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ABSTRACT
Recent incidents have once again brought the topic of en-
cryption to public discourse, while researchers continue to
demonstrate attacks that highlight the difficulty of imple-
menting encryption even without the presence of“backdoors”.
However, apart from the threat of implementation flaws in
encryption libraries, another significant threat arises when
web services fail to enforce ubiquitous encryption. A recent
study explored this phenomenon in popular services, and
demonstrated how users are exposed to cookie hijacking at-
tacks with severe privacy implications.

Many security mechanisms purport to eliminate this prob-
lem, ranging from server-controlled options such as HSTS
to user-controlled options such as HTTPS Everywhere and
other browser extensions. In this paper, we create a taxon-
omy of available mechanisms and evaluate how they perform
in practice. We design an automated testing framework for
these mechanisms, and evaluate them using a dataset of 30
days of HTTP requests collected from the public wireless
network of our university’s campus. We find that all mecha-
nisms suffer from implementation flaws or deployment issues
and argue that, as long as servers continue to not support
ubiquitous encryption across their entire domain (including
all subdomains), no mechanism can effectively protect users
from cookie hijacking and information leakage.

CCS Concepts
•Security and Privacy→Web protocol security; Browser
security; Privacy protections; •Networks → Network pri-
vacy and anonymity;
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Web Security; Privacy; Eavesdropping; HTTPS; HTTP Strict
Transport Security; HTTPS Everywhere

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES’16, October 24 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4569-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994620.2994638

1. INTRODUCTION
SSL/TLS offer significant protection and are fundamen-

tal components for securing our communications. Unfortu-
nately, a recent study [27] found that the majority of top web
services do not support ubiquitous encryption and expose
their users to HTTP cookie hijacking. Its findings exposed
a sad state of affairs, as major services like Google, Bing and
Yahoo fail to fully utilize existing security mechanisms and
protect their users.

Even though surveys report that 40.5% of popular web-
sites now support HTTPS [29], many websites do not enforce
ubiquitous encryption which leads to the significant privacy
threats demonstrated in recent work [16, 27, 34]; users are
vulnerable to surveillance and information leakage through
non-secure cookies, as well as exposed account functionality
and potential account takeover.

Migrating to HTTPS is a daunting task with multifaceted,
yet diminishing, costs [23], which has resulted in a tangled
web of partial support of encryption across websites and
flawed access control [26]. Many security mechanisms have
been proposed [13, 18, 19] for enforcing encryption in on-
line communications, ranging from server-side mechanisms
to client-side solutions. The main server-side mechanism is
HTTP Strict Transport Security (HSTS) which was stan-
dardized and specified in RFC 6797 [18]. While HSTS is
gaining traction, this technology is still in a relatively early
state of adoption, with a recent study also showing that
many sites deploy the protocol incorrectly [20]. All this
has necessitated the emergence of client-side mechanisms,
which take the form of browser extensions that allow users
to better protect themselves against server-side omissions or
errors. HTTPS Everywhere [13], which is the most popular
option, was implemented by Tor and the Electronic Frontier
Foundation (EFF) and modifies HTTP requests to HTTPS
based on a set of community-written rulesets.

In this paper we study existing security mechanisms and
defenses, both server- and client-side, explore their modus
operandi, and evaluate their effectiveness in enforcing HTTPS
and preventing cookie hijacking attacks. We study avail-
able mechanisms that are already deployed by web services
or can be deployed by end users without requiring server
modification1. While one might expect that enforcing en-
cryption is fairly straightforward, as simple as adding an “s”
in “http://”, in practice enforcing encryption is far more
complicated, confirmed by the fact that we discovered is-
sues in every mechanism we inspected. Our study focuses
on HSTS and HTTPS Everywhere as they are the most

1Thus, we omit mechanisms like tcpcrypt [7].
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widely adopted server- and client-side mechanisms, respec-
tively, but also explores lesser-used options such as upgrad-
ing insecure connections through CSP, and several browser
extensions with varying popularity.

Our experimental approach lies in empirically identify-
ing instances where each mechanism fails to instruct the
browser to connect over an encrypted channel, and under-
standing the underlying pathology. At the core of our study
lies a dataset of approximately 1.4 billion HTTP requests
collected from the public wireless network of Columbia Uni-
versity’s campus over the period of one month, which allows
us to extensively simulate real-world user browsing behavior.
We extract the target URLs, and process them with our test-
ing framework that validates and analyzes the presence of
the server-side mechanisms, and also replicates the function-
ality of the client-side solutions. Subsequently, we inspect all
instances of unencrypted connections observed, and conduct
an in-depth analysis of unencrypted connections towards do-
mains that have adopted mechanisms for enforcing HTTPS.
Among other issues, we have identified deployment issues in
the HSTS preload list for the default browser in iOS, even
in the latest available version of the browser, which results
in significantly reduced coverage. We study client-side solu-
tions and identify their design flaws that result in incorrectly
handled unencrypted connections. To our knowledge, this
is the first study that offers a comprehensive evaluation of
HTTPS enforcing mechanisms by also studying client-side
mechanisms. The main contributions of this paper are:

• We provide a taxonomy, and conduct a comprehensive
experimental evaluation, of existing security mecha-
nisms that force connections over HTTPS or block
connections over HTTP, including server-side mecha-
nisms like HSTS and client-side solutions like HTTPS
Everywhere.

• Using a real dataset of 1.4 billion HTTP requests from
the public WiFi network of our university’s campus, we
explore the server-side adoption of HTTPS enforcing
mechanisms. Surprisingly, we find that Apple’s update
cycle for mobile browsers results in an outdated and
severely limited HSTS preload list, exposing users to
eavesdropping and cookie hijacking attacks.

• We present an extensive analysis of HTTPS Every-
where, the most popular client-side mechanism for se-
curing user communications, which is also a default
component of the Tor browser. We identify a series of
flaws in the rulesets that result in the mis-handling of
unencrypted connections and the subsequent exposure
of users.

2. SERVER SECURITY MECHANISMS
Figure 1 presents our taxonomy of existing security mech-

anisms, based on the endpoint that has to deploy the mech-
anism. As can be seen in the figure, a number of options
exist for both the server and end-user, which vary in terms
of breadth and effectiveness, as well as intended use. In this
section, we explore the mechanisms currently available to
servers for enforcing connections over HTTPS or preventing
HTTP connections.

2.1 HSTS
The HTTP Strict Transport Security (HSTS) mechanism

enables websites to instruct browsers to only establish con-
nections to their servers over HTTPS. It is specified in RFC
6797 published in 2012 [18]. The policy is declared from
the web servers via the Strict-Transport-Security HTTP
header field. To enforce this, the browser maintains a record
of the sites that have responded with an HSTS header. Then
if the domain the user is connecting to matches a record, the
browser will redirect itself (through a 307 Internal Redi-

rect) or directly modify hyperlinks to HTTPS. This cov-
ers any request that would normally be transmitted over
HTTP. HSTS is currently supported by approximately 75%
of browsers [10]. While this mechanism is gaining significant
traction, a recent study [20] reported that only 1.1% of the
top 1 million Alexa sites set an HSTS header.

HSTS Header. The HSTS header in the server’s re-
sponse contains the following attributes.

max-age: this directive instructs the user’s browser for how
long to cache the HSTS policy after the receiving the HSTS
header, i.e., for how many seconds to maintain an entry for
specific domain. This value is updated after each received
response from the given domain.

includeSubdomains: this optional flag indicates whether
the HSTS policy will be applied not only to this domain,
but also all the subdomains.

preload: this optional flag specifies whether the site is
currently in the HSTS preload list (see below) or under
submission to the preload list.

2.1.1 HSTS Preloading
While technically HSTS preload lies on the client-side and

is enforced by the browser, the server has to fulfill a set of
requirements and apply for inclusion within the list. Thus,
we categorize this mechanism as a server-controlled solution.

As HSTS instructs the browser to connect over HTTPS
after the request has been transmitted, i.e. in the response,
the HSTS mechanism does not protect the initial request
towards a specific domain. While this is a significantly re-
duced attack window, nonetheless, users remain vulnerable
during the initial connection. To rectify this, major browsers
have adopted HSTS preloading. These browsers maintain a
list of domains that have a hard-coded HSTS policy, and do
not rely on the HSTS header in the response for caching a
policy, thus protecting even the initial request.

In addition to upgrading traffic to HTTPS, HSTS preload-
ing is also used to enforce certificate pinning [25], which
is designed to prevent attacks that employ rogue certifi-
cates [28]. However, this functionality is out of the scope
of our study and, thus, we do not explore it in detail.

Chrome preload. The Chromium project is in charge
of maintaining the preload list which is shipped with the
Chrome browser [11]. Most of the domains contained in
the preload list have the force-https mode set. However,
some domains do not set that mode, indicating that they
are assigned to the Opportunistic mode in Chrome. For
domains with the Opportunistic mode set, Chrome will
not enforce HTTPS, but will perform certificate pinning. If
the user connects over an encrypted channel (by explicitly
typing “https://” in the address bar, or if the website redi-
rects to HTTPS), Chrome will verify the certificate pinned
in the preload list.
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Figure 1: Taxonomy of HTTPS enforcing and HTTP blocking mechanisms.

To be added and remain on the HSTS preload list web-
sites must satisfy a set of requirements set by the Chromium
project [2], which includes sending an HSTS header at all
times. The project also specifies ways to be removed from
the list, which has a slow turn-around time to reach the
users, due to the manual nature of this process. Domains are
also suggested to continue to serve an HSTS header without
the preload directive and max-age set to 0. As the HSTS
preload record does not sync, update or expire automati-
cally during a domain transfer, new owners of domains will
have to check and make sure that service is not accessibility
is not disrupted due to the lack of support for HTTPS and
HSTS. Naturally, as adoption increases, this approach for
populating the preload list will encounter significant scala-
bility issues.

Firefox preload. Firefox currently builds a custom list
that is derived from the entries in Chrome’s list that have
the force-https mode set, but filters out hosts that do not
respond with valid HSTS header or do not meet certain re-
quirements (e.g., set a max-age of less than 18 weeks). When
a mismatch is found between the HSTS policy in Chrome’s
list, and the one returned by the server in the HSTS header,
Firefox assigns higher priority to the one contained in the
server response, and uses that policy in the preload list. Fur-
thermore, if a server responds with max-age=0, Firefox con-
siders those sites to be knockout entries (e.g., a domain might
have a new owner that does not want to support HSTS) and
are not included in the preload list [12].

2.2 Content Security Policy
The Content Security Policy (CSP) [30] mechanism allows

web servers to deliver a policy to browsers using an HTTP
response header. It is widely used for protecting against
cross-site-scripting attacks, as it allows the server to declare
which dynamic resources are allowed to be loaded through
a whitelist. Alternatively, from the HTTP header approach,
CSP can be set within the <meta> tag in the HTTPS body.
However the recommended approach is to enable it via an
HTTP response header, as the policy in the tag is not ap-
plied to content which proceeded it [31]. Furthermore, CSP
works at the page level, not at a domain scale, i.e., the policy
in the header will be applied to the specific webpage, and
not used to create a policy for the entire domain.

Enforcing HTTPS. The CSP header in an HTTP re-
sponse can contain the upgrade-insecure-requests [33] di-
rective to instruct the browser to “upgrade” all HTTP re-
quests to HTTPS before the fetching request is transmitted.

Table 1: Support of CSP directives in current ver-
sion of major browsers.

Browser
upgrade- block-all-

insecure-requests mixed-content

Firefox 47.0 3 7
Chrome 52.0 3 7
Safari 9.1 7 7
Opera 38.0 3 7

This can therefore mitigate threats by preventing insecure
requests from being transmitted over the network. How-
ever, as webpages may reference resources that are hosted
on third party servers that do not support encryption, it
is not always feasible for a website to instruct the browser
to upgrade all connections to HTTPS without breaking the
user’s browsing experience. This can result in pages with
mixed content.

2.2.1 Mixed Content
Mixed content occurs when content is referenced over an

insecure HTTP connection within a page that is served over
HTTPS [32]. The support for mixed content exposes users
to risks, as it allows man-in-the-middle attackers to change
website functionality by modifying the HTTP request con-
tents of a webpage’s active resources, e.g., script (<script>,
XMLHttpRequest), CSS, fonts, and frames (<iframe>). With
the inclusion of insecure references to non-active (display) re-
sources such as images, audio, video, even if adversaries are
not able to modify critical functionality, the user’s HTTP
cookies can be exposed to hijacking attacks.

Blocking mixed content. Currently, mixed active con-
tent is blocked in major browsers by default [21], while mixed
passive content is allowed but accompanied by visual warn-
ings [15]. Our experiments reveal that current versions of
Chrome, Firefox, Opera and Safari do not support this CSP
mechanism (Table 1). Firefox has recently added initial sup-
port for blocking all mixed content through the block-all-

mixed-content CSP directive in the Firefox Nightly release.

3. CLIENT SECURITY MECHANISMS
In this section we explore the functionality and mode of

operation of the security mechanisms at the disposal of users.
Specifically, we study 6 browser extensions that attempt to
solve the problem of insecure connections over HTTP. Ta-
ble 2 provides general some information for these extensions,
including browser support and number of downloads.



Table 2: Overview of available client-side solutions.

Extension Browser Support #*
Last

Update

HTTPS Everywhere
Firefox, Chrome, Opera,

1.7M 04/2016
Firefox for Android, Tor

Redirect to HTTPS Opera 123.5K 03/2011
KB SSL Enforcer Chrome 41.1K 03/2015
Smart HTTPS Firefox, Chrome, Opera 23.2K 01/2016
HTTPtoHTTPS Firefox 5.0K 06/2013
HTTPS by Default Firefox 2.6K 05/2015

*Total downloads across all supported browsers.

3.1 HTTPS Everywhere
HTTPS Everywhere is a browser extension that was devel-

oped by the Tor Project and the Electronic Frontier Foun-
dation [13]. The extension operated through rulesets that
contain a collection of rules for each domain, that are writ-
ten as JavaScript regular expressions. Each HTTP request
is checked against the rulesets and, if matched, modified to
connect over HTTPS. However, since a website’s function-
ality may break under HTTPS, rulesets may contain excep-
tions for each domain, that instruct the browser to keep
the connection over HTTP. As this exposes the user to risk,
HTTPS Everywhere has an opt-in option to block all HTTP
requests. While this can protect users from HTTP cookie hi-
jacking, it will also break the browsing experience, rendering
it an ineffective approach.

3.1.1 HTTPS Everywhere Rulesets
Rulesets are the core of this extension, and consist of per-

domain XML files that contain a series of rules that guide
the functionality of the extension. An example ruleset can
be seen in Listing 1, along with the relevant attributes.

Listing 1: Example ruleset structure.

<ruleset name="MySite">
<target host="mysite.com"/>
<target host="www.mysite.com"/>
<target host="*. mysite.com"/>

<securecookie host="^mail\. mysite \.com$"
name="^SID$"/>

<exclusion pattern=
"^http :// excludeme.mysite.com/"/>

<exclusion pattern=
"^http ://( www \.)? mysite.com/excludeme /+"/>

<test url="http ://www.mysite.com/excludeme"/>
<test url="http :// mysite.com/excludeme/"/>
<test url="http ://www.mysite.com/"/>

<rule from="^http:" to="https:"/>
</ruleset >

Target Host. The target host tag specifies which domain
or subdomain should be checked against the rule listed in the
particular ruleset. Each ruleset may contain multiple target
hosts for a single rule. The target hosts can include the
wildcard (*) symbol along with a domain name, for covering
other subdomains and suffix regional domains.

Rule. The rule contains the appropriate information to
guide the extension in rewriting the URL. The from and to

attributes are expressed as JavaScript regular expressions.
The extension uses the expression in the from attribute to
identify links that have to be modified, and rewrites the link

according to what is specified in the to attribute. The rule
tag may also contain the downgrade attribute which, when
set to "1", results in the link being rewritten from https

to http. This option is useful when a page’s functionality
breaks over HTTPS, as it allows the remaining pages to be
connected to over a secure connection.

Secure Cookies. The secure cookie tag instructs the
extension to set the secure flag for a specific cookie. The
host attribute matches the hostname and the name attribute
is matched against the cookie’s name, in order to identify
which cookie is to be set to secure.

Exclusion. The exclusion tag is for specifying instances
of insecure URLs that should not be rewritten by HTTPS
Everywhere. The pattern attribute contains the regular
expression used for matching URLs.

Test. The test tag is used by rule “authors” for including
test URLs can be used to validate the coverage of the rule.
Its mandatory for each rule in a ruleset to have n + 1 of
these implicit test URLs, where n is the number of {*, +,

?, |} characters in the rule’s regular expression [14]. A test
URL can only match against one rule or one exclusion,
and the goal is to cover all the targets of the ruleset, and all
the branches of the regular expressions within.

3.1.2 Adding Rulesets
Any voluntary contributor can create and submit new

rules to HTTPS Everywhere; new rules can be submitted
though their Github directory as a pull request. New rules
can also be submitted to the ruleset open mailing list of
HTTPS Everywhere.

3.1.3 Ruleset Validation
HTTPS Everywhere has an automated checker that runs

basic tests on all rulesets that have been submitted by vol-
unteers. Apart from checking the basic syntax, the checker
also verifies all the test URLs specified by the ruleset au-
thors. Any rulesets that fail the checks will be, by default,
turned off and inactive in the following released version.

3.1.4 Matching URLs to Rules
Since HTTPS Everywhere does not prohibit overlapping

target hosts in different rulesets, one URL can match the
target host in multiple rulesets. For each ruleset, the URL
will be modified according to the first rule (<exclusion>
or <rule>) that matches it. Therefore an URL can match
more than one rules from different rulesets. If there are more
than one matching rules, HTTPS Everywhere will modify
the URL even if only one of those rules rewrites it. If mul-
tiple matching rulesets have URL modification entries, only
the first one is enforced and the rest are ignored. If none
of the rules that match the URL modify the URL, it will
remain the same.

3.1.5 Modifying and Removing Rulesets
Rules can also be modified or removed through pull re-

quests or emails sent to the HTTPS Everywhere ruleset
mailing list. Similar to the management of the HSTS preload
list, removal is a manual process, which can lead to service
accessibility issues between releases if a domain expires or
ownership is transferred.



3.2 Alternative browser extensions
There are other browser extensions that attempt to solve

the same problem by redirecting requests to HTTPS. While
not as popular as HTTPS Everywhere, they still have a
considerable number of users. Nonetheless, they follow far
more simplistic approaches for enforcing HTTPS, with sig-
nificant shortcomings that we present here. As two of the
mechanisms are severely outdated and don’t support recent
browser versions, we omit them from our analysis.

3.2.1 KB SSL Enforcer
KB SSL Enforcer [5] is a Chrome browser extension that

automatically detects the availability of HTTPS for a do-
main prior to upgrading to a secure connection. Local lists
are maintained with the domains for which to enforce HTTPS,
and those to ignore due to a lack of support. The domains in
the enforce list will always be contacted over HTTPS. To de-
tect availability of HTTPS, the extension opens an HTTPS
request using XMLHttpRequest to contact the specific do-
main and check the HTTP response status codes whether
the request succeeds (200, 204). Depending on the out-
come, the domain is added to either the enforce or ignore
list. The extension also looks for a HTTPS redirection in the
HTTP response headers (Location); if found, the domain is
added to the enforce list.

However, the extension does not correctly handle sites
that redirect (through <meta http-equiv="refresh" /> or
JavaScript) HTTPS connections to HTTP, as they result
in an infinite redirection loop. This is due to the server
responding with a 200 code to the initial request that is
over HTTPS, before redirecting the user to HTTP. Once
the extension sees the 200 code, the domain will be added
to its enforce list. Thus, the next time the user tries to con-
nect to this website, the extension will force it to connect
over HTTPS, which will then be automatically redirected
by the server to HTTP, which will then be modified again
by the extension, resulting in a never-ending loop of redirec-
tions. Furthermore, since the extension enforces encryption
on both the domain and subdomain level, any path of a do-
main in the enforce list that does not support HTTPS will
not be loaded correctly.

3.2.2 Smart HTTPS
Smart HTTPS [6] maintains a local whitelist and black-

list for domains. Whitelist URLs send HTTP request by
default. Blacklist URLs send HTTPS by default. All URLs
that are typed by the user will automatically be added to
the whitelist. If the user wants to force the URL to load over
HTTPS by default, the URL needs to be added manually.
Since each URL has to be added manually by the user, sim-
ply adding https://www.example.com to the blacklist does
not enforce other subdomains or subdirectories unless ex-
plicitly specified. Also, adding HTTPS to HTTP redirec-
tion pages to the blacklist also causes an infinite redirection
loop, since the extension will force the connection to be over
HTTPS.

3.2.3 HTTPS by default
HTTPS by Default [3] is another extension that follows a

simplistic approach. It adds an “s” at the end of http by
default, for any URL typed in the address bar. However,
the add-on does not handle other type of requests that are
sent from elements in the page, e.g., when retrieving a page

that is triggered by the user clicking on an HTTP link. Even
though the extension employs HTTPS by default, it does not
have a fallback mechanism for websites that do not support
HTTPS, resulting in a secure connection error.

4. MEASUREMENT AND ANALYSIS SETUP
In this section, we describe the components of our test-

ing framework and the process of evaluating existing mech-
anisms that enforce HTTPS. Our testing process can be di-
vided into two main modules: one for online tests and one
for offline.

4.1 Server-side Mechanism Testing
The online module focuses on testing mechanisms that lie

on the server-side. We use curl for probing domains or pages
that we want to study. To simulate actual users browsing
the pages, we imitate all HTTP request headers sent by
Chrome, and allow up to 20 redirections as specified in the
Chrome source code (kMaxRedirects = 20). We extract the
HTTP response headers and body (HTML tag and content)
that is relevant to the mechanism we are studying in each
experiment.

4.1.1 HSTS Module
The dynamic HSTS header is sent to the browser when

it connects to the server. Our module extracts the Strict-

Transport-Security HTTP header, to obtain the directives
given by the specific server.

4.1.2 CSP Module
A server is able to instruct the browser to transparently

upgrade insecure requests and/or block all mixed content
by setting a Content Security Policy (CSP) in the HTTP
response. Like other CSPs, since both upgrade insecure re-
quests and block all mixed content can be set via the HTTP
header with the header name and HTML meta tag in the
body, our system searches both segments for the upgrade-

insecure-requests and block-all-mixed-content direc-
tives.

4.2 Client-side Mechanism Testing
For the offline experiments, our goal is to build a testing

component that can test any given URL against the client-
side security mechanisms that we want to study, without the
need to connect to the server. Below we offer details on our
modules that test HSTS preload and HTTPS Everywhere.

4.2.1 HSTS Preload Module
This module is designed to check if a URL’s hostname is

contained in the HSTS preload list. We create a module
that takes the URL as an input and tests the presence of
the domain’s hostname in the HSTS preload list.

System Testing. To make sure that our system simu-
lates the HSTS preload browser behavior correctly, we tested
our module against the default preload list on Chromium.
Specifically, we verify our validity through Chrome’s net-

internals diagnostic tool for HSTS. Our automated test
extracted the entries from the “Query Domain” function
of the diagnostic tool, and compared the domains that re-
turned static_upgrade_mode against the corresponding en-
tries from our module. Our test set contained 100,000 do-
mains sampled from URLs in our main dataset (detailed in
Section 5.1).



Table 3: Public Wi-Fi dataset statistics.

Requests %

Total 1,397,563,630 100.00
Contains cookie 509,966,214 36.49

(a) Observed HTTP requests.

Records %

URLs 599,034,558 100.00
Domains 699,873 100.00
Domains support SSL/TLS 409,026 58.44

(b) Unique domains and URLs observed over HTTP.

4.2.2 HTTPS Everywhere Module
The straightforward approach of directly executing the

actual HTTPS Everywhere extension in an instrumented
browser presents a major drawback; it would only allow us
to obtain the modified URL and the ruleset that modified it,
without any further information on other rulesets that also
matched the given URL. It would also incur significant over-
head that would prohibit us from experimenting with such
a large dataset as the one we use in Section 5. We also im-
plemented and experimented with our own standalone tool
that replicates the extension’s functionality and leverages
the existing rulesets, but abandoned that approach in fear
of not capturing the identical behavior to the original tool.
To that end, we decided to follow an intermediate approach.
We took the extension’s code, which is in JavaScript, and
slightly modified to output more detailed results (e.g. exclu-
sions matched, no rules matched) and to be able to run with
Node.js [24] , giving us the ability to execute the JavaScript
without the need for a browser, rendering our experimenta-
tion lightweight and efficient.

4.2.3 Other Client Mechanisms
Other options exist, in the form of browser extensions,

that allow users to force their browser to issue connections
over encrypted channels. Due to space constraints and their
simplistic approach to enforcing HTTPS, which results in
the ineffectiveness described in Section 3, we omit the other
extensions for the remaining of our evaluation.

5. EXPERIMENTAL EVALUATION
Here we describe the findings of our study regarding the

coverage, modus operandi, and effectiveness of existing mech-
anisms that enforce HTTPS.

5.1 Data Collection and Statistics
We setup a logging module on a network tap that received

traffic from multiple wireless access points positioned across
our university’s campus, covering approximately 15% of the
outgoing public wireless traffic, over a period of 30 days. For
each HTTP request we collected the destination URL and
a keyed hash (HMAC) of the cookie’s values. We obtained
IRB approval prior to running this experiment. Table 3
shows a break down of our dataset, which contains approx-
imately 1.4 billion captured HTTP requests, with over 500
million requests containing at least one HTTP cookie. We
found that 58.44% of the unique domains that users accessed
over unencrypted connections during our monitoring period
are accessible over HTTPS.

Table 4: Base domains and HSTS support.

Unique Base Domains %

Connectable over SSL/TLS 409,026 100.00
Support HSTS 9,297 2.27
HSTS + includeSubdomains 1,418 0.35
HSTS + preload 921 0.23

Table 5: Number of mis-handled HTTP requests,
towards (sub)domains covered by HSTS preload.

HTTP requests %

Escape HSTS preload 720,170 (382,689 unique URLs) 0.05
Contain cookie 324,061 0.02

5.2 Analysis for HSTS
Using the URLs extracted from our dataset, we study the

coverage and effectiveness of HSTS in practice, as detailed in
Section 4. We use the preload list released May 2016, which
contains a list of 12,602 domains (12,233 base domains). In
Table 4, we show how many of the unique base domains from
our dataset are connectable over HTTPS. Out of those, only
9,297 contain an HSTS header in the reply, 1,418 of which
include the includeSubdomains directive in the header. Fi-
nally, 921 domains also return headers with preload in the
header.

Table 5 shows the number of detected HTTP requests to-
ward domains that are covered by the HSTS preload list.
While the percentage is relatively small (0.05%), 324,061 of
these requests exposed the users to potential hijacking at-
tacks. In Table 6 we breakdown the numbers for unique tar-
get domains, and find that out of the 742 domains, 710 apply
a strict upgrade mode, i.e., have set the force-https di-
rective in the preload list. Only 32 of those domains (4.3%)
are cases where the HSTS header sets “max-age=0”, signi-
fying that the server is in the process of requesting to be
removed from the HSTS preload list.

Opportunistic Security. There are 259 domains on
HSTS preload that are opportunistic (Table 7), i.e., do
not set force-https in the Chrome preload list. The vast
majority of those domains belong to Google (250), with 218
of those covering google.com and Google’s regional search
engines. As demonstrated in previous work [27], this op-
portunistic approach exposes users to the significant risk
of cookie hijacking. These domains and their subdomains
do not enforce HTTPS, but 249 perform certificate pinning
when the connection is over HTTPS. Thus, while these do-
mains use pinning to ensure that the user is connected to
the correct server without any MiTM, they do not force the
client to always connect over HTTPS. Interestingly, only
learn.doubleclick.net is opportunistic but not pinned, as
it has been excluded due to the use of a different CA.

Partial Security. In the latest release of the preload
list that we evaluate, we found that 156 domains do not set
include_subdomains, with 89 not specifying any directive
for the subdomains while 97 explicitly set it to false. Sur-

Table 6: HSTS preload escape domain breakdown.

Domains Base Domains

Escape HSTS preload 742 332

Static Upgrade Mode
strict 710 326
max-age=0 32 5



Table 7: HSTS preload domains set to Opportunistic.

Domains # Pins

Google and related domains 250 249
Non-Google 9 9

Total 259 258

Table 8: HSTS preload coverage in different
browsers.

Browser
Request remains on HTTP

# %
Chrome 1,382,672,442 98.93
Safari 1,397,419,934 99.99

prisingly, 83 of those 97 sites do this on their base domain
name. The risks of partial deployment of HSTS have been
discussed in previous work [20, 27]. In the Appendix we in-
clude a list of the most popular sites that do not include
their subdomains in the HSTS preload list.

Coverage across browsers. Next, we explore the dif-
ference in effectiveness due to reduced coverage in other
browsers. To obtain the most accurate results, we obtain
the latest version of both preload lists. The latest version
of the list by the Chromium project, released in June 2016,
contains 13,139 entries with force-https (12,782 base do-
mains). The current version of the preload list (Jun 30,
2016) in Safari contains only 704 entries (462 base domains),
covering merely 3.52% of the Chromium preload entries. We
quantify the diminished effectiveness, using the HTTP re-
quests from our dataset; we cross-check them with the latest
HSTS preload lists from Chromium and Safari and compare
the results. As expected, the reduced coverage of Safari has
a considerable impact. As seen in Table 8, while Chrome’s
list prevents almost 15 million requests from being issued
over an unencrypted connection, Safari protects two orders
of magnitude less requests. The implications of this differ-
ence are serious, as it demonstrates that even if iOS users
maintain their systems up-to-date, they are still exposed to
significant threat due to the minimal coverage offered by the
default browser in their devices.

5.3 Analysis for CSP
Below we discuss our findings regarding the use of CSP for

upgrading connections to HTTPS, or blocking unencrypted
connections. Table 9 breaks down the numbers for the num-
ber of landing pages that return the upgrade-insecure-

requests and block-all-mixed-content CSP directives in
the HTTP header or HTML meta content tag. Overall, we
find very little server-side adoption of these directives as a
way to prevent unencrypted connections.

Main Dataset analysis. We select a random subset of
100 million unique URLs that are connectable over HTTPS
from our dataset, and study the use of CSP. As shown in
Table 9, 27,565 (∼0.03%) of the URLs upgrade the insecure
requests, while only 557 blocked all mixed content.

Top site analysis. We also study the use of CSP in the
top 1 million sites (according to Alexa), to obtain a more
complete picture. We found that only 290 of the top 1 mil-
lion sites upgrade insecure requests to HTTPS on their land-
ing page, while only 36 block mixed content. The highest
ranked domain to upgrade insecure requests is buzzfeed.com
(143), while for blocking all mixed content it’s github.com
(59). However, this use of CSP is far more common in less

Table 9: Use of CSP directives for upgrading to
HTTPS and blocking mixed content, in 100M URLs
from our dataset and the top 1M Alexa sites.

Content Security Policy Setting
Dataset Alexa
URLs Domains

upgrade-insecure-requests
HTTP header 27,565 250

HTML meta tag 259 40
Total 27,824 290

block-all-mixed-content
HTTP header 557 36

HTML meta tag 0 0
Total 557 36

Table 10: HTTPS Everywhere ruleset statistics.

Rulesets % Domains %

Total 19,807 100.00 21,839 100.00
Default off 4,374 22.08 4,979 22.80
Platform Dependant
- Mixed content 1,100 5.55 1,186 5.43
- CA cert 131 0.66 130 0.60
- Firefox 3 0.02 3 0.01

Active on:
- Firefox 14,607 73.75 16,175 74.06
- Chrome, Opera 14,605 73.74 16,173 74.06
- Tor 15,351 77.50 16,784 76.85

popular sites, with a median rank of 379,182 and 399,413
respectively. Furthermore, we found that 31 (10.69%) of the
domains set the “upgrade-insecure-requests” on HTTP, but
not HTTPS. CSP is designed to reduce mixed content on
HTTPS pages by modifying content links to be loaded on
HTTPS page. As such, setting CSP only on HTTP pages is
an incorrect implementation of this mechanism. Similarly,
4 (11.11%) landing pages (domains) set “block-all-mixed-
content” only on HTTP.

5.4 Analysis for HTTPS Everywhere
In this section we present our findings from the analysis of

HTTPS Everywhere, the most popular browser extension for
enforcing HTTPS, which was developed by the Tor project
and the EFF and has over 1.7 million installations.

5.4.1 Rulesets
We analyzed the HTTPS Everywhere rulesets from the

Firefox version 5.1.6 (corresponds to Chrome 2016.4.4) re-
leased on April 4, 2016. This version has 19,807 ruleset files
containing 48,258 target hosts which cover 21,839 domains2.
In total, there are 2,024 exclusion rules. Not all rulesets in
the release are active, as some rulesets are disabled by de-
fault in each release, while others are inactive on specific
platforms. We break down the numbers in Table 10.

Default off. Certain rulesets are inactivated by default
in each release, either due to mistakes in the ruleset that
lead to the ruleset validation tests (see section 3.1.3) fail-
ing or it was found that the ruleset causes issues in the
browsing experience. These rulesets are indicated by the
default_off attribute. In total, approximately 22% of the
rulesets contained in this release are not activated, demon-
strating the difficulty in correctly identifying how HTTPS
support changes within a domain and its subdomains, as
well as creating the appropriate rulesets.

Mixed Content. In the generally case, any unencrypted
content in an encrypted page will be blocked. This is done in
most major browsers (e.g. Chrome, Firefox, Opera). How-

2We count all regional domains of a website as one.



ever, the Tor Browser (which is a Firefox variant) does not
enforce this policy. Rulesets that have the platform at-
tribute set as mixedcontent will be automatically disabled
in Chrome, Firefox and Opera, while they are acceptable
in other browsers that allow active and passive mixed con-
tents, such as the Tor Browser. Surprisingly, the reason that
the Tor browser allows mix content, is that it also comes
with NoScript pre-installed, which provides users with a UI
and allows more fine-grained customization3. Unfortunately,
this may expose less proficient users to risk.

CACert. CACert is a community-driven approach to-
wards the creation of a certificate authority [9]. However,
the root certificate is not included in many popular browsers
(Firefox, Chrome, Opera, and Tor Browser Bundle). When
connecting over HTTPS to one of the sites that use a CAC-
ert issued certificate, these browsers return a “signed by un-
known party” error message. As such, HTTPS Everywhere
does not enable rules that enforce HTTPS in the rulesets
of sites that employ CAcert certificates. These cases are in-
dicated by the platform="cacert" attribute in the ruleset,
and are not activated in browsers that have not added CAC-
ert to their root certificate. We found that only 130 domains
(5.43%) out of all the domains in the rulesets are disabled
because of this.

Firefox. The rulesets that set platform as firefox, will
only be activated in the Firefox browser. In the release we
studied, we found only 3 such rulesets.

Overall ∼74% of the domains in the rulesets are currently
active on major browsers, while the rest are disabled due
to the aforementioned reasons. As the Tor Browser does
not disable rulesets because of mixed content, it ends up
covering more domains (76%).

Site ranking. In Figure 2a we plot the distribution of
the ranking of domains found in the ruleset of HTTPS Ev-
erywhere, and the domains in the rulesets that are active
on Firefox. We employ the global ranking are returned by
Alexa [1], and find that a surprising number of rulesets cover
domains with very low ranking. Figure 2b shows the cov-
erage obtained in each tier, with an obvious decrease across
tiers, showing that more popular websites have a higher per-
centage of being covered by ruleset authors. The coverage of
top sites is much higher compared to that of HSTS preload,
which has been reported previously [20]. Naturally, we can-
not calculate coverage for the last two tiers, as the overall
number of websites is unknown.

HTTPS Everywhere and HSTS. We test HTTPS sup-
port of all the base domains found in the HTTPS Every-
where rulesets. Out of 21,839 domains, we are able to suc-
cessfully connect to 15,525 (71.09%) domains over an en-
crypted connection. We show the errors for the remaining
domains in Table 11. Out of those domains that support
HTTPS, we found that only 2,481 (11.36%) have adopted
HSTS.

Experimental evaluation. We tested all the URLs con-
tained in our dataset, to see how many URLs would be pro-
tected if every user had installed the HTTPS Everywhere
extension. As can be seen Table 12, 26.96% of the requests
would be secured by HTTPS Everywhere and transmitted
over a secure connection. Out of those requests, 38.54% con-
tained HTTP cookies which would be protected from poten-
tial eavesdroppers.

3https://trac.torproject.org/projects/tor/ticket/8774

Table 11: HTTPS response when transmitting re-
quest over HTTPS to domains in HTTPS Every-
where rulesets.

HTTPS Response Domains %

SSL handshake failed error 301 1.38
Certificate error
- Common name mismatch 1,588 7.27
- Verification failed 1,328 6.08
Others error
- Timeout 841 3.85
- Could not resolve host 1,073 4.91
- Connection refused/closed/reset 1,183 5.42

Total 6,314 28.91

OK + No HSTS 13,044 59.73
OK + HSTS 1,857 8.50
OK + Preload HSTS 624 2.86

Total 15,525 71.09

Table 12: Handling of HTTP requests when HTTPS
Everywhere is installed.

URL Requests %
Requests w/

%
Cookie

Modified to HTTPS 376,626,901 26.95 145,238,139 10.39
Remains on HTTPS 1,020,936,729 73.05 364,728,075 26.10

Table 13 breaks down the requests that remained over
HTTP even though HTTPS Everywhere was installed. 83.18%
of the requested URLs do not match any of the ruleset target
hosts; Those 849,218,603 requests contain 1,395,371 unique
hosts (707,188 base domains). This is either due to the do-
main itself not supporting HTTPS, or the domain not being
covered by a ruleset despite supporting HTTPS. To quantify
this, we test if those hosts are connectable over HTTPS, and
found that 61.01% of the 1,395,371 unique hosts are indeed
connectable. These can be added to the rulesets for increas-
ing coverage. No rules match represents the cases where the
URL targets a supported hosts, however there is no match-
ing rule to modify to HTTPS, thus remaining over HTTP.
We consider this large number of insecure URLs (50.2 mil-
lion) to be missing from the rulesets due to insufficient cov-
erage of the domain from the ruleset.

5.4.2 Ruleset Error Classification
Next, we present the different types of errors we have iden-

tified within the rulesets that impact the functionality of
HTTPS Everywhere.

Trailing Slash. By default, Firefox (and the other ma-
jor browsers) adds a trailing slash at the end of the top level
domain Even if the user types the URL without the trailing
slash, Firefox will append it. This modification takes place
before the URL is processed by HTTPS Everywhere. List-
ing 2 demonstrates an example ruleset that works correctly
regardless of the user adding a trailing slash.

Table 13: Cause for unmodified HTTP requests.

Cause Requests %

Exclusion 34,488,882 3.38
Default off 85,114,181 8.34
Mixed content 16,553,194 1.62
CA cert 1,710 0.00
No rule match 50,292,714 4.93

Host in rulesets 171,718,126 16.82

Host not in rulesets 849,218,603 83.18

https://trac.torproject.org/projects/tor/ticket/8774
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Figure 2: Number of domains and coverage in each ranking tier, for domains found in all rulesets, and
domains in rulesets that are active in Firefox.

Listing 2: Rule expecting trailing slash on top level.

<rule from="^http ://( www \.)? paypal \.com/"
to="https ://www.paypal.com/"/>

However, this is behavior does not extend to all cases of
URLs, which can lead to rulesets with errors. Indeed, Fire-
fox does not add a trailing slash for sublevel URLs, e.g.,
http://paypal.com/accounts. To handle such URLs, the
ruleset author would have to create a rule that handles both
cases, i.e., users adding a trailing slash or not. This results
in rulesets with inconsistent handling of the same URL de-
pending on the presence of a trailing slash. For example, in
the ruleset in Listing 3, http://www.google.com/analytics
gets modified to https://, while the version with a trail-
ing slash (analytics/) does not get modified. The opposite
happens for http://support.apobox.com/system which does
not get modified to https://, while the presence of a trailing
slash will result in correct handling.

Listing 3: Mishandling due to lack of trailing slash.

<rule from="^https ?://(?: www \.)? google\
.(?: com ?\.)?\w{2 ,3}/(?= calendar|
dictionary|foobar|ideas|partners|
powermeter|webdesigner)"

to="https ://www.google.com/" />

Missing Target Hosts. As can be seen in Listing 4,
http://images.google.com and the other regional versions
are configured to be modified to https://. However this
ruleset has a single target host (for google.com), and as a
result, the other regional sites of http://images.google.*

will not be protected.

Listing 4: Example of missing target host in ruleset.

<target host="images.google.com" />
<rule from="^http :// images \. google \.((?: com ?\.)

?\w{2 ,3})/"
to="https :// images.google .\$1/" />

To identify how many rulesets are effected by this type
of error, we extracted all the URLs from the test tags and
checked if they match the target hosts of the ruleset they
belong to. We found that 76 rulesets (from 292 test URLs)
failed to match to the host. Next, we created a simple
fuzzing tool that extracted the regular expressions from the

rules (<rule from="...." />), and created a random string
that matched the regular expression. While these URLs are
obviously invalid to the server, they should nonetheless be
caught and modified by HTTPS Everywhere (and our sys-
tem). This allowed us to detect 440 rulesets, from 492 rules,
that were not modified because they failed to match to any
target host in the ruleset and, thus, the modification defined
by the rule was never enforced. In total, we found 487 rule-
sets with this type of error. The automated rule validation
tool employed by HTTPS Everywhere (see Section 3.1.3)
does not capture this error.

Rule Coverage. As shown in Table 13 rulesets miss cer-
tain URL patterns, even for domains that are covered. This
shortcoming is expected to a degree, as the rules are cre-
ated manually by the community and many domains have
complicated structures and HTTPS support. This occurs
even for critical sites, such as Google, where for example
services accessed through the www.google.com/service do
not get modified (e.g., http://www.google.com/maps). This
also means that HTTPS Everywhere does not handle any er-
ror URLs (http://www.google.com/notavailable). While
HTTPS Everywhere could potentially specify rules that cover
non-existing URLs (google.com/.*), such an approach is
too risky, since other URLs that do not support HTTPS
might match the rule and break the user’s browsing experi-
ence.

6. RELATED WORK
By sniffing unencrypted network traffic adversaries can

learn which websites are visiting, as well as obtain sensi-
tive personal user information. A recent study by Hilts and
Parsons [17] revealed that sites that contain a large number
of trackers often fail to employ HTTPS when transmitting
those identifiers [17]. Englehardt et al. [16] argued about
how this can be used for mass user surveillance across differ-
ent services. Even on websites that support HTTPS, client-
side state such as that stored in cookies is leaked in unen-
crypted connections. These leaked cookies can be hijacked,
leading to attacks with severe implications [27]. As demon-
strated by Zheng et al. [34], adversaries that deploy man-in-
the-middle attacks can take advantage of HTTP connections
for injecting secure cookies, which can even result in account
hijacking. As pointed out Sivakorn et al. [27] and Mundata
et al. [22], cookie-based authentication has become increas-



ingly complicated rendering access control flaws a common
incident, as website administrators struggle to correctly sep-
arate access permissions to different parts of their web ser-
vices across a large number of inter-connected cookies.

ForceHTTPS [19] was proposed in 2008 by Jackson and
Barth in an attempt to offer an effective mechanism for en-
forcing HTTPS. The work was later revised and resulted
in the HSTS standard. Kranch and Bonneau performed an
extensive study on the deployment of HSTS (preload) and
certificate pinning in practice [20]. While their work offers
an extensive analysis of these security mechanisms, our work
offers a more comprehensive study on the mechanisms that
enforce HTTPS, as we also explore the relevant directives
of CSP, as well as client-side mechanisms such as HTTPS
Everywhere.

7. DISCUSSION AND FUTURE WORK
Kranch and Bonneau reported that out of the Alexa top

million websites that have adopted HSTS, a surprising 59.5%
had misconfigurations in their deployment [20]. When tak-
ing our analysis into consideration, it becomes apparent that
developers struggle when it comes to correctly handling the
nuances of existing security mechanisms, rendering hybrid
support of both HTTP and HTTPS risky and error-prone
(as demonstrated in [27]). As such, these findings highlight
the necessity to streamline the deployment of ubiquitous en-
cryption.

Services should also fully deploy HSTS and set the“secure”
attribute in all cookies. Cookies are not only exposed due
to the lack of encryption, but the absence of a strong origin
concept [8] coupled with their integrity and scope issues, can
lead to cookie injection and shadowing attacks as shown in
the work from Zheng and et al. [34].

Our experiments show that the relevant CSP directives
are also quite uncommon in practice. However, one should
keep in mind that CSP is not designed to enforce HTTPS
when loading a page, but instead focuses on the loading of
secure content. This mitigation is different from that of the
other mechanisms we study, and should be employed for
reducing insecure requests within specific usage scenarios.

HTTPS Everywhere is the most effective client-side mech-
anism that we have found available. Our tests against the
network dataset indicates that the number of supported
hosts and domains is limited. Even for hosts that have been
selected by the ruleset authors, we find URLs that are not
covered. We also found that their is significant room for
improvement when it comes to the automated evaluation of
rulesets prior to their incorporation to the extension.

Future work. Currently, major browsers will attempt to
connect over HTTP, when a specific scheme is not specified
by the user (unless an HSTS policy exists for the specific
domain). A different approach would be to attempt to con-
nect over HTTPS by default, and keep HTTP as a fallback
option, which is the approach of some of the mechanisms
we explored in Section 3. However, this approach poses sev-
eral interesting challenges, which we plan on exploring in the
future. While cases where HTTPS is not supported can triv-
ially be handled by falling back to HTTP, instances of par-
tial support of HTTPS where certain resources or types of
functionality fail silently are challenging to detect (e.g., dur-
ing our experiments we found that accessing product pages
in Amazon over HTTPS broke some functionality and items

could not be added to the cart4; this has also been previously
reported by HTTPS Everywhere users [4]). Such scenarios
can be detected by ruleset authors and handled in HTTPS
Everywhere; however, the manual nature of this process can
lead to errors, as we demonstrated, and is inherently non-
scalable.

8. CONCLUSION
The lack of support for ubiquitous encryption in web ser-

vices poses a serious threat to the security and privacy of
our online communications. Apart from personal informa-
tion being leaked as it travels in cleartext, recent work has
shown how cookie-enabled attacks can lead to the exposure
of sensitive user information and account functionality. Al-
beit a known problem, the majority of popular websites have
failed to tackle this issue. A number of different mechanisms
have been proposed that attempt to enforce encrypted con-
nections and prevent such attacks. Server controlled mech-
anisms like HSTS (preload) are becoming increasingly de-
ployed, while client-side options like HTTPS Everywhere
have attracted the attention of end users and have been in-
tegrated in privacy oriented solutions like the Tor browser.

However, our extensive analysis of these mechanisms, which
we conducted with our testing framework and a large dataset
with real-world traffic, revealed a series of implementation
flaws and deployment issues in all the widely available mech-
anisms. As such, we argue that unless websites strive to offer
ubiquitous encryption across their entire domains, and take
full advantage of the security mechanisms at hand, existing
practices of partial deployment and best-effort approaches
will continue to expose users to significant threats.
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APPENDIX
A. APPENDIX

Table 14: Popular sites that do not cover their sub-
domains in HSTS preload.

Sites Alexa rank

facebook.com 3
twitter.com 9
paypal.com 43
wordpress.com 45
airbnb.com 365
usaa.com 478
united.com 695
bitbucket.org 798
mega.co.nz 915
dropboxusercontent.com 1489
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