefits. As
was shown in [9], hardware accelerators can be very useful
for overloaded servers but do not offer comparable benefits to
less-loaded systems, e.g., a workstation.

A similar situation to the multiple kernel crossing scenario
is present in the use of the PCI bus: a host that is about to
transmit a TLS, SSH, or IPsec packet must first DMA it over
the PCI bus to the cryptographic accelerator, DMA it back to
main memory, and finally DMA it to the NIC. This decreases
the attainable PCI bandwidth to one-third of the theoretical
maximum for the bus. If the NIC offers on-chip cryptography,
we only need to perform one DMA transfer. However, it
is possible to reduce the number of DMA transfers to two
(instead of three), even when using a dedicated cryptographic
accelerator, by doing card-to-card DMA from the accelerator
to the NIC (and the other way around, on packet receipt).

Doing this requires support from the network stack — in
particular, deferring of cryptographic operations until right
before the packet must be transmitted to the network. In
OpenBSD, we developed the mbuf tags as a way of attaching
ancillary information to packets. This can be used as a
signaling mechanism between the socket layer and the NIC
driver or other kernel subsystem. We then need to modify the
NIC driver to first DMA the packet to the accelerator, and then
(once the request is completed) to arrange for a direct DMA
transfer to the NIC itself. In the extreme case, we can include
the hard drive to the DMA chain, such that data is simply

Kernel

Web Server

Crypto
card

Hard
disk

Network

1
User memory

Kernel memory

stack

2 3

NIC

Fig. 5. DMA chaining across multiple devices.

DMA’ed between devices, as shown in Figure 5. In that case,
the operating system’s role becomes that of a flow-controller.

Another potential approach to reducing data copying over-
head is to do “page sharing” of data buffers; when a request is
given to /dev/crypto, the kernel removes the page from the pro-
cess’s address space and maps it in its own. When the request
is completed, it re-maps the page back to the process’s address
space, avoiding all data copying. This works well as long as
/dev/crypto remains a synchronous interface. If processes are
allowed to have pending requests, accesses to that page while
it is being shared with the kernel must be caught and handled,
similar to the way copy-on-write of memory pages is handled.
Operations that cross page boundaries also have to be dealt
carefully. To take full advantage of page sharing, applications
will have to be extensively modified to ensure that data buffers
are kept in separate pages, and pages that are being shared with
the kernel are not accessed while an encryption/decryption
request is pending. Finally, page-sharing does not, by itself,
take advantage of NICs with integrated cryptographic support,
although it can be used to improve the performance in that
scenario.

Another I/O performance bottleneck has been that of small
requests. Although we did not examine its effects in this paper,
previous work [9], [17] has demonstrated that they can have
a significant negative impact on the performance. Since many
cryptographic protocols (e.g., SSH login), use small requests,
the gains from cryptographic accelerators are smaller than one
might hope for. There are several possible approaches: request-
batching, kernel crossing and/or PCI transaction minimization,
or simply use of a faster processor. These are more cost-
effective solutions to deploying a hardware accelerator, as has
already been pointed in the context of the TLS handshake [6].

VI. CONCLUSIONS

Cryptographic protocols are a fundamental building block
for securing distributed systems. Although there has been an
increase in their use for routine operations such as file transfer
and remote login, many users express concern about their
impact in performance. As a result, considerable effort has



gone into accelerating various aspects of such protocols as
TLS, which is widely used to protect web transactions. Most
such work to date has focused on the initial handshake aspect
of the protocol, while commercially-available cryptographic
accelerators are not used to the best of their abilities. To
address this problem, we proposed pushing into the operating
system kernel some of the application-specific login common
to many cryptographic protocols implemented at user level.

Our approach eliminates two redundant data copies between
the kernel and the user-level process (e.g., web server) with
minimum modifications both to the kernel and the application.
We implemented our scheme in the OpenBSD kernel, which
provides support for hardware cryptographic accelerators.
The implementation was remarkably straightforward, once we
overcame some crypto card-specific problems. Our evaluation
of the prototype shows an improvement in the data-transfer
performance of TLS of approximately 10%. Furthermore, our
scheme can easily be extended to permit use of network cards
with integrated cryptographic acceleration.

Several possible improvements are in our future plans. First,
we intend to extend our scheme to handle transparent data
decryption. Second, we plan to investigate combining our
system with zero-copy I/O. We believe there are several other
optimizations that will allow us to overcome specific I/O
deficiencies of the PC architecture, although probably none
at such a low level of complexity.

ACKNOWLEDGEMENTS

This work was supported by DARPA and the Air Force
Research Laboratory, Air Force Material Command, USAF,
under agreement number F30602-01-2-0537.

REFERENCES

[1] T. Dierks and C. Allen, “The TLS protocol version 1.0,” RFC 2246,
Jan. 1999. [Online]. Available: ftp://ftp.isi.edu/in-notes/rfc2246.txt

[2] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol,” RFC 2401, Nov. 1998. [Online]. Available: ftp://ftp.isi.edu/
in-notes/rfc2401.txt

[3] “OC48 Analysis – Trace Data Stratified by Applications,”
http://www.caida.org/analysis/workload/byapplication/oc48/port˙
analysis%˙app.xml.

[4] S. Miltchev, S. Ioannidis, and A. D. Keromytis, “A Study of the Relative
Costs of Network Security Protocols,” in Proceedings of the USENIX
Annual Technical Conference, Freenix Track, June 2002, pp. 41–48.

[5] D. Boneh and N. Shacham, “Improving SSL Handshake Performance
via Batching,” in Proceedings of the RSA Conference, January 2001.

[6] C. Coarfa, P. Druschel, and D. Wallach, “Performance Analysis of TLS
Web Servers,” in Proceedings of the Network and Distributed Systems
Security Symposium (NDSS), February 2002.

[7] A. Goldberg, R. Buff, and A. Schmitt, “Secure Web Server Performance
Dramatically Improved By Caching SSL Session Keys,” in Workshop on
Internet Server Performance, held in conjunction with SIGMETRICS,
June 1998.

[8] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security:
How Much Does it Really Cost?” in INFOCOM: The Conference on
Computer Communications, joint conference of the IEEE Computer and
Communications Societies, March 1999.

[9] A. D. Keromytis, J. L. Wright, and T. de Raadt, “The Design of the
OpenBSD Cryptographic Framework,” in Proceedings of the USENIX
Technical Conference, June 2003.

[10] C. B. S. and J. M. Smith, “Hardware/Software Organization of a High-
Performance ATM Host Interface,” IEEE Journal on Selected Areas
in Communications (Special Issue on High Speed Computer/Network
Interfaces), vol. 11, no. 2, pp. 240–253, February 1993.

[11] J. M. Smith and C. B. S. Traw, “Giving Applications Access to Gb/s
Networking,” IEEE Network, vol. 7, no. 4, pp. 44–52, July 1993.

[12] P. Druschel, M. B. Abbott, M. A. Pagels, and L. L. Peterson, “Network
subsystem design,” IEEE Network, vol. 7, no. 4, pp. 8–17, July 1993.

[13] J. Kay and J. Pasquale, “The Importance of Non-Data Touching Pro-
cessing Overheads in TCP/IP,” in Proceedings of the ACM SIGCOMM
Conference, September 1993, pp. 259–269.

[14] A. G. Broscius and J. M. Smith, “Exploiting Parallelism in Hardware
Implementation of the DES,” in Proceedings of CRYPTO, August 1991,
pp. 367–376.

[15] J. M. Smith, C. B. S. Traw, and D. J. Farber, “Cryptographic Support for
a Gigabit Network,” in Proceedings of INET, June 1992, pp. 229–237.

[16] C. Pu, H. Massalin, J. Ioannidis, and P. Metzger, “The Synthesis
System,” Computing Systems, vol. 1, no. 1, 1988.

[17] M. Lindemann and S. W. Smith, “Improving DES Coprocessor Through-
put for Short Operations,” in Proceedings of the 10th USENIX Security
Symposium, August 2001, pp. 67–81.


