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Abstract. Protection against Denial of Service (DoS) attacks is a chal-
lenging and ongoing problem. Current overlay-based solutions can trans-
parently filter unauthorized traffic based on user authentication. Such
solutions require either pre-established trust or explicit user interaction
to operate, which can be circumvented by determined attackers and is
not always feasible (e.g., when user interaction is impossible or undesir-
able). We propose a Multi-layer Overlay Network (MON) architecture
that does not depend on user authentication, but instead utilizes two
mechanisms to provide DoS resistant to any IP-based service, and op-
erates on top of the existing network infrastructure. First, MON imple-
ments a threshold-based intrusion detection mechanism in a distributed
fashion to mitigate DoS close to the attack source. Second, it randomly
distributes user packets amongst different paths to probabilistically in-
crease service availability during an attack. We evaluate MON using the
Apache web server as a protected service. Results demonstrate MON
nodes introduce very small overhead, while users’ service access time in-
creases by a factor of 1.1 to 1.7, depending on the configuration. Under
an attack scenario MON can decrease the attack traffic forwarded to the
service by up to 85%. We believe our work makes the use of overlays for
DoS protection more practical relative to prior work.

1 Introduction

Denial of service attacks (DoS), and their distributed counterparts DDoS, fre-
quently cause disruptions, and sometimes even complete outages, of services
offered over the Internet. E-mail, financial, publishing, and even e-government
services have repeatedly been the targets of such attacks, which have only intensi-
fied with the proliferation of botnets that employ compromised PCs (“zombies”)
to perform large scale DDoS attacks. Recently, we have also witnessed incidents,
where groups of users deliberately performed DDoS attacks using freely available
tools, like the low orbit ion cannon [1].

Centralized approaches such as [23,12,27] have not been able to thwart DDoS
attacks, mainly because they can also be congested, while distributed network
level solutions [15,33,16] require operators to deploy and manage new, and po-
tentially complex, architectures. On the other hand, distributed architectures
based on overlay networks [18,28,29,6,20,21,5] can operate on existing network
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infrastructure, and have shown to be able to withstand attacks involvingmillions
of attackers. Overlay based solutions can be categorized in three types:

1. Strict access: These approaches [18,6,20,5,29] assume that the users of the
protected service are pre-authorized, and only them are allowed to access
the service. They cater to scenarios like attacks against emergency services
used during disasters.

2. Relaxed access: Such networks [37,36] still use some form of authentication,
but they either allow anyone to “register” with the service, or mix authorized
and unauthorized users. In the first case, authentication is used to uniquely
identify clients without relying on their IP address (i.e., spoofing is no longer
relevant), while in the latter authorized user traffic is given precedence.

3. Open access: Open systems [28,29] can be accessed by everyone. They limit
or distinguish attackers by using user sessions and require some type of user
interaction, like a CAPTCHA [32], that separates real users from programs.

These techniques mitigate the consequences of DoS attacks using authenti-
cation or user interaction to distinguish authorized from unauthorized traffic,
limiting or completely warding off the latter. However, limited access systems
are not applicable to open Internet services like the world wide web (WWW),
and, more importantly, they are still vulnerable to DoS attacks from authenti-
cated users. Also, user interaction mechanisms, like CAPTCHAs, is impractical,
while they are not impervious to attacks either [8].

We propose a new multilayer overlay network (MON) architecture that builds
on the advantages of ticketing and multi-path traffic distribution proposed in
previous relaxed access work [29] to enable open access to the protected ser-
vice without requiring any user interaction. Our solution operates on existing
network infrastructure and consists of multiple layers of nodes that are inter-
posed between the client and the protected service. MON collectively applies a
throttling-based DoS prevention mechanism (DPM) that alleviates the effects of
DoS attacks. The mechanism is applied in a distributed fashion by lightweight
DoS detection and mitigation engines (DDME) running on each overlay node. A
client accesses the service by contacting any of the nodes of the first layer, which
randomly routes his packets through the overlay, increasing MON’s robustness
in the case of node failures and DoS attacks.

We implemented a prototype using an uncomplicated practical threshold-
based filtering mechanism. Briefly, the DDME on each node monitors the IP
packets being send to the service, calculating the packet sending rate of each
client based on his IP address. When a client exceeds a predefined threshold,
some or all of his packets are dropped depending on the employed security pol-
icy. Note that we do not invent a new defense against DoS attacks, but instead
propose the distributed application of prevention mechanisms based on overlay
network architecture. Results show that the overhead introduced by MON nodes
is small (in the range of 30 and 50 microseconds), while using MON to retrieve
a web site served by the Apache web server increases the client’s access time by
a factor of 1.1× to 1.7×, depending on the configuration. Moreover, we demon-
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strate that the proposed solution is able to throttle and block malicious network
flows effectively when a service is under a DoS attack.

The rest of the paper is organized as follows. In Sect. 2, we describe the
types of DoS attacks that we tackle with this work. In Sect. 3, we describe
the architecture, while we discuss implementation details in Sect. 4. In Sect. 5,
we evaluate MON in terms of overhead and effectiveness. Sect. 6 presents an
overview of the related work, and compares it with ours. Finally, we conclude
this paper and give some pointers for future work in Sect. 7.

2 Threat Model

The goal of DoS attacks is to render a targeted services inaccessible to legiti-
mate users, by draining server resources like memory and CPU, or consuming
network bandwidth [22]. The simplest DoS attacks consume network bandwidth
and server resources simply by saturating the target with a high number of re-
quests, generated either from a single or multiple sources. However, as server
processing power and network bandwidth increases alternative, more sophisti-
cated, methods requiring fewer connections have been devised. For instance, a
flood of SYN TCP packets can be used to prevent the establishment of new con-
nections with a server [9]. Other approaches exploit the way the service handles
users’ requests to achieve the same goal [7]. Based on their method of operation,
we classify DoS attacks into the following categories:

(a) Attacks consuming network bandwidth. These attacks aim to congest the tar-
get’s network by generating an overwhelmingly large number of data packets.

(b) Attacks consuming server resources. Malicious users send a large number of
otherwise legitimate requests to the server to consume its resources. They
usually require less traffic than (a) to be sent by a malicious user, as network
bandwidth increases at a higher rate than computational power and storage.

(c) Attacks consuming limited operating system (OS) resources. These attacks
exploit the way the target’s software and OS operates to consume limited
resources such as file and socket descriptors, and TCP connections.

(d) Attacks exploiting server bugs. Software frequently has bugs like null point-
ers [14] and deadlocks [17]. If such bugs can be triggered using user input,
an attacker sending the appropriate data to the server can cause it to crash,
or simply stop responding to new requests. This type of attacks are beyond
the scope of this paper, since are tackled by solutions such as [34,10].

3 A Secure Multilayer Overlay Network Architecture

The goal of the MON architecture is to improve the availability of critical services
under a DoS attack, by “hiding” the protected service behind a semistructured
overlay network. Users of the service communicate with it through the over-
lay, which by design and by means of a distributed DoS prevention mechanism
(DPM) mitigates DoS attacks. We adopt an overlay network architecture to
incorporate certain properties in our design. Specifically:
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Fig. 1. The multilayer overlay network (MON) architecture. Multiple layers of nodes
are interposed between the clients and the provided service. The number of layers is
configurable at overlay setup, and can be tuned to favor performance over resistance
to intrusion by reducing the degree of internal redirection.

(a) Easy deployment on existing network infrastructure.
(b) Transparency to end-users.
(c) Decentralized design inherently strong against DoS attacks, and suitable for

applying intrusion prevention mechanisms in a distributed way.

An overview of the MON architecture is illustrated in Fig. 1. The first layer is
the entry point between users and the service. It ensures that no spoofed traffic
is forwarded to the protected service based on tickets (discussed in Sect 3.2), and
blocks attacks using the DPM. The rest of the layers remain invisible to end-
users, while they also use the DPM to protect from malicious or compromised
nodes of the previous layer. However, if an attacker discovers and compromises a
node in the last layer, the service will be exposed. The number of layers deployed,
depends on the network delay that the protected service can tolerate, and the
desired protection level that must be established.

MON provides open access to users, without requiring user interaction or pre-
established trust between clients and the provided service. Instead, it throttles
user traffic that exhibits abnormal behavior on a per- flow and ticket basis. Also,
MON operates at the IP level, supporting multiple transport layer protocols like
TCP, UDP and SCP.

3.1 The MON Structure

MON consists of a number of overlay-nodes Nn, which are organized in different
layers Lm. Clients can access the protected service through the first layer (entry
point) nodes after acquiring an access ticket. Tickets protect against DoS attacks
themselves, as they allow us to control the rate new clients can connect to the
network, but they also allow us to validate the sender of each packet. The nodes
of the first layer know the nodes of the next one, where they forward packets
to, and so forth (i.e., nodes of Li know the nodes Li+1). As a result, the actual
location (IP address) of the service is only known by the nodes in the last layer.

Also nodes instead of routing packets through a specific path, they randomly
route it in one of the available nodes of the next layer. The last hop of the
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Fig. 2. MON packet structure. User’s IP traffic is encapsulated into a new transport
layer packet to enable routing by MON nodes, including an encrypted access ticket
and message authentication code to ensure MONs’ message integrity, and authenticity.
Only entry nodes can decrypt and validate the ticket.

employed architecture delivers the packets to the protected service. If one of
the nodes becomes “unavailable” due to network congestion or software failure,
traffic is forwarded through a different node in the same layer.

Consequently, an attacker would have to concurrently flood all nodes of at
least one layer of the overlay to successfully disrupt the service. Assuming that
the layer with the smallest number of nodes is Lv and contains V nodes, the
attacker would have to successfully flood all V nodes. However, since the route
followed by packets is chosen randomly, and every node implements the DPM,
which throttles flows classified as malicious, this task is far from trivial. Even if
an attacker compromises a first layer node (e.g., by exploiting a vulnerability in
its software) and uses it in its DoS attack, the next layer nodes can identify and
mitigate the attack, while the service remains hidden. Hence, MON is resistant to
DoS attacks by design. All the nodes in MON architecture operate autonomously.
MON encapsulates at the client side (see also Sect. 3.2) user packets into a new
packet (similarly to IP-in-IP encapsulation), as illustrated in Fig. 2.

3.2 Users and the Ticket Mechanism

Users access a MON-protected service through the first layer’s nodes. This is
done transparently, by installing an end-user module at the client, that captures
data packets destined for the service and re-routes them to one of the entry
points of MON. To overcome single points of failure, users’ traffic is randomly
distributed among the nodes of L1, similarly to the random routing described
in Sect. 3.1. MON-enabled users are allowed to connect to the protected service,
only if they have acquired a session key and the corresponding ticket from an
entry point. Particularly, a client receives a session key and a valid ticket by
issuing an access request to a randomly chosen entry node. The request is per-
formed over a secure channel (e.g., using SSL) to ensure the confidentiality of
the session key sent to the client.

Every session key Sk is computed based on the user’s IP and a pseudo-random
id generated by the contacted node, encrypted using a master key Kn shared
among all MON nodes using the following formula.

Sk = Enc(Kn, User IP ||Random Id)

The ticket sent to the user includes the user’s session key, a time-stamp, the
maximum number of packets allowed to be sent with the specific ticket, and a
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message authentication code (MAC) generated using the master key. The latter
enables any MON-node to validate the integrity and authenticity of every ticket.
Finally, the entire ticket is also encrypted using the master key and sent to the
user as a response.

ticket = Enc(Kn, session key||timestamp||MAC(Kn))

Clients include the ticket and a MAC based on their session key in all sub-
sequent packets (see Fig. 2). MON nodes are able to decrypt the ticket and
validate MON packet’s integrity and authenticity, using the shared master se-
cret key. This way an attacker cannot spoof a client’s packets (i.e., send packets
pretending to be another client), and nodes can validate tickets without having
to store additional information for the session key and the ticket.

3.3 A Collaborative DoS Detection and Mitigation Mechanism

MON is robust by design, but as the resources of the attackers grow, addi-
tional protective measures are necessary. Although, various centralized intrusion
detection and prevention solutions against DDoS attacks have been proposed
in literature [25], they can also be congested and rendered useless by the at-
tack against the protected service. MON adopts a collaborative DoS prevention
mechanism (DPM) that is applied individually by every node, and is thus more
resistant to attacks.

The core of the mechanism is implemented by the DoS detection and mit-
igation engines (DDME) running on the nodes. Its goal is to throttle or drop
incoming packets, whenever it detects that a client is performing a DoS attack.
It works by classifying incoming packets into IP network flows based on their
source, destination IP addresses, and the ticket (as it uniquely identifies a client).
This way, we can detect abnormal behavior and match it to a specific user. We
use IP layer flows, primarily because we desire that MON protects services inde-
pendently of the transport and application protocol being used. Secondly, this
will allow us to easily expand MON to support the IPv6 protocol.

Each DDME keeps track of all the incoming flows using a flow information
monitor (FIM). The FIM records the number of packets observed per flow, and
the time that each flow was initiated. Then, the DDME periodically examines
(with a period T ) whether the packet rate of any flow has exceeded the legitimate
configurable threshold. If this is the case, packets belonging to this specific flow
are “punished” that is, delayed or dropped. For the scope of this work, we adopt
an exponential punishment mechanism, as in [2]. This technique is widely used
in networking to penalize users causing conflicts during transmission. The delay
introduced by the DDME for “punished” flows is computed by the following
formula delay = delay × 2. Devising mechanisms to calculate an appropriate
threshold is beyond the scope of this paper. In the future, we plan to investigate
threshold calculation mechanisms like the ones proposed in [15].
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4 Implementation

4.1 Ticket Acquisition

A user inquires a ticket from the service by sending a ticket acquisition request
to a randomly chosen MON node. The request contains the user’s RSA public
key and the corresponding digital signature. As soon as a node receives a ticket
request, it validates the included digital signature and generates the response
message, which consists of the session key and the ticket as described in Sect. 3.2.
Note that the session key and the ticket are encrypted using the user’s RSA
public key and the AES algorithm. To compute the MAC, both for the ticket
and the response message, we use an HMAC function based on SHA-1. All the
cryptographic functions used are part of the OpenSSL library [31].

4.2 MON-enabled Users

On the client side, we developed a service, namely MONeU, operating transpar-
ently to existing applications in order to deliver user traffic to MON nodes. User
packets destined to the protected service, instead of following the normal network
path, are sent to a virtual interface implemented using the tun pseudo-device
driver [19]. As soon as a packet is received in this interface, the MONeU service
encapsulates it in a new UDP packet, which includes the ticket, the packet’s
sequence number, and an SHA-1 HMAC computed on the whole MON packet
to protect its integrity. This new packet is forwarded to a randomly chosen first
layer MON node. The technique shields end-users from single point failures, as
their traffic does not follow a specific path. This stands even for packets belong-
ing to the same session. As a result, a malicious user needs to compromise all
available MON entry nodes to cause a DoS to a legitimate user.

In the current implementation the available first layer nodes are included in
a pre-defined list. However, an alternative solution for MONeU to receive the
list is through DNS. In that case, the DNS instead of returning the actual IP
address of the protected service, will send back the IP addresses of all available
first layer nodes.

Whenever a response packet arrives, the MONeU service passes it to the
virtual interface, which is responsible for delivering it to the corresponding ap-
plication. The decision to use UDP instead of TCP for packet encapsulation is
based on the fact that the encapsulation of TCP within TCP is not efficient [30].

4.3 MON Nodes

MON nodes are the core of the proposed architecture and are responsible for
detecting and mitigating the effects of malicious flows (i.e., flows responsible for
a DoS attack), and routing user traffic to the actual destination. First, entry
nodes validate MON packet authenticity and integrity. To accomplish this task
the nodes decrypt the ticket using AES and the secret key Sn shared among the
MON nodes. They also ascertain its validity using the same key to validate the



8

Fig. 3. MON flow information monitor (FIM) architecture. FIM uses the hash value
of the source and destination IP as an index to the monitor flow storage, and records
the number of packets per IP flow, the time-stamp of the first packet in the flow, as
well as MON packet sequence number.

Fig. 4. DDME’s time-window structure. The DDME checks all the flows exceeding the
allowed time in FIM.

SHA-1-based HMAC. If the ticket is valid, we extract the session key Sk, which
is used to confirm the authenticity and integrity of the whole packet, similarly
to the process used to validate the ticket.

After message and ticket validity is confirmed, the node extracts the source
and destination IP, and combines them with the ticket in order to uniquely
identify each flow. The FIM module records for every flow the number of received
packets, the arrival time of the first packet in the flow, and the sequence number
of the last received packet to protect MON against replay attacks. All numbers
are 32-bits long, so we store 96 bits per flow, which corresponds to 12 MBs of data
for one million users. For storage and searching efficiency, instead of recording
the source and destination IP for every flow, we use the remainder of the hash
value of the flow information with the maximum number of allowed flows (see
the formula below) for identifying a record in the FIM storage.

index = hash(SrcIP ||DestIP ||T icket) mod MAXCON

The main disadvantage of this approach is that if we receive more con-
nections than FIM’s capacity (MAXCON), it will cause a “conflicting” FIM
record, affecting the DDME’s accuracy. Otherwise, “conflicts” in the FIM storage
solely depend on the hash function’s collision probability [35]. For every received
packet, the FIM computes the flow’s index in order to update the packet counter,
and saves the timestamp of the first packet in the flow (tflow). Figure 3 illus-
trates FIM’s general architecture. Note that the hash and modulo functions we
use are OpenSSL’s SHA-1 [31] and GMP’s modulo [13].

The DDME is triggered by a SIGALARM signal every Twindow seconds in
order to check whether any flow in the FIM has exceeded a pre-defined threshold.
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Fig. 5. The two-layer test-bed we employed for the evaluation of the MON architecture.

If this is the case, the packet is either punished by introducing a delay to its
forwarding. Note that the DDME inspects all the flows found “outside” of the
Twindow, where talarm− tflow > Twindow (see also Fig. 4). As soon as the DDME
checks a flow, it resets its corresponding record in the FIM.

Afterwards, the DDME encapsulates the incoming packet into a new UDP
packet, and forwards it to a randomly selected node at the next layer. When the
packet reaches a node in the last layer of MON, it is decapsulated to obtain the
original packet, and is forwarded to the protected service via a RAW socket.

For implementing the networking functionality of MON nodes, we relied on
Linux’s system calls. Based on current implementation MON nodes can be de-
ployed on routers, as well as desktop PCs, that are willing to participate in the
MON architecture, assuming that they are running a *nix type OS.

5 Evaluation

To evaluate our architecture in terms of performance and effectiveness, we de-
ployed a two-layered prototype as depicted in Fig. 5. Table 1 lists the technical
characteristics of the systems where we installed MON nodes. As a protected
service, we utilized the Apache web server. We employed five scenarios, where a
client is requesting files of different sizes from the Apache web server (sizes of
150KB, 500KB, 1MB, 5MB, and 13 MB). In all five scenarios, the client accesses
the service directly, using MON without DPM functionality, and lastly with
DPM functionality. Furthermore, to validate MON’s correctness and efficiency,
all the scenarios were executed in two different configurations:

1. All MON nodes running in our lab’s local network (LAN configuration).
2. MON’s 1st layer nodes running in a different network connected to the In-

ternet with an ADSL connection, while the 2nd layer nodes were in the lab’s
network (ADSL configuration).

5.1 Performance Evaluation

To quantify the overhead MON introduces to the protected service, we measured
the end-to-end service access time as well as the overhead introduced by the
MON nodes itself. On both configurations, when users access the service using
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Fig. 6. End-to-end service access time (SAT) comparison among direct access, and
MON without and with DPM. User SAT is increased by a factor of 1.1 to 1.7, depending
on the configuration.

MON, they do not experience any apparent delay in service access time (SAT).
The average SAT is very close in all the scenarios, as depicted in Fig. 6. In the
results, we include the case of using MON without the DPM functionality, in
order to show the lower bound of overhead imposed by the overlay network itself.
In the LAN configuration, MON increases the end-to-end SAT by a factor of 1.04
to 1.4, while in the ADSL configuration by a factor of 1.1 to 1.7. Though this
increase might be considered significant, we believe that is an acceptable “cost”
for enhancing IP service availability. Note that the total transfer time is affected
by the network link’s quality in which MON nodes are installed. For instance, the
% difference in average SAT between the LAN configuration and direct access
ranges from 4% to 40%. The same stands for the ADSL configuration, however,
in scenario 5 there is an increase of 66%.

Regarding the overhead introduced by entry and core MON nodes, the av-
erage ranges between 30 and 50 microseconds (see Fig. 7). As we use the same
underlying infrastructure for both configurations, there are no differences in the

Table 1. Characteristics of the systems hosting the MON nodes in the test-bed.

Name CPU Speed Memory Other characteristics

L1-N1 2.4 GHz 4Gb Ubuntu 10.04, Intel Core i5 laptop
L1-N2 2.4 GHz 2Gb Ubuntu 10.10, virtual machine
L2-N1 2.8 GHz 3Gb Ubuntu 10.04, Xeon 2xCPU
L2-N2 2.4 GHz 2Gb Ubuntu 10.10, virtual machine
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delay introduced by each MON node. This fact validates our initial hypothesis
regarding the end-to-end SAT fluctuations in the ADSL configuration.

Based on our experimental results, we deduce that MON does not influence
the SAT, while the overhead imposed on the provided service by each MON
node is negligible. However, it should be noted that the end-to-end delay is
affected both from the number of MON layers, and the latency of the underlying
network where the MON nodes are located. In the extreme case, we can optimize
performance by reducing the system to one level of indirection similar to [29].

5.2 Qualitative Analysis

MON introduces little delay to end user communication with a protected service,
however, its effectiveness as a protection mechanism against DoS attacks must
be evaluated as well for its ability to identify and punish DoS packets. Thus,
we employ a single source attack scenario in which the malicious user generates
1000 HTTP requests per second for a web page of 100 bytes. Regardless of the
simplicity of this attack, the main goal of this experiment is to demonstrate
MON’s efficiency during such an attack, by monitoring the number of requests
received by the protected service.

On the one hand, if the service is protected through traditional central-
ized DoS mechanisms, all the attack requests will arrive at least up to the
protected service network causing a congestion either at the edge of the net-
work or in the service itself. On the other hand, if MON is enabled it will
forward all the packets belonging to the attack flow toward the service until
the DDME is triggered. In the worst case, MON will deliver to the service
Tw × Number of Packets Per Second, however, the number of packets re-
ceived by the service depends on the Tw that the DDME is triggered, and the
punishment model. Since, the DDM is triggered the attack will be identified and
traffic will be throttled. Particularly, under our attack scenario the number of
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requests received by the service is on average 107 HTTP requests, which corre-
sponds to 323 packets. The majority of these packet are delivered to the service
because the DDME had not triggered yet. Using MON we achieve a reduction
on the attack traffic receive by the service up to 85%. The number of times a
flow exceeds the legitimate threshold affects the punishment delay introduced
on a flow exponentially, as described in Sect. 3. So if a malicious user exceeds
more than 10 times the threshold the introduced delay reaches to 1200 seconds.

Similar is the case of multiple sources DoS attack, as we can consider it
as N separate single source DoS attacks. The only difference is the amount of
traffic that will be delivered by MON towards to the service until the DDME
is triggered, which is N × Tw × Number of Packet Per Second. Note that a
malicious user can still spoof an IP address and get a valid MON ticket, but he is
not able to affect the communications of other users, as MON distinguishes flows
on a per ticket basis. However, to effectively shield a service against these types
of DoS attacks, MON nodes should be widely deployed across the Internet. Also,
additional IP spoofing protection mechanisms would further fortify the system.

All in all, MON can be used to defend against DoS attacks targeting service
network bandwidth or server resources (briefly described in Sect. 2) by exploiting
the autonomously operating MON nodes to detect and discard DoS traffic.

6 Related Work

Overlay networks emerged as a solution to overcome the limitations of the Inter-
net architecture, providing new services and applications in a distributed end-to-
end fashion. To that end, previous work build on overlay networks as an alterna-
tive underlying mechanism to enhance Internet service security and availability.
The very first work exploiting overlay networks to enhance service availability
is RON [4]. RON introduces an application-level routing and packet forwarding
service that enables end-points to monitor the quality of links in the network,
and detect path failures in order to choose an alternative path in a few seconds.
However, the predominant work exploiting overlay networks to improve network
service security is presented in [18]. The SOS architecture routes traffic to the
protected service only from a set of pre-determined authorized users, based on
protocols such as IPsec [26] and SSL [31]. A similar approach is presented in [3].

Several variations of SOS have been proposed in literature [28,29,20,21,6,5].
[28] extends its functionality to defend against botnets using CAPTCHA [32],
while [29] introduces an architecture for enhancing service availability build on
multi-path and stateless tokens. In ODON [20], users are verified through cre-
dentials to access the overlay network. They establish a session token among
end-users, ODON nodes, and the final service used to verify traffic, and provide
integrity and confidentiality services. [21] proposes a federated overlay network
(FONet) architecture to protect services from DoS attacks. FONet forwards
only the traffic originating from the federation to the protected service, and fil-
ters the other traffic on the edge of the domains participating in the FONet. [5]
introduces an intermediate interface by overlay nodes to hide the location of ap-
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plication sites during DoS attacks. Similarly, this solution allows communication
only among confirmed entities; meaning that any packet must be authenticated
through the proposed architecture. [6] protects a target using a filter that drops
any packet whose source address is not approved. In the case of a DoS attack,
rather than processing all arriving packets, the target’s filter processes only a
subset of received packets, and drops all the remaining.

Phalanx [11] follows a similar approach to SOS, leveraging the power of
swarms to combat DoS. A client communicating with a destination sends its
packets through a random sequence of entities called “mailboxes”. Mailboxes
discard user packets that do not include an authentication token, or a solution
to a cryptographic puzzle. A protected destination receives packets only from
specific mailboxes, which were authorized in a previous communication. The only
approach utilizing a distributed intrusion detection system (IDS) is presented in
DefCOM [24]. DefCOM nodes collaborate during an attack to spread alerts, and
protect legitimate traffic based on local classifier, which limits attack traffic.

Most of the existing overlay solutions, that were discussed above, have been
influenced by SOS [18]. These solutions rely on authentication mechanisms, re-
quiring pre-established trust or user interaction, to filter unauthorized traffic
and defend against DoS attacks. None of them except SOS [18], WebSOS [28]
and [29] operate transparently to end-users, and build on existing network in-
frastructure. While [24] is the only solution exploiting an IDS mechanism, but
assumes that such a protection mechanism already exists.

7 Conclusions and Future Work

In this paper, we proposed and implemented a distributed and transparent to
end-users architecture overlay network to counter DoS attacks, that does not
require modifications to the underlying network infrastructure. The proposed
architecture is based on a multi-layered semistructured overlay network, which
is DoS resistant by design, and uses filtering to stop DoS attacks close to their
source. We believe that our work makes the use of overlays for DoS protection
more feasible compared with previous work.

We evaluated MON using the Apache web server as the protected service.
Results shows that it has little effect on user experience, and it can effectively
detect and mitigate DoS attacks against the WWW and similar Internet services
like FTP and e-mail. However, additional analysis should be done for real time
services. For future extensions to MON, we are considering additional protection
mechanisms that can be incorporated into our DPM to also identify and prevent
other types of DoS attacks.
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