
Capturing Information Flow with Concatenated Dynamic Taint Analysis

Hyung Chan Kim Angelos D. Keromytis Michael Covington Ravi Sahita

Dept. of Computer Science Intel Corporation

Columbia University Portland, OR

New York, NY

Abstract

Dynamic taint analysis (DTA) is a technique used for

tracking information flow by propagating taint propagation

across memory locations during program execution. Most

implementations of DTA are based on dynamic binary in-

strumentation (DBI) frameworks or whole-system emula-

tors/virtual machine monitors. The boundary of informa-

tion tracking with DBI frameworks is a single process, while

system emulators can cover a host, including the OS. Using

system emulators, it may be possible to consider taint prop-

agation across multiple processes executing locally, within

the emulator. However, there is an increasing need for

tracking information flow across single-system boundaries

and across the whole enterprise.

We describe a proof-of-concept architecture for tracking

multiple mixed-information flows among several processes

across a distributed enterprise. Our DTA tool is based on

PIN, a DBI framework by Intel, and the concatenated DTA

processing is realized with per-host flowmanagers. We have

tested our prototype with typical enterprise applications. As

a motivating example, we track information leakage due to

a SQL injection attack from a web-based database server

query. Our work is of an exploratory nature, aiming to ex-

pose our early findings and identify areas where additional

research is needed in improving usability and performance.

1 Introduction

In recent years, security problems related with the flow

of information have been increasing. Managers of informa-

tion systems need to worry about information leakage by

web attacks (such as SQL injection and cross-site script-

ing) or insider activity (whether inadvertent or malicious),

among other threats. Especially for web applications, in-

formation leakage vulnerabilities are currently considered a

top concern [1].

Dynamic taint analysis (DTA) is a technique for tracking

information flow within an instance of a software applica-

tion (process) or a host system. It can be used to detect 0-

day (previously unknown) attacks or information leakage,

depending on how it is used. A DTA tool tracks informa-

tion flow via supervising execution of program instructions.

Such instrumentation granularity supports substantial cov-

erage of program execution. Most DTA implementations

are based on dynamic binary instrumentation (DBI) frame-

works, whole system emulators, or virtual machine moni-

tors. Therefore, the boundary of information tracking with

DBI frameworks is a single process, while with system em-

ulators it is a single system (including the guest operating

system kernel). In the latter case, it may be possible to

consider information flow among multiple processes that

are executing within the emulated environment. However,

there have been no efforts to concatenate DTA processing

and tracking across host boundaries to see how information

flows among networked systems within an enterprise.

In this paper, we present an experimental framework

to realize concatenated DTA processing between processes

which may be located in different host systems. Our frame-

work consists of (1) a DTA tool (SeeC) and (2) a per-host
flow manager.

As with previous DTA work, our DTA implementation

dynamically tracks data flow dependencies at the machine

instruction level. Our DTA tool is built on a DBI frame-

work so that it can be attached to an existing (binary com-

piled) software without recompilation, and without requir-

ing source code availability. Moreover, our tool supports

4-byte labels (i.e., colored tainting), thereby allowing us to

track mixed/multiple information flows simultaneously.

To track information flow between processes, we instru-

ment inter-process communication (IPC) facilities in each

monitored process. Our approach is to place information

flow managers on participating hosts. The managers keep

track of their remote peers, and relay inter-process taint

information. Currently, our framework supports concate-

nated DTA processing with TCP channels between DTA-

monitored processes.

As a motivating scenario, we describe an experiment us-

2009 International Conference on Availability, Reliability and Security

978-0-7695-3564-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARES.2009.56

355

ing a typical website configuration composed of an Apache

web server and a MySQL database server. Setting up an

SQL injection attack that triggers information leakage flow

from resources in the database server via the web server, we

can successfully identify the leakage with our framework.

While this is a single, and rather straightforward applica-

tion of concatenated DTA, we believe that it demonstrates

the desirability of such a mechanism. We identify limita-

tions with our current approach and opportunities for further

research. We view our work as proof-of-concept, aiming to

motivate further work in this space.

Paper Organization Section 2 presents our DTA imple-

mentation based on the PIN DBI framework. Section 3

describes ourframework for concatenated DTA processing.

Section 4 shows an experiment to capture information leak-

age by an SQL injection attack. We discuss related work in

Section 5.

2 Single-Process DTA

To track information flow of a single program, we have

implemented a dynamic taint analysis tool (SeeC) which

monitors data flow in a program instance. This section de-

scribes our design and implementation of SeeC.

2.1 Information Flow Model

A running program instance (process) is comprised of a

sequential execution of machine instructions. When an in-

struction is executed, data are involved in many cases as the

instruction format may take one or more source and/or des-

tination operands. At a single instruction execution, data

bytes are copied from one location (register or memory) to

another (or the same) location, as specified by the operands.

Some instructions may perform data transformations in-

stead of just copying. In both cases, dynamic dependencies

exist among memory locations and the data stored therein.

Basically, we identify information flow from these actions

of data copy or transformation: i.e., information flows from

memory source(s) to memory destination(s).

There is another type of dynamic dependency, based on

program control structure (indirect information flow). For

example, in the following code, the two variables a and b

have a dependency, as the value of variable b is indirectly

decided by the value of a.

if (a == 1)

b = 1;

else if (a > 2)

b = 100;

Shadow Memory

Data PropagationSource Sink

mov eax, [ebx]

mov [esi], eax

......

Input

File

Network

Keyboard

Output

File

Network

(1)

(2)

(2)

(3)

Figure 1. Dynamic taint analysis: (1) initial

marking, (2) propagation, and (3) assertion

Our implementation, described next, currently does not

consider such control dependencies. Tracking indirect in-

formation flow reveals considerably many more dependen-

cies without a commensurate increase in accuracy and rel-

evance; stated another way, tracking indirect information

flow often leads to significant “noise” by exposing many

more potential data dependencies.

2.2 Design and Implementation

The basic architecture, shown in Figure 1, keeps track of

the association between a taint tag in shadow memory and

memory/registers handled by program instructions. For ex-

ample, if an instruction causes information to flow directly

(e.g., via memory copying) or indirectly (e.g., as part of an

arithmetic operation that uses a tainted memory location as

an operand) from one memory location to another, our tool

updates the taint tags of the corresponding locations in the

shadow memory.

The implementation of a DTA tool can be realized

with two different view points: (1) whole-system approach

[16, 18] based on virtual machine monitors [5] or sys-

tem emulators [6, 7], and (2) process-oriented approach

[13, 14] based on dynamic binary instrumentation (DBI)

frameworks [2, 3, 4]. Our implementation is based on PIN,

a DBI framework developed by Intel [2], targeting process-

based analysis. PIN supports rich APIs for manipulating

processes at runtime.

2.2.1 Shadow Memory for Tag Management

Information flow tracking with DTA involves shadow mem-

ory that reflects the taint status of a specific memory area

or the registers 1 that are used during the execution of na-

tive applications. Depending on usage purposes, the map-

1For the registers, we currently consider the 8 general registers of the

x86 architecture.

356

ping granularity between shadow memory and application

memory/registers can be different. In some previous work,

each bit of process memory has a corresponding unit size

of shadow memory (tag) [29, 30]. In our tool, we adopt 1-

byte precision to improve performance and reduce memory

requirements: each byte of application memory is mapped

to a unit in shadow memory. A change of any bit in a byte

results in tainting the tag for that byte as a whole.

SeeC supports two different unit sizes in shadow mem-

ory: 1 byte in application memory can be associated with

a 1-bit or a 4-byte2 unit in the shadow memory. It is a

trade off because using 1-bit unit size tag results in a smaller

shadow memory footprint. However, a 4-byte unit size en-

ables a tag to retain more information. For information

tracking purposes, we use 4-byte tags used as a bitmap.

Our tool can thus record 32 values for any process mem-

ory byte, realizing colored tainting (track the combination

of different data). The current version of SeeC manages the

shadow memory with a page-table-like structure, allowing

us to scale memory requirements with the actual process

address space in use.

2.2.2 Tag Propagation

To capture information flow dependent on copy and trans-

formational dependencies, SeeC propagates taint markings

according to the following propagation and clearance poli-

cies:

• If at least one source operand is tainted, then the desti-

nation operand(s) should be also tainted.

• If the all inputs to an operation are clear, the destina-

tion operand(s) should be also cleared.

According to the above policies, in a single assigment

instance m = x (e.g., mov) the tag would be propagated

as tag(m) = tag(x) (tag(x) means the tag value of the

memory or register associated with variable x). As the

value of m is overwritten by x, it also means that if tag(x)
is clear, tag(m) will also be cleared. By simple induc-

tion, a sequence of assignments causes transitive propaga-

tion thereby realizing flow tracking.

When two or more input operands are involved, e.g.,

m = x + y, the tag value of the destination operand is cal-

culated as tag(m) = tag(x)|tag(y), where | is the bitwise-
OR operation. For 4-byte tags, all the bit-fields of the two

source operands are preserved at the destination tags. This

is an important feature as some instructions that perform

transformations may involve mixed flow of information. For

example, we should identify the mixed flowwith the follow-

ing code snippet.

2The size of 4 bytes corresponds to the integer size in 32-bit architec-

tures.

result[i] = buf1[i] + buf2[i]

In the code, buf1 and buf2 may come from different data

sources. As SeeC supports colored tainting, we can identify

both sources referring to the tag associated with the buffer

named result.

In the x86 architecture, there are a number of other issues

to be considered in addition to the basic propagation policy.

SeeC includes implicit operands for its tag propagation. For

example, the div instruction involves the eax and/or edx

registers together with explicit operands.

As a rule of thumb, we also consider some special sit-

uations that result in constant values. For example, xor

%eax, %eax always causes %eax to be filled with the

value 0. In that case, %eax should be marked as un-

tainted/uncolored. Other cases involve non-deterministic

values read from the host machine, such as rdtsc 3. On the

other hand, if such values are deterministic, reading them

could lead to implicit flow similar to control flow depen-

dencies. Since we do not track implicit flow, all the above

cases result in the destination’s tag to be cleared.

2.2.3 Taint Sources

Taint sources are starting points where SeeC initially marks

a tag for newly introduced data of concern with a proper

“color” value. Each color value is associated with a de-

scription of the data source: e.g., it may describe where the

data comes from or label some other information about the

source. The main source points are system calls where read-

like operations are performed to introduce data from outside

the process, such as from a file, the network, etc. Currently,

SeeC allows users to designate their source points of inter-

est for file and network sources as a command line option.

For those file and network stream sources, users can define a

filename or IP address/port for selective sourcing, or can de-

fine a whole range of streams (e.g., data from any file, or any

TCP streams). Moreover, a user can specify a certain mem-

ory area to be tainted for specific applications. SeeC can

apply regular expressions to incoming data, to select only

part for tracking. For example, we can just mark the URI

part of an HTTP request for subsequent tracking through a

web server.

2.2.4 Taint Sinks

Taint sinks are data destination points, mostly on write-like

system calls, where SeeC performs some assertion or valid-

ity checking for outgoing file or network stream data. Nor-

mal usage of SeeC at a sink point is to check tag information

corresponding to the (buffer) memory of the outgoing data.

For example, we can identify the original source informa-

tion if the tag maintains information about the data source,

3The rdtsc instruction reads the timestamp counter of the x86 processor.

357

App1

Flow Manager

Host A

App2

Host B

IPC (data) channelr/w r/w

Control channel

DTA (SeeC)

Flow Manager
Membership, Tag Info.

DTA (SeeC)

Figure 2. Architecture (peer view)

as the tags are transitively propagated through the process.

3 DTA Across System Boundaries

3.1 System Design and Implementation

In the previous section, we presented an information flow

tracking tool that operates within a single application: our

DTA tool is attached to a single process to track information

flow within its boundary. To realize information flow track-

ing across multiple applications and even across system

boundaries, we need to observe the native data exchanged

via inter-process communication (IPC) between interacting

applications. Here, we limit our discussion to IPC via TCP

connections.

Figure 2 depicts our architecture. The main purpose

of our mechanism is to deliver additional tag data when

data transfer happens. For example, when a process

(App1) sends data to another process (App2) invoking the

write() or writev() system call, the DTA module at-

tached to App1 passes to App2 the corresponding tag data,

which may contain source information about the native data

currently being transfered. App2 invokes a system call such

as read() or readv() to receive the native data. The

SeeC of the receiver side (App2) then appropriately trans-

lates the tag data received, and reflects them to its shadow

memory. Continuing DTA processing of App2, the infor-

mation about the data source which comes from App1 can

still be maintained and finally be spotted at the sink point(s)

of App2. In other words, we concatenate DTA processing

of the supervised connections of communicating processes.

A single host may contain multiple processes monitored

by DTA tool instances, and a process can make several

DTA-supervised connections to its corresponding peers in

the same host or in other hosts. To handle multiple DTA

processes and connections, we place a flow manager in each

host. The flow manger handles process membership, ses-

sion management of DTA for supervised connections, and

coordinated delivery of tag data.

3.1.1 Membership and Session Management

A communicating peer may either be participating in in-

formation flow tracking under SeeC, or it may just run na-

tively without any instrumentation. We call a process that

is supervised with SeeC a tracking group member. If the

peer process is a member, the source point of one member

and the sink point of the other member can be concatenated

in terms of DTA processing. Otherwise, SeeC would just

record possible information available within the process at

the source/sink points. The peer could be another process

in the same system or located in a different host.

If a process is launched with SeeC to participate in an

information tracking session, SeeC registers its process id4

to the local flow manager, establishing an IPC channel with

it. When a TCP communication channel is established with

a corresponding process, SeeC queries the peer manager

as to the membership status of the peer, so as to decide

whether to further perform concatenated DTA processing

for the given channel. The flow manager located in the peer

host responds to the membership query. As SeeC initiates

the query with the established peer’s channel information,

i.e., IP address and port, those also need to be registered in

the flow manager. It is also possible to communicate with

a remote process that is not equipped with SeeC (for which

there is no peer flow manager). In that case, the remote pro-

cess is considered a non-member and concatenated DTA is

not performed to that process.

To establish information about the TCP channel ses-

sion, SeeC instruments accept() and connect() sys-

tem calls. When a TCP channel is successfully created, and

if the two processes are both members, they each make a

membership query about the peer with the given channel

information through the interaction of their respective flow

managers. Each then stores the peer’s information locally so

that SeeC can use it for tracking purposes. SeeC also cre-

ates a queue data structure (write q) for the given channel

in the flow manager. After we determine the peer’s mem-

bership information, the system call returns. The session is

managed until the close() system call is invoked for the

channel.

3.1.2 Tag Data Delivery

To realize concatenated DTA processing, tag data should be

delivered with native data to the peer recipient so that the

peer process can reflect the tag information in its shadow

memory at its source points. The tag recipient should be

careful that the received tag data is reflected to the shadow

4SeeC and the monitored process operate within the same address

space.

358

w=write(fd, w_buf, x); r=read(fd’, r_buf, y);

request tag (r)

w

r

write_q

w’

&w_buf[0] ... &w_buf[w−1]

Shadow Memory

Flow Manager A Flow Manager B

&r_buf[0] ... &r_buf[r−1]

Shadow Memory

App1 App2

Figure 3. Tag data delivery with a queue

memory area with which the receiving buffer is correctly

associated. Unfortunately, dealing with a TCP channel we

cannot expect synchronized write()–read() pairs of

system calls in both sides for a given socket descriptor.

However, we can deliver tag data for the successfully

transferred native data by using a simple FIFO queue struc-

ture (write q) to hold tag data, as shown in Figure 3, with-

out concern about the system call synchronization or the re-

flected memory location in the tag recipient. This is because

the TCP channel is an ordered byte stream, from the point

of view of a process.

We instrument read() and write() system calls and

the following post operations are performed before the calls

are returned5.

• write(): push tag data into the write q of a corre-

sponding channel (fd) for the successfully transferred

data of size w and its address range (&w buf[0] –

&w buf[w-1]) in order.

• read(): for the successfully received data of size r,

request corresponding tag data from the peer’s flow

manager. The flowmanager pops up the requested data

from the write q and sends to the recipient. Then,

the recipient reflects the tag data to the appropriate ad-

dress range (&r buf[0] – &r buf[r-1]).

Since the TCP channel is ordered, we can expect that there

are already pushed tag data of size w′, accumulated and

associated with multiple write() calls made previously

in the sender, when a read() system call returns r and

w′ >= r.

3.1.3 Tag Resolution

As our framework is decentralized, the SeeC instance of

each process maintains its own mappings between tag data

and information source (a source information is mapped to a

“color” value of a tag). Therefore, it is necessary to perform

color value resolution for the newly introduced tag data with

5The same actions apply to readv() and writev().

the data sender. SeeC makes queries for this purpose to the

peer flow manager.

3.1.4 Threat Analysis

It is worthwhile considering the security implications of an

adversary targeting our architecture.

Evasion: As our architecture depends on the underlying

DTA tool for information tracking, attackers may possibly

evade the framework by somehow avoiding the taint propa-

gation tracking. The discontinuation is possible if the DTA

tool does not cover all the instructions involved in informa-

tion flow. It is also possible that an attacker may exploit

dependencies other than those supported by the DTA tool.

As discussed earlier, SeeC does not currently track implicit

information flow. Fortunately, malwares that exploit such

implicit flow have not been reported to date. However, we

plan to enhance traceability by adding support for control

dependencies and to increase the coverage of machine in-

structions supported by SeeC.

Subversion: Our framework needs to protect communi-

cation between flow managers by adding mutual authenti-

cation and tag encryption facilities, to prevent active or pas-

sive attacks by attackers in the network. Given that our ar-

chitecture is intended for use within a single enterprise, the

problem of key management is relatively straightforward;

to protect the actual communications, a protocol such as

TLS/SSL or IPsec is sufficient.

Members that are under an attacker’s control cannot be

trusted to provide truthful DTA information. Determining

the trustworthiness of a system is an extremely hard prob-

lem, with no known solution to date. Our architecture does

not currently address the issue of operation within a par-

tially compromised/hostile environment.

4 Experiments

In this section, we describe an experiment demonstrat-

ing distributed information flow tracking, wherein we have

captured information leakage by an SQL injection attack in-

volving web and database servers residing in different hosts.

4.1 Identifying Information Leakage by a
SQL Injection Attack

Our experiment used the Apache web server (version

2.2.9) with PHP script support (version 5.2.6). For

database server, we used MySQL (version 5.0.51). We

attached SeeC to the Apache (httpd) and MySQL server

daemons (mysqld) for information flow tracking, using

the concatenated DTA facility described earlier.

359

httpd mysqld

/etc/passwd

users.MYD

shop_items.MYD

@@@ Tainted Memory Area [0x8296510 + 7266]

Source Info −−−

COLOR: 0x2 [00000000000000000000000000000010]

128.59.19.220:33963

COLOR: 0xc [00000000000000000000000000001100]

128.59.19.225:[/home/chan/eggbox/mysql/mysql−5.0.51b/var/test_db/users.MYD]

128.59.19.225:[/etc/passwd]

Sink Info −−−

FD(11) # NETWORK SOCKET

Local [IP: 127.0.0.1, PORT: 8080, LISTEN:0]

Peer [IP: 128.59.19.220, PORT: 33963]

@@@ −−−−

Sink

Sources

Host A Host B

Figure 4. Information leakage by a SQL injection attack.

We set up an example SQL injection attack, shown

in Figure 4. The web server uses the information from

the database table users, actually stored in the file

users.MYD in the host machine of the database server, for

authentication purposes, e.g., matching the asserting user-

name and password of a user trying to log in. Obviously,

that information should not be leaked outside of the web

server boundary. Once a user logs in successfully, a web

page displays shopping items for customers through a PHP

script. Shopping items are stored in the shop items table

(shop items.MYD), and the contents are retrieved with

the following simple query string:

select * from shop_items where id=’$id’

The page fails to check the user-supplied string from the

login web form; thus, an attacker can sucessfully inject the

following string via the web form associated with the PHP

variable $id to extract user information from the database:

’ union select 1,name,passwd,1,

load_file("/etc/passwd") from users #’

Therefore, the processing results in the following (ex-

ploited) query string that includes the attacker-supplied ad-

ditional select phrase:

select * from shop_items where id=’’

union select 1,name,passwd,1,

load_file("/etc/passwd") from users #’’

Although the original service would list shopping items

from the shop items table, the exploited query string re-

trieves name and password data from the users table to-

gether with the contents of the /etc/passwd file of the

system on which the database server runs.

To detect such an information leakage, we set up taint

sources and sinks as follows:

Taint sources: We have specified taint sources on the

database server host to be any database (*.MYD) and

the /etc/passwd file. The MySQL server reads

such information with read() or pread() system

calls.

Taint sinks: Any network output streams in the web server

are sink points. On the web server, HTTP replies are

sent via a writev() system call.

With a test attack request, we could successfully identify

the original information sources at the sink point: Figure 4

includes a log of such sink capturing in the writev() sys-

tem call (one of iovec structures). With the colored taint-

ing, sources in the database server host are discriminated in

the sink point of the web server.

During the experiment with the MySQL server, we also

identified a taint laundry effect. As our test query involves

a string function load file(), the query processing first

reads the users table and the /etc/passwd file, then

prepares the response by writting its contents to a tempo-

rary file. Therefore, the taint propagation is discontinued

because the result, forwarded to the web server, is from the

temporary file which is not associated with a taint label that

concerns us. We built a makeshift connection for this ex-

periment to avoid the taint laundry effect. In practice, we

360

Table 1. MySQL sql bench performance: The
unit for the create MANY table benchmark

is table (i.e., tables created). The unit for the
other benchmarks is record row.

Benchmark Quantity Native With SeeC

create MANY

tables 10000 15s 43s

insert 30000 29s 604s

select cache 10000 57s 3447s

would be using filesystem features such as Extended At-

tributes to keep track of tainted information that has been

written to the filesystem.

4.2 Performance

To evaluate the overhead introduced by SeeC, we have

tested it with a heavily CPU-oriented application: gzip

compressing 261MB of Linux kernel source code in a

lightly loaded machine. We have two implementations that

differ in the shadow memory structure. The incurred over-

head with the simple, naive approach was approximately

28.1X, while with the page-table-like structure it was about

15.2X. For reference, a simple PIN-based tool that only

instruments instructions and does nothing for analysis in-

curred 1.28X. This shows that there is significant scope for

improvement in our tool.

MySQL is a complex multi-threaded server application.

We ran a benchmark test with sql bench tool for a

MySQL server supervised by SeeC. Table 1 shows results

from benchmarks related to creating tables, inserting and

selecting records. Our test runs show 2.9X, 25.2X, and

60.5X overheads for each test case respectively.

To see the penalty of instrumenting a TCP channel for

concatenated tainting process, we transferred a 1MB size

random file over netcat (nc) and measured the com-

pletion time. The overhead was approximately 190X, which

is not surprising given the need for multiple system calls for

each actual data transfer.

In the current unoptimized framework, the overhead

comes mostly from instrumenting the TCP channel: hook-

ing I/O-related system calls in the application layer and

transferring taint tag information to the connecting peers.

The transfers also involve interaction with other processes

(flow managers). We could enhance the performance by

normalizing tag information and only sending limited-size

representative tags, and using an in-kernel infrastructure for

delivering addtional tag information. For the performance

of DTA, some works focus on the issue [13, 19].

5 Related Work

DTA Implementations Recently, there has been much

work on implementing DTA with DBI frameworks or

whole-system emulators. TaintCheck [12], LIFT [13], Dy-

tan [14] and Flayer [15] are implemented using DBI frame-

works such as Valgrind [3], StarDBT [4], and PIN [2]. In

contrast, TaintBochs [17], Argos [16], and Panorama [18]

are implemented on whole-system emulators such as Bochs

[6] or QEMU [7]. Because software-based implementations

typically incur significant performance overhead, there have

been efforts to implement DTA in hardware [8, 11, 9, 10].

DTA Uses TaintCheck and Argos are designed to de-

tect previously unknown control-hijacking attacks, such as

buffer overflow or format string vulnerabilities, and also in-

clude signature generation features. Sweeper [21] and Vig-

ilante [22] used DTA to analyze worm viruses and generate

antibodies or alert information. TaintBochs and Panorama

showed how DTA can be used to capture information flow

of specific real-life applications in system-wide view. Egele

et al. [20] applied DTA to monitoring behavior of BHO ob-

jects in Windows, to detect privacy-leaking spyware.

There has been work on adopting static or dynamic taint

propagation (analysis) as type systems to perceive informa-

tion flow for confidentiality or integrity purposes. Shankar

et al. [27] applied static taint analysis, extending the C lan-

guage type qualifier, to taint or untaint program variables to

detect format string attacks. Huang et al. [24] extended the

PHP language to track information flow by inserting type

qualifier. Data variables, associated with types, are classi-

fied with a lattice structure thereby preventing integrity or

confidentiality violations in web applications.

SQL Injection and DTA As SQL injection attacks have

taken off in recent years, there have been efforts to secure

web applications against SQL injection using information

flow techniques. Lam et al. [25] applied sound static in-

formation flow analysis and model checking to detect taint-

based vulnerabilities. Halfond et al. [23] proposed positive

tainting, i.e., tracking trusted data, as opposed to normal

negative tainting, i.e., tracking unstrusted data. The propa-

gated trusted data flow is evaluated (before it is used as an

SQL string) in a syntax-aware manner to reduce false pos-

itives. Nguyen-Tuong et al. [26] modified the PHP inter-

preter to include a precise taint propagation facility. Against

SQL injection, they check whether operators, keywords, or

identifiers in SQL strings are tainted.

6 Conclusion

We have described SeeC, an experimental proof-of-

concept framework for tracking information flow across

361

system boundaries. SeeC tracks information flow within a

single process by propagating taint during instruction exe-

cution, and uses a flow manager to arbitrate tag delivery by

concatenating the data sources and sinks of communicating

processes. We have shown a simple scenario with an SQL

injection attack that involves unintended information leak-

age.

Our current implementation is a proof of concept. We

plan to design a new architecture with performance in mind,

and to apply the decentralized information flow model to

enforce confidentiality and integrity policies across a dis-

tributed enterprise.

Acknowledgments

We would like to thank James Clause, Seung Jin Lee, and

Sambuddho Chakravarty for their helpful comments and as-

sistance. This work was supported in part by a research gift

from Intel Corporation, and by the National Science Foun-

dation under Grant CNS-06-27473. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the NSF or the US Government.

References

[1] IBM ISS X-Forece, “IBM Internet Security Systems X-Force 2008

Mid-year Trend Statistics,” Jul. 2008.
[2] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi and K. Hazelwood, “Pin: building customized pro-

gram analysis tools with dynamic instrumentation,” Proc. of the ACM

SIGPLAN Conf. on Programming Language Design and Implementa-

tion (PLDI), pp. 190–200, 2005.
[3] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” SIGPLAN Not., Vol. 42, No. 2, pp.

89–100, 2007.
[4] C. Wang, S. Hu, H. Kim, S.R. Nair, M.B. Jr., Z. Ying, and Y. Wu,

“StarDBT: An efficient multi-platform dynamic binary translation sys-

tem,” Proc. Asia-Pacific Computer Systems Architecture Conference,

pp. 4–15, 2007.
[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtual-

ization,” Proc. of the 19
th ACM Symposium on Operating Systems

Principles (SOSP), pp. 164–177, 2003.
[6] http://bochs.sourceforge.net/
[7] F. Bellard, “QEMU, a fast and portable dynamic translator,” Proc. of

the USENIX 2005 Annual Technical Conference, FREENIX Track, pp.

41–46, 2005.
[8] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas, “Secure program ex-

ecution via dynamic information flow tracking,” Proc. of the 11
th Int.

Conf. on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pp. 85–96, 2004.
[9] J. Kong, C.C. Zou, and H. Zhou, “Improving software security via

runtime instruction level taint checking,” Proc. of the 1
st Workshop

on Architectural and System Support for Improving Software Depend-

ability, pp. 18–24, 2006.
[10] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible in-

formation flow architecture for software security,” Proc. of the 34
th

International Symposium on Computer Architecture, 2007.
[11] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Flex-

itaint: a programmable accelerator for dynamic taint propagation,”

Proc. of the 14
th International Symposium on High-Performance

Computer Architecture (HPCA), pp. 173–184, 2008.

[12] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-

tection, analysis, and signature generation of exploits on commodity

software,” Proc. of the 12
th Symposium on Network and Distributed

System Security (NDSS), 2005.
[13] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou and Y. Wu, “LIFT: A low-

overhead practical information flow tracking system for detecting secu-

rity attacks,” Proc. of the 39
th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pp. 135–148, 2006.
[14] J. Clause, W. Li and A. Orso, “Dytan: a generic dynamic taint anal-

ysis framework,” Proc. of the International Symposium on Software

Testing and Analysis, pp. 196–206, 2007.
[15] W. Drewry and T. Ormandy, “Flayer: exposing application inter-

nals,” Proc. of the 1
st USENIX Workshop on Offensive Technologies

(WOOT), 2007.
[16] G. Portokalidis, A. Slowinska and H. Bos, “Argos: an emulator for

fingerprinting zero-day attacks for advertised honeypots with automatic

signature generation,” Proc. of the 1
st ACM SIGOPS/EuroSys Euro-

pean Conference on Computer Systems (EuroSys), pp. 15–27, 2006.
[17] J. Chow, B. Pfaff, T. Garfinkel. K. Christopher, and M. Rosenblum,

“Understanding data lifetime via whole system simulation,” Proc. of

the 13
th USENIX Security Symposium, 2004.

[18] H. Yin, D. Song, M. Egele, C. Kruegel and E. Kirda, “Panorama:

capturing system-wide information flow for malware detection and

analysis,” Proc. of the 14
th ACM Conf. on Computer and Commu-

nications Security (CCS), pp. 116–127, 2007.
[19] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practi-

cal taint-based protection using demand emulation,” Proc. of the 1
st

ACM SIGOPS/EuroSys European Conference on Computer Systems,

pp. 29–41, 2006.
[20] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic

spyware analysis,” Proc. of the USENIX Annual Technical Conf., No.

18, 2007.
[21] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhou, J. Newsome, D.

Brumley, and D. Song, “Sweeper: a lightweight end-to-end system for

defending aginst fast worms,” Proc. of the 2
st ACM SIGOPS/EuroSys

European Conference on Computer Systems (EuroSys), pp. 115–128,

2007.
[22] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang

and P. Barham, “Vigilante: end-to-end containment of internet worms,”

Proc. of the 20
th ACM Symposium on Operating Systems Principles

(SOSP), 2005.
[23] W. Halfond, A. Orso, and P. Manolios, “Using positive tainting and

syntax-aware evaluation to counter SQL injection attacks,” Proc. of

the 14
th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pp. 175–185, 2006.
[24] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,

“Securing web application code by static analysis and runtime protec-

tion,” Proc. of the 13
th international conference on World Wide Web

(WWW), pp. 40–51, 2004.
[25] M.S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web ap-

plications with static and dynamic information flow tracking,” Proc. of

the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

based Program Manipulation (PERM), pp. 3–12, 2008.
[26] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley. and D. Evans

“Automatically hardening web applications using precise tainting,”

Proc. of the 20
th IFIP International Information Security Conference

(SEC), pp. 295–308, 2005.
[27] U. Shankar, K. Talwar, J.S. Foster and D. Wagner, “Detecting format

string vulnerabilities with type qualifiers,” Proc. of the 10
th conference

on USENIX Security Symposium, 2001.
[28] W. Chang, and C. Lin, “Guarding programs against attacks with dy-

namic data flow analysis,” Proc. of the 7
th Annual Austin CAS Inter-

national Conference, 2005.
[29] S. McCamant and M.D. Ernst, “Quantitative Information-Flow

Tracking for C and Related Languages,” Computer Science and Ar-

tificial Intelligence Laboratory Technical Report, MIT, MIT-CSAIL-

TR-2006-076, 2006.

[30] J. Seward and N. Nethercote, “Using Valgrind to detect undefined

value errors with bit-precision,” Proc. of the 2005 USENIX Annual

Technical Conference, pp. 17–30, 2005.

362

