
Protecting Insecure Communications
with Topology-aware Network Tunnels

Georgios Kontaxis Angelos D. Keromytis
Department of Computer Science

Columbia University
New York, NY, USA

{kontaxis, angelos}@cs.columbia.edu

ABSTRACT
Unencrypted and unauthenticated protocols present secu-
rity and privacy risks to end-to-end communications. At the
same time we observe that only 30% of popular web servers
offer HTTPS. Even when services support it, implementa-
tion vulnerabilities threaten their security. In this paper
we propose an architecture called Topology-aware Network
Tunnels (TNT) which minimizes insecure network paths to
Internet services without their participation. TNT is not
a substitute for TLS. We determine that popular web des-
tinations are collocated in a small set of networks with 10
autonomous systems hosting 66% of traffic. At the same
time cloud providers own these networks or are very close
to them. Therefore clients can strategically establish secure
tunnels to these providers and route their traffic through
them. As a result adversaries not able to compromise the
web service or its hosting provider are presented with en-
crypted and authenticated traffic instead of today’s plain
text. The strategic placement of network tunnels, gathering
of network intelligence and routing decisions of the TNT ar-
chitecture are not found in VPN services, network proxies
or Tor. Existing overlay routing systems such as RON and
one-hop source routing cannot substitute TNT. We imple-
ment our proposal as a routing software suite and evaluate
it extensively using diverse cloud and ISP networks. We
eliminate plain-text traffic to the Internet for 20% of web
servers, reduce it to 1 network hop for an additional 20%
and minimize it for the rest. We preserve the original net-
work latency and page load time. TNT is practical and can
be deployed by clients today.

1. INTRODUCTION
Unencrypted and unauthenticated protocols present secu-

rity and privacy risks to end-to-end communications. End-
user Internet service providers (ISPs), including popular ones
such as AT&T and Verizon, inject advertisements [22] and
tracking headers [3] in the unencrypted HTTP traffic of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978305

their customers. They also tamper with SMTP traffic [4]
to disable its opportunistic encryption. Intelligence agencies
eavesdrop [8] on unencrypted traffic to piggyback on HTTP
cookies for the purpose of tracking individual users. In ad-
dition, they impersonate popular Internet services through
man-on-the-side attacks on unencrypted network paths for
user exploitation and surveillance. Finally, network adver-
saries [21] inject JavaScript code to unencrypted HTTP traf-
fic in transit to launch denial of service attacks.

Secure protocols, such as HTTPS, protect from these at-
tacks however they are not widely deployed. Recent efforts
to make HTTPS more affordable [2] and easy to deploy [1]
are steps towards the right direction. Unfortunately a signif-
icant portion of web traffic still traverses the network with-
out any security. In this paper we evaluate the security of
10,000 popular web sites and find that only 30% support
HTTPS. We examine HTTPS-capable sites and discover
that 53% let their visitors default to plain-text HTTP. Over-
all only 56 of the 10,000 sites fully protect their users through
a combination of HTTPS and HSTS preloading. Even when
HTTPS is available implementation vulnerabilities threaten
its security. Recent attacks such as FREAK [14] and Heart-
bleed [11] have impacted hundreds of thousands of Internet
services. End users depend on administrators of individual
services to deploy HTTPS and keep their systems current.
Unfortunately services may remain vulnerable for months
after the disclosure of an attack [10].

In this paper we propose an architecture called Topology-
aware Network Tunnels (TNT) which minimizes insecure
network paths to Internet services without their participa-
tion. We argue that if end-to-end security with a server is
not available the next best thing is a secure link to a net-
work that is close to the server and will act as a gateway. We
determine that popular web destinations are collocated in a
small set of networks with 10 autonomous systems hosting
66% of traffic. At the same time cloud providers own these
networks or are in close proximity. Therefore clients can
strategically establish secure tunnels to these providers and
route their traffic through them. As a result adversaries,
such as ISPs and Internet backbone operators, not able to
compromise the web service or its hosting provider are pre-
sented with encrypted and authenticated traffic instead of
today’s plain text. Making routing decisions given multi-
ple traffic avenues is not trivial. We present the concept
of topology-aware tunneling where a network overlay main-
tains secure links to multiple vantage points, considers the
destination of traffic and routes packets through the tun-
nel maximizing content security. The strategic placement

http://dx.doi.org/10.1145/2976749.2978305

Architecture Content Security Anonymity

TNT Complete No

Tor Partial Yes

VPN Partial No

Table 1: TNT encrypts the entire path between the
client and the destination network by optimizing
tunnel placement and traffic routing. The same logic
in Tor would compromise its anonymity properties.

of network tunnels, gathering of network intelligence and
routing decisions of the TNT architecture are not found in
Virtual Private Network (VPN) services, network proxies or
Tor. Table 1 draws the distinction with these services and
in section 3 we expand on their differences. Existing overlay
routing systems such as RON and one-hop source routing
cannot substitute TNT as they lack the tunnel-placement
decisions and security-oriented metrics which are contribu-
tions of our work. Content delivery networks optimize their
proximity to their clients but do not offer any security nor
do they consider the path to the original server.

TNT enables users to take action when end-to-end secu-
rity is not available and make sure their traffic is encrypted
and authenticated as it transits the Internet. Our architec-
ture is enabled by the rise in cloud computing and specif-
ically infrastructure-as-a-service (IaaS) providers that are
also used by most web services. The services themselves
do not need to make any changes on their end and are not
impacted in any way. While TNT is motivated by the preva-
lence of insecure communication protocols it can also bene-
fit vulnerable implementations of secure protocols. HTTPS
services vulnerable to attacks such as FREAK, using weak
ciphersuites or expired certificates can be accessed through
TNT to minimize exposure to a potential adversary. The
decision to visit an HTTP server as well as a vulnerable
HTTPS server over TNT is made transparently by TNT
without the user’s involvement. We implement TNT using
TLS however in our architecture the client controls both
endpoints of the connection. In HTTPS and similar proto-
cols the web server controls just one of the endpoints. As
a result we can update both ends should new TLS vulnera-
bilities arise. In HTTPS clients and servers patch their end
independently. Moreover updating a TNT deployment ben-
efits all the web services in the networks it covers. For the
same effect, all services, e.g., in a cloud, must patch their
individual systems. TNT is not a substitute for TLS. Un-
fortunately with the majority of web services incapable of
TLS as well as a plethora of vulnerable and misconfigured
TLS deployments TNT can benefit network security.

We implement our proposal as an IP routing software suite
with negligible processing and memory overhead on the sys-
tem. TNT can handle all transport and application layer
protocols and thus protect traffic beyond HTTP, for instance
SMTP. Realizing TNT is not a trivial process. It involves
network-measurement as well as system-implementation chal-
lenges. The mapping of Internet routing must cope with
some routers being uncooperative or adversarial towards ac-
tive measurements by standard tools. At the same time
implementing TNT on the client must offer the protection

benefits of an inline system without connectivity disruption
in case of failure. The nature of TNT entails updating the
operating system’s routing table in real time which if not
done properly will break established TCP connections.

We evaluate our implementation of TNT extensively us-
ing a diverse set of cloud and Internet service provider net-
works. We find significant security benefits while preserving
network performance. TNT provides confidentiality and in-
tegrity for the entire path between the client and the local
network of the server for 20% of popular web servers. User
traffic towards these servers is currently traversing the In-
ternet in plain text. For an additional 20% of servers we
are able to reduce network paths to a single hop. In general
TNT reduces the number of distinct networks unencrypted
traffic must traverse on the Internet by at least 33% in 70%
of the cases and at least 50% in 40% of the cases. Overall
TNT offers consistently shorter paths than ISPs. Shorter
paths minimize the exposure of plain-text traffic to network
adversaries. In terms of network metrics we do not deviate
in latency from a fast academic network and are consistent
in page load time for popular websites. Our implementation
is practical and can be deployed by clients today by taking
advantage of virtual machine platforms on cloud providers.
Cloud providers could also offer TNT as a service similar to
initiates by CDN providers enabling TLS for services they
host [2]. TNT bypasses native traffic routing on the Inter-
net and this may upset the load balance on the existing net-
work infrastructure. However network provisioning is based
on demand and our proposal, by design, funnels traffic to
popular destinations. Accommodating TNT is aligned with
improving connectivity to the cloud in general.

Our work makes the following main contributions;

• We identify the clustering of Internet services inside
cloud providers and propose strategically establishing
encrypted tunnels to their networks to avoid exposing
plain-text traffic to the Internet.

• We define the following security-oriented metrics for
routing traffic through our architecture; (a) Number of
autonomous systems (AS) plain-text traffic must tra-
verse to reach an Internet service. Ideally zero because
the service is in the same network as a TNT exit. (b)
Involvement of a particular trusted or untrusted AS.

• We implement and evaluate TNT as a IP routing soft-
ware suite. We address non-trivial challenges in net-
work measurements and system integration.

2. MOTIVATION
This paper is motivated by the limited presence of en-

crypted and authenticated communication protocols on the
Internet. We focus on HTTPS and 10,000 popular web ser-
vices according to Alexa. We find that only 30% offer HTTP
over TLS. In practice 15% redirect to HTTPS. Just 4% of the
sites have an HSTS policy that prevents an active network
attacker from downgrading clients to plain HTTP. At the
same time we observe that popular web services are collo-
cated in a small set of networks with 10 autonomous systems
hosting 66% of the traffic generated by a web browser when
visiting the home page of 10,000 popular web servers. We
argue that if clients can reach these few networks securely
they are able to connect to the hosted web services without
exposing their plain-text HTTP traffic to the Internet.

HTTPS response HTTPS? % #

1 Error (Conn. refused) No 21.4 2144
2 Error (Invalid cert.) No 22.1 2205
3 Error (HTTP 4xx 5xx) No 2.9 292
4 HTTPS downgraded No 21.5 2152

Total No 67.9 6793
5 OK Yes 17.0 1695
6 OK (HTTP upgraded) Yes 15.1 1512

Total Yes 32.1 3207

Table 2: HTTPS capability of 10K popular domains.
Only 32.1% offer transport layer security.

2.1 HTTPS Adoption
To quantify the extent to which HTTPS has been adopted

by Internet sites we evaluated 10,000 popular web domains
according to Alexa.We focused on the .com, .org and .net

top-level domains that resolved to US ASes. We verified
the TLS certificates presented by these domains using the
certificate authorities trusted by Mozilla. Table 2 presents
our findings. Our HTTPS connection attempts were re-
fused by 21.4% of the servers. Even worse, 21.5% redirected
our HTTPS requests to HTTP. Additionally, 22.1% of the
servers returned a TLS certificate which failed verification.
Overall we failed to contact almost 70% over HTTPS.

The few sites supporting both HTTP and HTTPS need to
make sure their visitors reach their secure endpoint. Search
engine results and links from other sites might steer users to-
wards the insecure HTTP. Also, if users omit the https://

scheme when typing in the address bar, their browser will de-
fault to the insecure http://. Unfortunately only 47% of the
HTTPS-capable sites (15.1% overall) redirect their visitors
to HTTPS. For the majority of HTTPS-capable sites users
will continue to visit them over HTTP. To make matters
worse an active network attacker can prevent the redirection
to HTTPS from taking place by replacing https:// URLs
with http:// in the server’s responses in flight. Some ISPs
are known to remove the STARTTLS string from SMTP
responses serving a similar purpose for e-mail. The use of
the Strict-Transport-Security HTTP header can miti-
gate this by instructing the user agent to place future re-
quests exclusively over HTTPS. We evaluated the use of
HSTS among servers redirecting visitors to HTTPS and
found that only 25% return a valid policy. Overall out of
10,000 popular web servers we find that only 3,207 (32.1%)
support HTTPS and just 420 (4.2%) support HTTPS with
an HSTS policy. Note that just 56 domains are found in the
hard-coded HSTS preload list of Chrome and Firefox.

2.2 Web service collocation
To study the geography of Internet services we mapped

the web sites from our data set to their respective ASes. A
site may depend on more than one domains for resources
such as scripts and images so we used a web browser to fully
render the home page of each domain in our data set and
recorded the destinations involved. We did not log HTTPS
requests. We consider the home page of a domain to be
the content received when visiting the exact domain or the
standard www subdomain.

We visited the home pages of 9,944 domains from out data
set. We excluded the 56 HTTPS-capable domains found
in the HSTS preload list of Chrome. Ultimately we made

% Autonomous System Name

17.1 Akamai Technologies, Inc.
13.9 Amazon.com, Inc.
11.4 CloudFlare, Inc.
9.9 Google Inc.
3.7 EdgeCast Networks, Inc.
2.9 SoftLayer Technologies Inc.
2.1 Fastly
1.7 Tinet SpA
1.6 Internap Network Services Corp.
1.5 Rackspace Hosting

65.8 Total

Table 3: Top 10 most frequent ASes hosting sites.

701,929 HTTP requests towards 34,893 unique domains to
fully render the home pages. We subsequently resolved the
domain names to their respective IP addresses and mapped
them to ASes based on BGP prefix announcements collected
by APNIC. Table 3 presents the top 10 most frequent ASes
hosting the web servers involved in our 701,929 HTTP re-
quests. The top 10 most frequent ASes host servers that
receive 65.8% of all HTTP requests made.

Web servers hosted by Google present an interesting case.
22% of the HTTP requests made to Google servers target
the google-analyics.com and 13% the doubleclick.net

domain. As evidence has shown [8] passive network ad-
versaries colluding with Internet backbone providers collect
identifiers involved in requests to these domains to track
users. It is also interesting that to reach Google our requests
had to travel through two different tier 1 Internet backbone
providers. The requests were made from a residential ISP
and a university network in the US. In contrast, using our
proposal (TNT) we can reach Google in a single network
hop without exposing traffic to backbone providers.

To summarize, web services are clustered in few networks
owned by cloud and other infrastructure-as-a-service (IaaS)
providers. If end-to-end security with these services is not
available, the next best thing is for users to establish a secure
link to these networks and route traffic through it. Cloud
providers make this approach practical as users can deploy
their own virtual machines in the same networks.

3. RELATED WORK
To limit the exposure of their plain-text traffic some users

connect to Virtual Private Network (VPN) servers offering
encrypted tunnels between the client’s device and some fixed
point in the Internet beyond which traffic is unencrypted.
While such services protect from a local network attacker,
exposure to network adversaries might even increase as op-
posed to a direct route without the VPN service. Since
VPN gateways are not optimized to be close to web servers
user traffic might traverse more autonomous systems or even
cross national borders, e.g., from a US gateway to a Euro-
pean server. Even VPNs with diverse gateways employ them
without considering the destination of traffic.

Tor [15] is an anonymity network where traffic is encap-
sulated in layers of encryption and usually travels between
three nodes before the original TCP/UDP packet exits to
the Internet. By design Tor attempts no correlation be-
tween the exit of an encrypted circuit and the destination

google-analyics.com
doubleclick.net

of traffic. Sherr et al. [24] propose the introduction of per-
formance metrics in anonymous routing systems to affect
circuit selection. Even though their work focuses within the
anonymity network one could propose extending it so that
exit nodes consider the destination of traffic. That would
compromise the anonymity Tor offers. Even if someone were
to give up anonymity we argue that the Tor network cannot
carry user traffic close to Internet services. Using the Tor
network status protocol we studied 1010 exit nodes with the
highest bandwidth consensus weight and found that only 1%
of them was located within major cloud networks. Meek [9]
and domain fronting in general set up HTTPS tunnels to the
cloud and CDNs and use them as gateways to masquerade
the client’s connection to a blocked website or Tor bridge.
The placement of gateways ignores the location of the web-
site and prefers networks an adversary is unlikely to unblock.
As a result, Tor serves a different purpose than TNT and the
two architectures complement each other. Table 1 summa-
rizes their differences. Compared to the work of Sherr et al.
we offer a complete implementation, evaluate it end-to-end,
and introduce security metrics for routing decisions.

Overlay networks have been used in the past to recover
from link failures in the underlying infrastructure and achieve
better end-to-end performance. Savage et al. [23] propose
Detour, an overlay where its members periodically exchange
performance metrics such as RTT and packet loss and base
their routing decisions on them thereby bypassing the In-
ternet’s native algorithms. LASTor [12] is a similar idea
for Tor. Andersen et al. [13] in RON use a similar archi-
tecture to quickly route around link failures. Both designs
limit their scope to members of the overlay and cannot be
used for availability or performance guarantees for the rest
of the Internet. Participating nodes evaluate each other on
a regular basis which is something that does not scale well
to the number of Internet services. Gummadi et. al [18] use
one-hop source routing (SOSR) to recover from link failures
in well-connected parts of the Internet. They maintain an
overlay of virtual routers and clients use them as proxies to
probe and connect to arbitrary network destinations when
their default route is unable to deliver traffic. Our work
differs from SOSR in two fundamental ways. In SOSR the
placement of routers is selected at random since this is more
likely to offer alternative links to most network destinations.
In contrast, we optimize the placement of TNT routers in
the edges of the Internet, inside cloud networks where Inter-
net services form clusters. We also make routing decisions
so as to carry encrypted traffic as close to the destination
as possible while SOSR prioritizes finding any available path
around a failed link. In terms of implementation TNT solves
engineering challenges such as routing updates in the pres-
ence of active client flows while SOSR reroutes traffic that
is already failing. In addition, our TNT router operates
on IP packets while offering an interface for applications to
select which traffic should be handled based on their own
context. This is similar to RON which is otherwise incom-
patible with our design. LASTor [12] is a modified Tor client
which uses a static AS-level map of the Internet to predict
network paths and avoid circuits with the same AS at its
edges. Astoria [20] follows a similar approach. In TNT we
carry out data plane measurements to reliably construct the
network path to a destination and reevaluate the path over
time to account for routing changes. Moreover [12,20] focus
on diversifying the ASes involved in the edges of a Tor path.

TNT minimizes the length of the Internet path from a client
to a server which is a different objective, optionally avoiding
specific ASes.

4. THREAT MODEL
In our threat model the adversary can both passively mon-

itor and actively alter network traffic at some point between
a client and a server. This includes end-user ISPs as well as
Internet backbone operators. Backbone networks, especially
Tier 1 providers, are able to eavesdrop and tamper with traf-
fic from multiple ISPs as it passes through. In section 1 we
describe incidents involving both types of adversaries.

Clients on a public network, e.g., WiFi hotspot, run TNT
locally on their system. Alternatively, in a trusted private
network such as a residential setup TNT can run on the
home router. We also consider the networks hosting In-
ternet services as trusted. Hosting providers have a clear
incentive to keep their network secure from external threats
and honor their agreement with customers. Cloud networks
where customer traffic may travel between data centers are
assumed to secure their links. As a matter of fact Google
has responded to evidence that intelligence agencies were
eavesdropping [7] on its data centers by encrypting [5] the
connections between them. Microsoft [6] has done the same.
An adversary able to gain access to the trusted networks or
systems of the client or the server is out of scope.

TNT creates encrypted tunnels between a client and key
networks where Internet services form clusters, namely in
the cloud. As a result adversaries not able to compromise
the services or their hosting providers are presented with en-
crypted and authenticated traffic as opposed to plain text.
This includes end-user ISPs and Internet backbone opera-
tors which are presently a threat because of their position in
the network. It might seem that TNT exits create appealing
targets where Internet traffic is funneled through a few net-
works. However, an adversary able to monitor tunnel exits
is already able to monitor the networks hosting the servers
and gains no advantage by the presence of TNT.

5. ARCHITECTURAL OVERVIEW
We present an architecture called Topology-aware Net-

work Tunnels (TNT) which minimizes insecure network paths
to Internet services without their participation. An insecure
path is a set of links over the Internet carrying traffic of un-
encrypted and unauthenticated protocols such as HTTP or
SMTP. Shorter insecure paths limit the exposure of plain-
text traffic to passive and active network adversaries. At a
high level, TNT establishes a network overlay of secure tun-
nels between the client and a set of vantage points. TNT
evaluates the network path from each vantage point towards
each packet’s destination. It then selects the tunnel mini-
mizing exposure to adversaries.

The TNT architecture addresses two key challenges: (1)
optimize the placement of secure tunnels across the Internet
and (2) determine the optimal tunnel to route each network
packet through.

5.1 Topology-aware Network Tunnels
The key intuition behind our proposal is that Internet

services are clustered in few cloud and infrastructure-as-
a-service (IaaS) providers. Therefore we can optimize the
number and placement of secure tunnels by collocating them

Server ACloud
Provider 1

Server B

Cloud
Provider 2

AS x

AS y

AS 1Client

Topology-aware
Tunnel 1

Topology-aware
Tunnel 2

AS z Server C

Figure 1: In the TNT architecture an overlay of secure topology-aware tunnels is established between the
client and a set of network vantage points. The number and placement of secure tunnels is strategically
selected to minimize the network distance packets need to travel outside the overlay to reach their destination.
Individual network packets are intelligently routed through the tunnel exiting closest to their destination.
Tunnel exits within the same network as the destination of a packet (Servers A, B) eliminate the exposure
of traffic to network adversaries.

AS 1Client Server AAS 2 AS n

Figure 2: Example of a network path on the Inter-
net. For insecure protocols such as HTTP data are
exposed across the path to operators of the under-
lying infrastructure.

with these infrastructure providers. This addresses the first
challenge from above. That way we can shorten the insecure
network path and essentially bring the client as close to these
servers as possible, ideally within the same network. As a
result, the traffic of insecure protocols will have minimal or
zero exposure on the Internet. Apart from minimizing the
overall path length, we also define metrics rewarding or pe-
nalizing the presence of a trusted or untrusted intermediate
network in the path. The trustworthiness of a network is
context specific so in this paper we focus on path length.

Figure 2 presents an example of a network path today.
The set of links and routers a client’s packets must tra-
verse to reach a server is grouped into autonomous systems
(ASes) and controlled by distinct organizations. Note that
such path might span different countries or continents. This
translates to potential passive and active attacks against the
user’s web browsing or e-mail.

Figure 1 presents the TNT architecture as an overlay on
the existing Internet infrastructure. TNT has established
secure tunnels between the client and two cloud networks
that exhibit high clustering of Internet services. Server A

is hosted by Cloud Provider 1 and we can reach it through
Topology-aware Tunnel 1 without exposing plain-text traf-
fic to the Internet. Packets towards Server A enter the tun-
nel before leaving the user’s network and are encrypted and

signed. Internet routers operated by AS 1 and AS x observe
an encrypted flow from the user to Server A. Without TNT
these ASes have access to plain-text traffic. Packets exit
the tunnel inside the trusted network of Cloud Provider 1

and are authenticated and decrypted. Subsequently pack-
ets transit the cloud provider’s network and reach Server A

which is unaware of the process. To reach Server C without
TNT the user’s packets will travel in plain text through AS

1, AS y and AS z. With a TNT link to Cloud Provider 2

they travel encrypted and signed through AS 1 and AS y.
Server C is an outlier not hosted in a cluster of Internet
services. In this case TNT is able to minimize the length
of the insecure network path so instead of 3 ASes only AS z

will be able to observe plain-text traffic. Next we describe
how the TNT router determines the optimal tunnel to route
traffic through so as to minimize insecure network paths.

5.2 The TNT Router
The TNT router is a routing software suite managing

topology-aware tunnels and directing traffic through them.
It is located on the client’s system or local network gate-
way, for instance a home router, and maintains topology-
aware tunnels with remote networks based on the placement
strategy described earlier. It has a network-mapping and
a decision-making component. Given the available tunnels
and a specific destination address the mapping component
employs a set of probes to discover the network path be-
tween each tunnel’s exit on the remote network and the
destination. The discovery process involves active and pas-
sive network measurements described in section 7. The in-
formation is passed on to the decision-making component
which evaluates it and assigns metrics on each tunnel based
on its suitability to carry traffic to the specific destination.
Based on the metric the TNT router directs outgoing traffic
through the tunnel which minimizes its value. This satis-

TNT
Router

Kernel IP routing table
Destination Gateway Genmask M IF
0.0.0.0 192.168.0.1 0.0.0.0 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 0 eth0

a.b.c.d

Kernel IP routing table
Destination Gateway Genmask M IF
0.0.0.0 10.0.0.1 0.0.0.0 0 tun0

a.m.z.n 192.168.0.1 255.255.255.255 0 eth0
a.z.u.r 192.168.0.1 255.255.255.255 0 eth0
192.168.0.0 0.0.0.0 255.255.255.0 0 eth0

10.0.0.1 0.0.0.0 255.255.255.255 0 tun0
10.0.1.1 0.0.0.0 255.255.255.255 0 tun1

a.b.c.d 10.0.1.1 255.255.255.255 1 tun1

(1)

(2)

(3)

(5)

Amazon cloud (a.m.z.n)

Azure cloud (a.z.u.r)

tun0

tun1

(3)

(3)

(3)

(4)

(4)

(4)

(4)

(4)

(6)

(6)

(6)

AS x

Figure 3: Operation of the TNT router when serving client request towards network destination a.b.c.d.
Initially it updates the system’s routing table (1) to route all network packets through one of the tunnels
by default (2). A client’s request for which there is no explicit route will go through the default tunnel (3).
Subsequently the TNT router will task the probes at each tunnel’s exit with determining their distance from
that destination so that future requests can be better routed (4). Following the path announcements from
the probes an explicit routing entry is created for that destination (5). The operating system will use that
entry for future client requests (6).

fies the second challenge from the beginning of this section.
To account for the dynamicity of Internet routing the TNT
router periodically reevaluates these metrics.

6. IMPLEMENTATION
We have implemented the TNT router as an IPv4 rout-

ing software suite and tested it in Linux. An Internet-
layer implementation is more flexible since it is transport
and application-layer agnostic. While the core of the router
operates at the IP layer, peripheral components implement
high-level logic that enables traffic handling based on trans-
port and application-layer heuristics. By default the router
focuses on HTTP (TCP port 80) and SMTP (TCP port 25)
traffic while all other traffic, including HTTPS, is routed as if
TNT is not in place. The TNT router presents its tunnels as
network interfaces to the operating system. The router de-
termines the optimal tunnel to route outgoing traffic through
and communicates its decision to the operating system. It
does so by interacting with the underlying routing struc-
tures. Updating the operating systems routing structures
affects how IP packets are transmitted through the avail-
able network interfaces. The operating system ultimately
writes outgoing packets to the appropriate interface.

The TNT router reacts to outgoing traffic but instead of
preventing its transmission until it makes a routing decision
it applies its decision to future flows to the same destination.
This way it does not disrupt the user’s activity or impact
network performance. While this means that the first flow
to a new destination is not routed optimally in section 7
we show that the routing state quickly becomes optimal fol-
lowing the router’s initialization phase. The routing state
persists across system restarts.

Realizing the TNT router addresses the following chal-
lenges: (1) Be practical to deploy, use and maintain. (2)
Reliably discover the network topology between tunnel ex-
its and Internet destinations to make routing decisions. (3)
Dynamically update the system’s routing table without dis-

rupting existing connections. Any naive routing update will
reset connection-oriented protocols such as TCP.

6.1 Deployment
We use OpenVPN to establish TLS-based tunnels with

virtual machines in the cloud. Tunnels appear as network
interfaces to the operating system with a standard 1500-byte
MTU. IP packets entering the tunnel are handled by Open-
VPN which fragments them if necessary, encrypts them, ap-
pends its signature and sends them to the other end of the
tunnel which reverses the steps. OpenVPN supports a vari-
ety of ciphersuites from OpenSSL. Our design is not specific
to a tunneling technology or ciphersuites.

The deployment of the TNT overlay is automated includ-
ing installing the TNT router locally and launching the nec-
essary virtual machines in the cloud. We use a combination
of Unix shell scripts and the command-line interfaces offered
by cloud providers. At the moment we prompt the user for
their cloud account credentials however we envisage a de-
ployment process without any user involvement. We do not
depend on specific cloud providers but deploying a virtual
machine is a provider-specific process which we need to im-
plement. We launch Linux virtual machines in the cloud and
configure OpenVPN on both ends of each tunnel. Once the
tunnels are established the deployment phase is complete
and the TNT router begins running on the user’s system
without the need for further interaction. Signing up for a
new cloud account can be streamlined as part of the de-
ployment script. Users do not share their virtual machines
with others but they do share the underlying physical hard-
ware. Attacks from a collocated virtual instance are beyond
the scope of our threat model. Cloud operators could offer
TNT links to their network as a service so that users do not
need their own virtual machines.

6.2 Operation
The TNT router has three components; (a) a TNT traffic

selection program running on the client, (b) the TNT rout-

ing daemon also running on the client and (c) probes running
on the remote end of each tunnel, which in our case are vir-
tual machines in the cloud. Figure 3 depicts the operation
of TNT. Initially the TNT daemon brings up the tunnels as
distinct network interfaces. One of them at random is set to
be the default interface meaning that all traffic TNT is con-
figured to handle goes through it. The system’s routing table
is updated from step 1 to 2 in the figure. Traffic TNT is not
configured to handle gets routed as if TNT is not in place,
i.e., still gets routed based on step 1 in the figure. So far
all tunnels but the default remain unused by the operating
system since it has no reason to prefer them over the default.
As a result the client’s initial requests to the Internet host
a.b.c.d will go over the default tunnel (step 3). Delaying
outgoing traffic until the TNT router calculates the met-
rics for a destination would impact performance. Setting up
a default TNT route instead protects traffic from end-user
ISPs without the need to wait for a routing decision. In
section 7 we show that the router quickly makes an optimal
decision applied to subsequent flows.

The TNT traffic selection program inspects outgoing traf-
fic for the purpose of identifying destinations that the TNT
router must handle. It uses libpcap and is able to identify
traffic flows. To select traffic it uses BPF expressions and by
default focuses on outgoing TCP flows to port 80 so as to se-
lect HTTP traffic. For each new flow matching the selection
filter it extracts the destination IP address and queries the
TNT routing daemon for an optimal route. If not found it
tasks the forward probes with with mapping their network
path to the destination (step 4). The forward probes subse-
quently communicate their findings to the routing daemon
directly. To facilitate the network measurements the traffic
selection program supplies not only the target IP address
but additional context such as the transport protocol and
destination port used. The forward probes listen on their
end of the tunnel interface for control commands. They use
active network measurements to discover the path to a des-
tination on demand and announce it back to the router. We
describe the measurement methodology in section 7.

The routing daemon interacts with the other components
in two ways; it looks up IP addresses in the current routing
table on behalf of the traffic selection program and evalu-
ates network path vectors received from the forward probes.
The traffic selection program queries the daemon with the
IP addresses of destination in outgoing traffic flows. An IP
address found in the routing table associated with a met-
ric value means the optimal tunnel to reach that particular
destination has been determined in the past. Otherwise the
traffic selection program receives a negative response. The
forward probes, tasked with discovering their network path
to a destination, announce it back to the daemon. When
evaluating the network path from a particular tunnel exit the
daemon calculates a metric value based the tunnel’s suitabil-
ity to carry traffic to that destination. In this paper we focus
on path length as our metric so the router the metric value is
the number of ASes on the path. It subsequently decides to
route traffic through the tunnel which minimizes the metric
and updates the operating system’s routing structures to di-
rect packets for that destination through a particular tunnel
interface rather than the default. In Linux the daemon uses
the Netlink1 interface to access and alter the necessary op-

1 http://lxr.linux.no/linux+v3.19/net/core/rtnetlink.c

erating system structures. In figure 3 the probes announce
paths with distance 2 and 1 respectively for a.b.c.d so a
decision is made to route the destination through tun1. Fu-
ture requests for that host will go through tun1. This is
done with an explicit entry in the operating system’s rout-
ing table (step 5). Note that the newly introduced route
will only be applied to flows matching the context this route
was generated. So a route generated because of an outgoing
TCP port 80 flow will only be applied to flows to that port.
Flows to 443 or some other port to the same destination will
not be affected. Applying a route only to specific transport
or application-layer flows is discussed later in this section.

The TNT router performs a series of optimizations to its
routing table. To avoid stale routing entries it implements a
decaying system where entries that have not been used for
routing recently are pruned from the routing table. Simi-
larly, for frequently used destinations it schedules lazy re-
assessments of the optimal path with exponential backoff
to stay current with Internet routing changes. TNT rout-
ing entries actually describe entire AS prefixes rather than
individual hosts. When the forward probes respond to a
mapping query for a particular destination host they lookup
and return the related BPG prefix the destination’s AS is
responsible for. This eliminates additional queries for ad-
dresses in the same prefix. Finally the router aggregates
routes by grouping adjacent route prefixes to form shorter
prefixes and reduce the number of entries in the table.

6.3 Transparent Routing Updates
Updating the routing table of a live end-user system to es-

sentially implement multihoming is not a trivial task. Net-
work routers dynamically change their routing table on a fre-
quent basis without the same challenge because they simply
forward IP packets without altering their header. However,
packets exiting an interface in an end-user system adopt2

that interface’s IP address as their source. A routing update
directing packets of an existing TCP connection through a
different interface will change their source IP address. Pack-
ets with the new source IP address will be dropped or met
with packets with the RST flag set since from the remote
endpoint’s perspective do not match any existing connec-
tion. Ultimately TCP connection will close unexpectedly.

To ensure non-disruptive updates to the operating sys-
tem’s routing table we implement a transitioning process
which guarantees the continuity of existing sessions in TCP
as well as UDP and ICMP logical sessions. We utilize the
support for multiple routing tables in the Linux kernel as
well as the functionality offered by its Netfilter framework.
The key idea is to split a routing update into two phases.
Initially a new route is taken into consideration only for new
connections while existing ones are routed as if the update
never took place. This guarantees continuity. Eventually
connections predating the update will terminate naturally
and the system will reach a stable state where all connec-
tions use the updated route and the old one is deleted.

To implement this two-phase routing we clone the cur-
rently effective routing table into a new routing table and
instruct the operating system to look up new connections in
the new table while keep reusing the old one for existing con-

2 While there are ways around that, upstream providers
usually implement egress filtering to block outgoing packets
with spoofed IP addresses. In TNT different tunnel inter-
faces are expected to exit in disjoint network prefixes.

http://lxr.linux.no/linux+v3.19/net/core/rtnetlink.c

Effective Routing Table
by Connection Status1

t TNT Event Routing State Existing2 New

0 Stable Main Main

1 Start Converging Main TNT0
2 Stable TNT0 TNT0

3 Update route X Converging TNT0 TNT1
4 Stable TNT1 TNT1

5 Terminate Converging TNT1 Main
6 Stable Main Main

1 Connection status is independent of the transport protocol used.
It is logical, applies to TCP as well as UDP and ICMP and is based
on timers and bi-directional IP packet exchange.

2 Existing connections are in a logically-assured state.
For TCP this is either the Related or Established state.

Table 4: Updating the operating system’s routing
table so as not to disrupt existing TCP connections.
The TNT router transitions the system from the
current table to an updated version by cloning the
table, modifying the new table and setting it as ef-
fective only for new connections.

nections. Initially we clone the default, main routing table
into a new table TNT0. (Time t0 in Table 4) The system
transitions into a state where any already established TCP
connections, as well as logically-assured UDP and ICMP
connections, keep using the main routing table whereas the
destinations of new connections are looked up in the TNT0
table. (t1) Eventually all connections predating the update
(t1) will naturally terminate and the system will reach a
state where all current and future connections will use table
TNT0 exclusively. (t2) Subsequently any updates after time
t2 will clone TNT0 into TNT1, enter a converging state t3

and eventually reach a stable state t4.
If we need to update the effective routing table while the

system is still converging from a previous update we must
allocate an additional table instead of recycling an existing
one. For example a new update during time t3 will cause
the effective table TNT1 to be copied to a new table TNT2
which will then be updated and marked as the effective table.
We cannot reuse table TNT0 at this time since it still being
used by connections predating the last routing update. We
try to carry out updates in batches to avoid the need for
more than two tables at a time. However traffic scenarios
such as web browsing might cause bursts of updates that do
not fit in a single batch. Under reasonable conditions Linux
does not limit3 us in the number of tables we can maintain.
As soon as all connections associated with an old routing
table are terminated that table becomes eligible for reuse
in a future routing update. In section 7 we quantify the
amount of routing tables necessary under realistic network
activity. A routing cache would eliminate the need for the
above technique. Since version 3.6 [19] the Linux kernel no
longer supports such cache for efficiency reasons. Windows

3 Since version 2.6.19 the Linux kernel supports up to 232

routing tables and efficiently addresses them using a hash
table. Previous versions supported up to 255 routing tables.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

C
D

F

Autonomous systems making up the network path to a web service

TNT-cloud

ISP-US-E

Uni-US-E

ISP-EU-W

Figure 4: CDF of the number of ASes on the net-
work path to each web service. TNT outperforms
ISPs by exposing zero traffic to the Internet for
18.5% as well as achieving one-hop paths for an ad-
ditional 19.5%.

7 implements a routing cache but the same reasons might
justify its removal from future versions.

To advise the operating system which routing table to use
for each destination lookup we use kernel routing policies.
Each routing table is associated with a mark and we use
Netfilter’s connection tracking to label new connections with
the mark corresponding to the new table. Policies match the
mark individual packets carry to specific routing tables.

6.4 Application-specific routing
As mentioned earlier both the operating system’s core

routing functions and the core of the TNT router make IP-
based routing decisions. At the same time it makes sense
to configure traffic routing preferences based on high-level
context coming from the transport and application layer.
For instance by default TNT must only handle IP packets
belonging to TCP port 80 flows (HTTP) while HTTPS and
any other traffic must not be affected. By default Linux
uses a global routing table which affects all packets and is
not suitable to our needs. To achieve the necessary flexibil-
ity we use routing policies which are combined with multiple
routing tables and the Netfilter framework. Using the latter
we mark specific connections or packets based on heuristics
such as destination port. Marked packets subsequently are
matched to specific routing policies leading to correspond-
ing routing tables. For example we have a IP routing table
that is only used for TCP flows to port 80. The system’s de-
fault table is never modified and, unless we explicitly mark
outgoing packets, traffic is routed as if TNT is not present.

7. EVALUATION

7.1 Network Proximity
We quantify the exposure of plain-text traffic to adver-

saries adversaries by mapping the network paths to popu-
lar web sites using a series of Internet vantage points. We
then compare the results to a TNT deployment to the AWS
and Azure cloud networks to evaluate the ability of TNT to
minimize traffic exposure. For our measurements we used
a total of 7 vantage points spread across the US and west-
ern Europe; 4 virtual machines in the Amazon Web Services

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Reduction in the autonomous systems when using TNT (%)

ISP-US-E

Uni-US-E

ISP-EU-W

Figure 5: CDF of the reduction (%) in ASes on a
network path when using TNT as opposed to an ISP.
TNT offers at least 33% in 70% of the cases.

(AWS) and Microsoft Azure (Azure) cloud, 2 end-user lines
in ISPs and access to a fast academic network. Our set
of hosts was compiled by visiting the home page of 9,944
popular web domains according to Alexa with phantomJS,
a Webkit-based, Javascript-capable headless web browser,
and collecting HTTP requests. Our final list, including the
initial domains, contains 34,893 unique domains resolved to
20,026 distinct IP addresses.

Our network mapping process correlates active network
measurements with BGP routing views [16]. This is the
same process followed by the forward probes of the TNT
router to discover network paths. To measure the actual
flow of packets between one of our vantage points and each
web server in our data set we sent ICMP type 8 as well as
TCP+SYN 80 packets to the destination host and elicited
ICMP type 11 responses packets from all intermediate net-
work devices using varying TTL values in the header. Some
network policies drop ICMP packets and firewalls at the des-
tination might drop all packets but the ones the service is
expecting. By using port 80 for web services we guarantee
minimal disturbance for our measurements. In section 6 we
discussed how forward probes of the TNT routing receive
the same information so as to adjust their measurements to
packets that are guaranteed to reach their destination undis-
turbed. Nevertheless some network policies silently drop
TTL-expired packets so we only considered complete net-
work paths for which we had identified all their hops ending
up with data for 15,020 of the original 20,026 hosts. We
subsequently resolved the IP addresses of each hop in the
network paths to their respective AS using BGP prefix an-
nouncements collected by APNIC. Finally we verified the
accuracy of our measurements by correlating the derived AS
paths with BGP views 4 from looking glass platforms. Our
methodology guarantees an accurate picture in the case of
transit, i.e., customer-provider, relationships between ASes
while leaving a margin of error in the case of peering agree-
ments where BGP announcements are not available outside
the participating ASes. In production the TNT router will
ignore AS paths produced by active measurements that can-
not be verified through BGP announcements.

Figure 4 presents the CDF of proximity, in terms of ASes
involved, of each vantage point to the web hosts in our data

4http://as-rank.caida.org, http://lg.he.net/

set. We define this as our exposure metric, indicating the
number of potential network adversaries, which the TNT ar-
chitecture aims to eliminate or minimize. A distance of zero
ASes in the figure translates to the server being in the same
AS as our TNT link. Similarly a distance of one AS indicates
a direct, peering relationship between our trusted AS and
the AS of the server. One may observe that the TNT archi-
tecture outperforms end-user ISP and university networks
by routing packets to 18.5% of destinations through ideal,
adversary-free, paths. Note that TNT also outperforms the
individual cloud networks we used. Zero hop network paths
in the case of ISPs are attributed to CDNs hosted in their
networks and occurs in less than 0% and 5% of the cases re-
spectively. Since end-user ISPs are part of our threat model
we do not consider these paths adversary-free. We have also
calculated the average proximity of TNT to the home page
of each domain as a whole, including all subresources. The
results are consistent with figure 4. Similar results describe
the proximity of TNT to advertisement networks. Addi-
tionally, TNT offers consistently shorter paths to almost all
destinations tested. Figure 5 shows that we achieve at least
33% and 50% shorter paths in 70% and 40% of the cases.

From a privacy perspective one might be skeptical about
funneling their traffic to a few large cloud providers. Note
that this traffic is already transiting the public Internet in
plain text. As TNT scales traffic is distributed closer to
its destination and user privacy improves. Nevertheless one
could use TNT to only access destinations that are hosted in
the clouds it maintains tunnels with, which is almost 20%.

7.2 Operating a TNT router
The TNT router is our implementation of topology-aware

tunneling for clients to use. To quantify its impact on the
end user’s system or other network gateway we carried out a
web browsing session that generated realistic network traffic
patterns for the router to handle. We instrumented Firefox
to visit in succession the home pages of 1,000 popular web
domains according to Alexa. Firefox waited for each page
to fully load before moving on to the next and we cleared
its cache between sessions. HTTPS traffic was unaffected by
TNT and was routed through the default interface. Plain-
text HTTP was dominant as shown in section 2.

Our evaluation focuses on the impact the router has on
the system’s resources and is expressed in hits in the rout-
ing table, the number of concurrently active routing tables
as described in section 6 and the number of entries found
in the effective routing table over time. The first measure
determines the amount of active network measurements nec-
essary. The second and third measures determine the stress
on the system’s CPU and memory.

Initially we measured how quickly the operating system’s
routing table converged to its optimal configuration so that
each IP packet is routed through the tunnel that exits closest
to its destination. An IP packet with a destination address
for which we do not yet have an explicit route is classified
as a lookup miss and results in forward probes mapping and
assessing the path to that destination. On the other hand,
a destination address for which TNT knows the best way
to reach it has an entry in the routing table and consti-
tutes a lookup hit. Figure 6 presents the hit ratio over time.
One may observe that approximately for the first 500 con-
nections TNT has enough optimal routes to satisfy 50% of
the destinations involved. This indicates a fast bootstrap

http://as-rank.caida.org
http://lg.he.net/

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

H
it

R
at

io

Time measured in New Outgoing Connections

Initial Browsing
Subsequent Browsing

Figure 6: Ratio of optimal versus suboptimal TNT
routing over time. Initially the ratio is low caus-
ing forward probes to map network paths. Later on
it quickly rises indicating that few popular destina-
tions have been mapped.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450

R
ou

tin
g

Ta
bl

e
P

re
fix

es

Time measured in Route Updates

Initial Browsing
Subsequent Browsing

Figure 7: Number of entries in the system’s effec-
tive routing table. The TNT router creates explicit
entries per AS as part of its operation. In prac-
tice memory consumption is negligible and process-
ing time near constant.

phase. Over time the hit ratio increases and by the end
of the browsing session we see that TNT was able to sat-
isfy almost 80% of the destination lookups. For subsequent
browsing sessions the hit ratio remains between 100% and
98%. The slight drop is attributed to sites with dynamic
content.

The TNT router adds a network-specific route, associated
with a metric, for every destination the distance to which
has been determined by the forward probes. As the user
visits more and more unique Internet destinations the rout-
ing table grows. Web browsing is a representative example
of this scenario as it involves a plethora of different servers.
Figure 7 presents the number of routing entries in the effec-
tive routing table over time. Note that the effective routing
table is the one the operating system will use to look up the
destinations of new connections. During the initial browsing
session the size of the routing tables reaches approximately
1400 entries. That might seem daunting compared to the
initial 2 entries for most systems with a single network in-
terface. However the implementation of the routing table
(fib_table) in Linux is highly efficient5. It uses hash ta-
bles to lookup destinations in near constant time. The only

5 http://lxr.linux.no/linux+v3.19/include/net/ip fib.h

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

A
ct

iv
e

R
ou

tin
g

Ta
bl

es

Time measured in Route Updates

Initial Browsing
Subsequent Browsing

Figure 8: Number of routing tables concurrently ac-
tive. Following an update existing connections keep
using the previous version the table to avoid disrup-
tions. In practice memory and processing overhead
are negligible.

way the number of entries impacts the system is in terms
of memory consumption. However the way route informa-
tion is stored in data structures is also efficient as it groups
common parameters between routes to a single data struc-
ture (fib_info) that is shared by all routes. In practice
the memory overhead for the number of routes TNT intro-
duces is negligible even for embedded systems such as home
routers. Note that we periodically expire routes that have
not been recently involved in lookups.

In order to ensure a smooth transition when updating the
routing table the TNT router uses auxiliary tables as de-
scribed in section 6. Visiting a page causes multiple con-
nections to be created in an asynchronous bursty manner
which may result in an equally bursty set of routing table
updates. Figure 8 shows how the system converges from
multiple routing tables to a single one. Multiple tables are
used only during routing updates which are infrequent. We
argue that web browsing models the worst case scenario in
terms of traffic patterns and so this figure sets an empirical
upper bound on multiple routing policies and tables.

7.3 Web Browsing over TNT
To quantify the effect TNT has on the web browsing ex-

perience we studied the round-trip time (RTT) of packets
towards the respective servers along with the overall load
time for each page. Note that we measured RTT from the
client’s perspective. Her packets had to traverse a TNT link,
reach the cloud network and then proceed to their final des-
tination. Our baseline was an academic network with a fast
Internet connection in the east coast of the US. In terms of
network latency, as figure 9 shows, TNT offers comparable
times to our baseline. We sent TCP packets to destination
port 80. In terms of page load time figure 10 shows consis-
tent results between TNT and the baseline.

8. SECURITY DISCUSSION
For destinations hosted in the cloud a passive Internet ad-

versary sees an end-to-end encrypted connection. Examples
are servers A and B in figure 1. Such destinations are the
primary use case for TNT so clients can reach them without
exposing plain-text traffic to the Internet. Optionally, TNT
may also leverage the cloud as a gateway to reach arbitrary
Internet destinations over minimal unencrypted paths. Such

http://lxr.linux.no/linux+v3.19/include/net/ip_fib.h

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000

R
ou

nd
-tr

ip
 T

im
e

(m
s)

Web servers

Baseline routing
TNT routing

Figure 9: RTT for packets routed either through a
fast academic network or a TNT link to AWS.

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000

 0 100 200 300 400 500 600 700 800 900 1000

P
ag

e
Lo

ad
 ti

m
e

(m
s)

Web pages

Baseline routing
TNT routing

Figure 10: Load time for sessions routed through a
fast academic network or a TNT link to AWS.

example is server C in figure 1 where only the path between
the cloud and the server is unencrypted. We have shown
that in such cases TNT always creates shorter paths. There
is however a tradeoff between reducing the number of ASes
observing plain-text traffic and routing it through networks
that may not have originally observed it. Especially ASes
adjacent to the cloud may seem at an advantageous position
to monitor the browsing behavior of TNT users. However we
do not observe any notable deviation in the shape of the fre-
quency distribution of ASes involved when TNT is present.
Without TNT the most frequent AS is found in 22.5% of the
paths and with TNT the most frequent AS is found in 19%
of the paths. These are two different ASes and naturally,
because of our routing decisions, some ASes see more and
others less traffic. However, as far as users are concerned
there is no single AS that can observe more of their brows-
ing history than without TNT. This can be explained by
cloud providers having multiple upstream providers for re-
dundancy and load balancing reasons. In fact, the diversity
of ASes involved actually increases.

When the cloud is used as a gateway by TNT it appears to
be the source of clients’ traffic at the IP level. This facilitates
TNT routing. We do not attempt to hide or anonymize the
source or destination of traffic. ASes observing encrypted
client traffic entering the cloud and unencrypted traffic exit-
ing the cloud can attribute cloud-originating traffic back to
a particular client. An adversary can use the timing and size
of packets to match encrypted flows between clients and the
cloud to plain-text traffic between the cloud and external
sites. Cover traffic and shaping techniques may obfuscate

such heuristics. However, we argue that the actual content
of plain-text traffic carries a plethora of information that
can identify users. For instance HTTP cookies, referrers
and search terms are much more reliable in tracking users
than the IP address of the device originating the traffic.

An active adversary could try to either block our abil-
ity to map network paths or falsify the data we receive. It
could also try to block TNT links. To make TNT network
measurements resistant to blocking we tailor our probes to
the packets a specific service is expecting to receive. For
HTTP we transmit IP packets with a TCP header indicat-
ing destination port 80. An adversary blocking such packets
would also stop actual user traffic towards a service. Finger-
printing traffic generated by TNT measurements is possible
though. Instead of blocking our network measurements an
adversary could tamper with the data we receive by spoofing
responses from upstream routers. However in section 7 we
describe how we correlate network paths resulting from data
plane measurements with AS paths from BGP announce-
ments. A measured path that is infeasible is not taken into
consideration by TNT. Attacks against BGP are beyond the
scope of this work and any solution is orthogonal. An active
adversary situated between the client and the cloud could
try to prevent TNT links from being established. Our threat
model does not include censorship and failure to run TNT in
a network should warn users about the operators intentions.

Finally it might seem that TNT centralizes traffic flows
within a few cloud networks which become appealing tar-
gets. However our threat model focuses on adversaries that
are not powerful enough to attack the cloud but can carry
out passive and active attacks today because of their loca-
tion on Internet. This includes ISPs and other infrastruc-
ture operators. Moreover the key idea behind TNT is to
utilize cloud networks to reach destinations already hosted
within them. Therefore adversaries powerful enough to at-
tack the cloud gain no advantage from the presence of TNT.
As an additional, entirely optional, use for TNT we propose
routing traffic to Internet destinations outside the cloud as
to minimize the network path to them. While this makes
such traffic available to adversaries capable of compromis-
ing cloud networks we argue that the benefit of shielding
plain text traffic from every other adversary on the Internet
presents an appealing tradeoff. At the same time the TNT
architecture benefits from and encourages scaling to more
cloud networks. We thus expect that individual clouds will
see a decrease in the traffic going through.

9. LIMITATIONS
TNT maps network paths using IP-based measurements.

It cannot identify hops operating below OSI layer 3 such
as in the case of MPLS tunnels. As a result it will mis-
represent the length of network paths featuring such traffic
encapsulation. This is not a limitation of the TNT archi-
tecture but a constraint imposed by our implementation of
network measurements. Gueye et al. [17] can approximate
the geographical location of an IP host in the presence of
loaded links. They use a set of known landmarks to com-
pare the perceived end-to-end network delay to expected
propagation time of the underlying physical links. Using the
existing TNT distributed architecture we could approximate
the location of network hops on the Internet and highlight
hops that appear adjacent at layer 3 but are separated by a

great physical distance such as in the case of an overseas or
cross-country link.

10. CONCLUSION
In this paper we enable users to minimize the exposure

of their plain-text traffic to Internet services without their
participation. We find that most web servers are clustered
in the networks of cloud providers. Therefore we propose to
strategically establish secure tunnels to these networks and
intelligently route traffic to them. We have implemented
TNT as a routing software suite and can eliminate plain-
text traffic over the Internet for 20% of web servers, reduce
it to 1 network hop for an additional 20% and minimize it
for the rest. The proliferation of cloud providers makes it
practical for users to deploy TNT.

11. ACKNOWLEDGMENTS
We thank Roxana Geambasu, Vasileios P. Kemerlis and

Michalis Polychronakis for early discussions and feedback.
This work was supported in part by the National Science
Foundation through Grant CNS-13-18415. Any opinions,
findings, conclusions, or recommendations expressed herein
are those of the authors, and do not necessarily reflect those
of the US Government or the NSF.

12. REFERENCES
[1] A Certificate Authority to Encrypt the Entire Web.

https://www.eff.org/deeplinks/2014/11/

certificate-authority-encrypt-entire-web.

[2] Cloudflare - Introducing Universal SSL.
https://blog.cloudflare.com/introducing-

universal-ssl/.

[3] Electronic Frontier Foundation - Verizon Injecting
Perma-Cookies to Track Mobile Customers, Bypassing
Privacy Controls. https:
//www.eff.org/deeplinks/2014/11/verizon-x-uidh.

[4] ISPs Removing Their Customers’ Email Encryption.
https://www.eff.org/deeplinks/2014/11/

starttls-downgrade-attacks.

[5] Official Gmail Blog - Staying at the forefront of email
security and reliability.
http://gmailblog.blogspot.com/2014/03/staying-

at-forefront-of-email-security.html.

[6] The Official Microsoft Blog - Protecting customer
data from government snooping. http://blogs.
microsoft.com/blog/2013/12/04/protecting-

customer-data-from-government-snooping/.

[7] The Washington Post - NSA infiltrates links to Yahoo,
Google data centers worldwide.
https://www.washingtonpost.com/world/national-

security/nsa-infiltrates-links-to-yahoo-

google-data-centers-worldwide-snowden-

documents-say/2013/10/30/e51d661e-4166-11e3-

8b74-d89d714ca4dd_story.html.

[8] The Washington Post - NSA uses Google cookies to
pinpoint targets for hacking.
https://www.washingtonpost.com/news/the-

switch/wp/2013/12/10/nsa-uses-google-cookies-

to-pinpoint-targets-for-hacking/.

[9] Tor Meek. https://trac.torproject.org/projects/
tor/wiki/doc/meek.

[10] Tracking the FREAK Attack.
https://freakattack.com/.

[11] CVE-2014-0160, 2014. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

[12] M. Akhoondi, C. Yu, and H. V. Madhyastha. LASTor:
A Low-Latency AS-Aware Tor Client. In Proceedings
of the 2012 IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2012.

[13] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles. ACM, 2001.

[14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub,
S. Zanella-Beguelin, J.-K. Zinzindohoue, and
B. Beurdouche. FREAK: Factoring RSA Export Keys,
2015. https://www.smacktls.com/#freak.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-generation Onion Router. In Proceedings
of the 13th USENIX Security Symposium. USENIX
Association, 2004.

[16] L. Gao. On Inferring Autonomous System
Relationships in the Internet. IEEE/ACM
Transactions of Networking, 9(6):733–745, Dec. 2001.

[17] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida.
Constraint-based geolocation of internet hosts. In
Proceedings of the 4th ACM SIGCOMM Internet
Measurement Conference. ACM, 2004.

[18] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble,
H. M. Levy, and D. Wetherall. Improving the
Reliability of Internet Paths with One-hop Source
Routing. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design &
Implementation. USENIX Association, 2004.

[19] D. S. Miller, 2012. http://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/commit/

?id=89aef8921bfbac22f00e04f8450f6e447db13e42.

[20] R. Nithyanand, O. Starov, A. Zair, P. Gill, and
M. Schapira. Measuring and Mitigating AS-level
Adversaries against Tor. In Proceedigns of the Network
and Distributed System Security Conference. Internet
Society, 2016.

[21] N. Perlroth. NYTimes - China Is Said to Use Powerful
New Weapon to Censor Internet, 2015.
http://www.nytimes.com/2015/04/11/technology/

china-is-said-to-use-powerful-new-weapon-to-

censor-internet.html.

[22] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting In-flight Page Changes with Web Tripwires.
In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation.
USENIX Association, 2008.

[23] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell,
A. Vahdat, G. Voelker, and J. Zahorjan. Detour:
Informed Internet Routing and Transport. IEEE
Micro, 19(1):50–59, Jan. 1999.

[24] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T.
Loo, and M. Blaze. A3: An Extensible Platform for
Application-Aware Anonymity. In Proceedings of the
Network and Distributed System Security Symposium.
Internet Society, 2010.

https://www.eff.org/deeplinks/2014/11/certificate-authority-encrypt-entire-web
https://www.eff.org/deeplinks/2014/11/certificate-authority-encrypt-entire-web
https://blog.cloudflare.com/introducing-universal-ssl/
https://blog.cloudflare.com/introducing-universal-ssl/
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh
https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
http://gmailblog.blogspot.com/2014/03/staying-at-forefront-of-email-security.html
http://gmailblog.blogspot.com/2014/03/staying-at-forefront-of-email-security.html
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/
http://blogs.microsoft.com/blog/2013/12/04/protecting-customer-data-from-government-snooping/
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://freakattack.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://www.smacktls.com/#freak
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89aef8921bfbac22f00e04f8450f6e447db13e42
http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-powerful-new-weapon-to-censor-internet.html
http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-powerful-new-weapon-to-censor-internet.html
http://www.nytimes.com/2015/04/11/technology/china-is-said-to-use-powerful-new-weapon-to-censor-internet.html

	Introduction
	Motivation
	HTTPS Adoption
	Web service collocation

	Related Work
	Threat Model
	Architectural Overview
	Topology-aware Network Tunnels
	The TNT Router

	Implementation
	Deployment
	Operation
	Transparent Routing Updates
	Application-specific routing

	Evaluation
	Network Proximity
	Operating a TNT router
	Web Browsing over TNT

	Security Discussion
	Limitations
	Conclusion
	Acknowledgments
	References

