
Mediated Overlay Services (MOSES): Network Security as a
Composable Service

Stelios Sidiroglou Angelos Stavrou Angelos D. Keromytis
Department of Computer Science

Columbia University, New York, NY
{stelios,angel,angelos}@cs.columbia.edu

Abstract

In recent years, organizations have been shifting focus to
their core business competencies, and reducing total cost
of ownership (TCO) associated with training and manage-
ment of their IT infrastructure. In the same motif, organi-
zations are establishing security and survivability frame-
works as an integral part of their business strategy so as to
provide an acceptable quality-of-service for their clients
and employees. However, the current paradigm of out-
sourced managed security service providers (MSSPs) is
often difficult to transition to, offers little control to the
organization, does not allow ”best of breed” composition,
and risks vendor lock-in due to the complexity of migrat-
ing to a different MSSP.

We present MOSES (Mediated Overlay Services), an
architecture for composing network security services such
as anti-spam, antivirus, automated vulnerability detection
and mitigation, and filtering. MOSES is roughly modeled
on the web services framework. In addition to ease-of-
deployment, MOSES allows for economies of scale and
a reduction to the total cost of ownership. In this paper,
we discuss our motivation and high-level view of such an
architecture. We highlight the advantages, illuminate po-
tential drawbacks, and discuss a broad research agenda
toward realizing this vision.

1 Introduction

As organizations are increasingly focusing on their core
competencies and business processes, they have been
looking for ways to outsource their IT operations and
management. As a result, a new class of application
service providers has emerged, offering a diverse set of
outsourcing services: from help-desk support, to server-
farm management and hosting, to IP telephony, to pro-
viding web-based application suite, these providers lever-

age cheap and fast connectivity to achieve economies of
scale combined with specialization to critical but rela-
tively narrow aspects of an enterprise’s IT needs. With
the exception of a handful of large application service
providers (such as Google and IBM), the market for ser-
vice providers remains highly fragmented, with individual
firms striving to provide very specialized, “best of breed”
software and services in their respective niches.

In the same motif, organizations are establishing se-
curity and survivability frameworks as an integral part
of their business strategy so as to provide an acceptable
quality-of-service for their clients and employees. How-
ever, the increasing dependence on the Internet as a means
of both gluing together the outsourced IT components and
for interacting with customers means that there is a ten-
sion between openness and connectivity on the one hand,
and the security needs of the organization on the other.
Specifically, a key function of the IT management and
support stuff nowadays revolves around handling mali-
cious behavior from both inside and outside of the en-
terprise network in the form of spam, virus and worms,
denial of service (DoS) attacks, insider malfeasance, and
so on. As a result, a number of Managed Security Ser-
vice Providers (MSSPs) have appeared, striving to of-
fer “one-stop shop” security services. However, this ap-
proach can leave an enterprise vulnerable, since very few
MSSPs are big enough to have highly specialized exper-
tise in all the possible threat domains. Unfortunately, the
all-in-one nature of current MSSPs, combined with the
sensitivity of the provided service, act as a deterrent to
changing providers, leading to vendor lock-in.

We argue that a better model for outsourced security
would be to emulate the “best of breed” approach largely
followed by web-based application service providers.
That is, security services should be provided as modules
that can be composed in a flexible manner to meet the
needs of an organization. Such modules may be under
the direct control of the organization (e.g., in the form of



stand-alone devices or software that runs on the organi-
zation’s servers), may be offered as a remotely managed
appliance, or as a software service running off-premises.
This approach allows organizations to select exactly the
type of services they need, using the best provider for
each service. By standardizing the way such components
interact with each other, service replacement should be a
much easier task. For small MSSPs, such an architecture
is more attractive since it becomes easier for customers to
employ their services vs. using a large integrated MSSP.
Even large MSSPs can benefit, by replacing their offer-
ings in areas in which they do not have deep expertise with
outside partners that do, thus providing a more attractive
overall service.

We propose MOSES, an overlay-based architecture that
facilitates the deployment and composition of a plethora
of security services. MOSES uses a flow-based model
of enterprise data, and allows services to act as filters on
those flows. The elements performing the filtering can
reside entirely on the enterprise’s premises, or be entirely
outsourced, or a combination of the two. Is it also possible
to selectively split data flows, as well as (selectively) join
different flows. This architecture provides fertile ground
for a new modus operandi of security services. Exam-
ples of these services are transparent network-wide fil-
tering, attack inference, service availability (resilience),
worm and virus detection, and large-scale behavior anal-
ysis (users, traffic, etc.). What is of importance here is
that our architecture enables new types of services, by al-
lowing for a natural aggregation of traffic and routing de-
cisions above the network layer. From an economic per-
spective, one can quickly realize that economies of scale
can be easily achieved by each SSP, thus procuring the
ability to provide services at a reduced cost. From an ar-
chitectural viewpoint, the use of a secure overlay like SOS
[7] facilitates a proactive approach to dealing with surviv-
ability and service availability by using a amalgamation of
secure overlay tunnels, policy-based routing, and filtering.

Ultimately, the goal of MOSES is to provide a base
architecture that facilitates the outsourcing of services in
general by fostering an open, flexible services framework.
However, this approach also introduces several risks and
disadvantages relative to an “in-house” approach. First,
SSPs may fail to perform their duties (or even act ma-
liciously, or get compromised). Second, the use of an
overlay may impact overall system performance, since the
data may traverse the wide-area network several times as
it flows between SSPs and the enterprise. Finally, unless
the whole enterprise is virtualized and outsourced (with
computation and storage decoupled from the organiza-
tion), MOSES will not be able to deal with insider risks

and attacks.
The rest of this paper describes and motivates

MOSES’s architecture and design principles in detail, in-
cluding a description of sample proposed services and
scenarios, as well as ways of mitigating the above-
mentioned risks.

2 MOSES System Architecture

Current approaches to securing an enterprise typically
require acquiring and managing logically distinct com-
ponents, which an organization needs to compile into
service entities. For example, enterprises routinely em-
ploy different products, often from different vendors, for
their firewall, VPN, intrusion detection, intrusion preven-
tion, patch management, spam, anti-virus, web security,
backup, insider misbehavior detection, and other needs.
It is not uncommon to simultaneously use several differ-
ent products that address the same threats, e.g., worm de-
tectors or spam blockers. While this approach might be
adequate for large enterprises with numerous IT staff, it
renders the cost of ownership prohibitively expensive for
smaller organizations. The problem is further exacerbated
when one examines the cost beyond the initial cost of the
infrastructure, in particular, the cost of maintenance and
training. Thus, it would seem that securing an enterprise
is also amenable to outsourcing, within some constraints.

2.1 MOSES Overview

The goal of MOSES is to provide a distributed, secure
and robust mechanism to transparently connect service
providers with their respective customers. For this pur-
pose, MOSES provides a level of indirection between
its customers’ infrastructure, security service providers
(SSPs), and the Internet. It employs a distributed policy-
based overlay network of access points that acts as a ser-
vice mediator between the different sites that MOSES
connects, as shown in Figure 1. Each of the entities con-
nected to MOSES can take the role of a service provider,
a service consumer, or both, depending on policy agree-
ments. For example, an organization may wish to out-
source the spam detection of its incoming mail to an-
other site that provides a spam filtering service. MOSES
will intercept all mail requests to the organization and re-
route them through the spam-detection site and back to
the customer in a completely transparent fashion. Sev-
eral services can be chained in this way, with data flowing
through the overlay before reaching the enterprise; similar
processing may occur in the outgoing direction, typically



Figure 1: Moses architectural overview: The overlay network acts as a policy-enforcement mediator, re-routing
all traffic between users (or enterprise components) and the enterprise through requested services using the
information stored in the routing policy database. Each site connected to MOSES can be thought of as service
provider, a service consumer or both.

for connections initiated by the enterprise. If two enter-
prises A and B communicate through MOSES, one can
view the data flow as two pipes (A’s outgoing and B’s
incoming processing pipeline, or vice versa) connected
somewhere inside the overlay. At any step in the pipeline,
data may be duplicated (and sent to multiple destinations
or paths, e.g., to a backup site), merged (e.g., combin-
ing and pruning the streams received from two different
virus detection SSPs that are used in parallel, instead of in
series), or dropped (if deemed malicious). MOSES (and
the SSPs) must provide enough visibility of the process-
ing pipeline to an enterprise that there is confidence in its
operation and results.

MOSES harnesses the distributed nature of overlay net-
works to strategically deploy overlay nodes close to the
customers’ intranets utilizing different ISPs. This pro-
vides the ability to opportunistically choose the best route
between components independently of the underlying net-
work topology thus achieving high availability [3, 5] and,
occasionally, lower latency [13].

This high-level description raises several questions,
posed and partially answered below. Our goal is not to
provide a complete architecture, but to motivate research
in this direction and outline a broad research vision (com-
plete with challenges and open problems) that will stimu-
late further work.

How do entities discover each other? Initially, we en-
vision a simple directory service that lists the various
SSPs and the services they provide, along with the traffic

types they can consume and produce. System managers
can peruse the directory and select an SSP with whom
to negotiate a service-level agreement. Reputation sys-
tems and auctioning may be used as part of the selection
process. Eventually, we envision a system where appli-
cations can discover entities and incorporate them in their
processing pipeline in a fully automated fashion, reflect-
ing the needs of specific transactions/interactions. Addi-
tional information that may come into play during selec-
tion includes network topology (for performance reasons,
as we shall see shortly), processing capacity guarantees,
and others. This requires a language for specifying and
analyzing MOSES-provisioned security services, akin to
the Web Services Description Language (WSDL) used in
Web Services.

How does routing work in MOSES? Once two par-
ties agree on a service-level agreement, a routing policy
is generated and “pushed” in the overlay. This policy de-
scribes what type of traffic the SSP should be expecting
to receive (and from whom), what type of traffic it is ex-
pected to produce, and what the next hop in the overlay
should be. The next hop may be the enterprise itself, or
it may be another SSP in MOSES. This policy can either
be stored in a protected centralized database or it can be
distributed among the overlay nodes creating a distributed
policy database. We believe that the latter is more scal-
able, secure and resilient, as shown in previous research
[7, 15]. One approach to routing is to treat MOSES sim-
ply as an information layer that SSPs use to determine



what the next hop in an enterprise’s pipeline; traffic then
flows directly between SSPs (and the enterprise). One po-
tential problem for the enterprise is that each SSP knows
the previous and next SSP in its pipeline. Thus, a sec-
ond approach to routing is for MOSES to effectively act
as an anonymization and complete routing layer, passing
data flows from one SSP to the next without revealing
the respective identities. While this approach maintains
the secrecy of the pipeline elements, it may increase the
network latency due to the additional hops involved. An
interesting approach is the use of the overlay to control
routing decisions, while using the underlying network in-
frastructure for direct data communication.

How does traffic enter MOSES? Pre-established
pipelines between known enterprise elements need not in-
teract with the rest of MOSES. However, users (or other
enterprises) either need to be aware of MOSES or some-
how must be redirected to an entry point of the enterprise’s
pipeline. There are several ways to achieve this. For ex-
ample, an enterprise may be accessible through DNS or
IP-provisioned Anycast, which will point to a MOSES
overlay node that runs an application-level proxy that will
tag and route traffic to the appropriate pipeline. Another
approach, especially applicable to web-based interactions,
is to redirect a client’s browser or similar client to that en-
try point. Because of our strong requirements for system
availability, we have made SOS [7] the front-line element
of MOSES. We give a high-level description of SOS in
Section 2.2.

How does an enterprise protect its communications
from malicious parties, including malevolent SSPs?
Trusting a third party (an SSP, or MOSES itself) to route
enterprise traffic introduces an element of risk. Currently,
Internet Service Providers are trusted to to route traffic to
and from external entities. Small and medium-size en-
terprises are usually connected to the Internet via a single
ISP, who controls their external connectivity. There is also
some dependency on external infrastructure (e.g., DNS)
but, generally, data flows directly between customers or
external partners and the enterprise without intermediate
processing (although email, with its store-and-forward ar-
chitecture, is a notable exception). Even if the third party
routes data flows correctly, there is no guarantee that the
processing performed will be correct, benevolent, or com-
plete. Finally, there is the risk of data theft, especially
in the financial services domain, as private information
flows through multiple intermediaries; malicious employ-
ees and system compromises are some of the obvious risks
there.

Although there is no all-encompassing solution to this
problem, we believe that a combination of automated

active auditing, redundancy, and proper use of encryp-
tion can mitigate some of these risks. For example,
MOSES allows enterprises to inject traffic at any point
in their pipeline; doing so and comparing the received re-
sults allows an enterprise to monitor the quality of ser-
vice received, and to identify some types of misbehav-
ior. The use of encryption and, more interestingly, data
anonymization can also help mitigate some of the risks
of information disclosure to third parties. To aid in this,
MOSES nodes can perform some nominal processing on
the data streams the view, on behalf of the enterprise.
Such processing is intended to be relatively lightweight
so as not to overload the infrastructure. Interesting fu-
ture work is the development of a lightweight process-
ing infrastructure, perhaps based upon prior work in ac-
tive networking [2], and of algorithms and techniques for
anonymizing various types of data flows for processing by
SSPs.

What are the performance implications of such traf-
fic routing? Another potential problem is the network
overhead of the re-routing operation. We claim that net-
work latency although substantial for services that require
relatively fast server response like web browsing, it is
within acceptable limits; our previous work has demon-
strated an overall increase in latency by a factor of 2 to
3 [8]. The use of multi-path routing and traffic spread-
ing [13] can further reduce the overhead, although the use
of multiple SSPs can mitigate these gains. An interest-
ing direction for future work will be the reconciliation of
MOSES policy-based routing with performance consid-
erations; such concerns can also affect the selection of
SSPs, since topologically clustered components will re-
sult in lower overall latency. On the other hand, a large
class of interesting services like email and backup are not
quite as time-sensitive.

What types of services can (and cannot) fit into this
framework? We envision a variety of services as inher-
ently MOSES-friendly, and describe a few of them in Sec-
tion 3. Fundamentally, operations on data that are state-
less (or almost so) should be straightforward to implement
in MOSES. Services that require bidirectional interaction
between components may be more difficult to efficiently
model in MOSES, although we have not yet come across a
good example. Determining the architectural limitations
and possible extensions to MOSES is part of our future
plans of work.

We believe that security and resilience is of vital im-
portance for our system since it will be the connection
infrastructure for a variety of services. Since critical pol-
icy and routing information will be stored and maintained
from MOSES, we decided to use an enhanced version of



Secure Overlay Services (SOS) [7] as a component of the
MOSES design. For applications that assume a more se-
cure environment of operations, e.g., within the intranet of
a single organization, a simpler approach would suffice.
The original design of SOS allowed for the coexistence of
multiple services using the same overlay. However, com-
position or encapsulation of services were not supported.
Additionally, SOS was limited to authentication policy
enforcement, whereas MOSES tackles more sophisticated
policy requirements that affect the routing of packets in-
side the overlay. Before we continue, we include a brief
description of the fundamental aspects of SOS; especially
the construction of the overlay network explaining the en-
hancements made to accommodate MOSES.

2.2 Secure Overlay Services for MOSES

Fundamentally, the goal of SOS (and of many indirection-
based DDoS defense system) is to selectively drop or rate
limit unauthorized traffic while routing the good traffic to
a selected service provider. At a very basic level, SOS
provides the functionality of a firewall “deep” enough in
the network such that the access link to the target does
not become congested1. This distributed firewall [6] may
perform access control by using protocols such as IPsec
or TLS, or by relying on authentication and authoriza-
tion services from the system being protected, or by using
techniques such as Graphical Turing Tests 2 [18]. Once
admitted, traffic is routed to a secret location, which can
be target itself [14] or a node that is allowed to contact the
target (called “secret servlet” in SOS [7]), with all other
traffic being filtered [7, 8], as shown in Figure 2. The se-
cret forwarder can vary over time, and is different for each
site protected by the system; part of the functionality built
in SOS concerns itself with maintaining and propagating
this information to other overlay nodes. Otherwise, we
assume that the identity of the protected server and all in-
direction nodes is publicly known or easily determined by
an attacker.

In the original SOS, each overlay node maintains a ta-
ble that stores the identities of m other overlay nodes. The
Chord algorithm [16] routes packets around the overlay
“circle”, progressively getting closer to the desired over-
lay node, with O(m) overlay nodes visited. Chord pro-
vides a robust and reliable, while relatively unpredictable
for an adversary means of routing packets from an over-

1In terms of network topology, this typically means the first or
second-level router in the hosting Internet Service Provider’s Point-of-
Presence (POP).

2Although the simple GTTs can be easily broken [9], more advanced
versions are as of yet outside the reach of computer vision and semantic
understanding.

Figure 2: SOS architecture

lay access point to one of the nodes that knows the iden-
tify of the secret servlet for a target. Unfortunately, this
also increases the communication latency, since traffic to
the target must be redirected several times across the In-
ternet. Instead, a two-level redirection approach can be
used, in which traffic from any access point can be sent
directly to the secret servlet, dispensing with Chord as the
intra-overlay routing mechanism. This approach can re-
duce the latency by an order of magnitude, to about a little
over twice the latency of a direct communication between
a user and the target site [8]. By using traffic spreading
across all overlay nodes as shown in Figure 3, it is possi-
ble to further reduce this overhead while also increasing
the resiliency of the system against DoS attacks [13].

Figure 3: Spread-spectrum SOS

The same overall architecture is retained in MOSES,
with a few changes. As in SOS, MOSES nodes imple-
ment the full SOS functionality and can thus simultane-
ously act as access points and secret servlets; in addi-
tion, these nodes implement MOSES routing. SSPs them-
selves need not be treated as part of the overlay; instead,
they become a SOS “target”, and all traffic to them is
routed through MOSES. Thus, between each hop in the
pipeline, there are two MOSES/SOS nodes: an access
point and a secret servlet. (In reality, when using traffic
spreading, all MOSES nodes are used as access points.)
However, when two components reside within the enter-
prise or when the interconnection policy dictates so, traf-



fic can completely bypass MOSES and instead flow from
one SSP to the next. Furthermore, when network reser-
vations can be guaranteed [17], traffic can flow between
SSPs and the overlay in a single hop, without need for the
two-hop indirection. The ability to use SOS on a pay-per-
use basis [12] also allows for flexible charging models be-
tween users and organizations, or even among SSPs and
enterprises, especially when MOSES pipelines are auto-
matically established and torn down on demand for short
periods of time.

3 Example MOSES Services

Since the goal of designing MOSES and one of its key
functions is the provision of security-related services, we
now turn our attention to currently available and envi-
sioned services for MOSES. Our goal is to give some
examples of such services, rather than an exhaustive de-
scription. We omit some of the obvious services, such as
firewall filtering and VPN provisioning, since such capa-
bilities are inherent in the core functionality of MOSES.

Worm Vaccine and Email worm detection The Net-
work Worm Vaccine Architecture [11] is an ideal exam-
ple for the types of services that would be deployed with
MOSES. The WormVaccine architecture presents a first-
reaction mechanism that seeks to automatically patch vul-
nerable software. The system employs a collection of
sensors that detect and capture potential worm infection
vectors. These vectors are automatically tested against
appropriately-instrumented sandboxed instances of a tar-
geted application (e.g., the web server) for any exploited
software weakness. Based on a number of heuristics, the
WormVaccine software automatically generates patches
that can protect against certain classes of attacks and tests
the resistance of the patched application against the infec-
tion vector. Also part of the WormVaccine architecture
is an extension that deals with email worms: potential
worms are forwarded to a sandboxed environment where
a host-based intrusion detection system [4] identifies in-
fection vectors based on the behavior of attachments as
they are automatically opened by the system [10].

Under MOSES, applications used across the overlay
would be registered with a worm/email-vaccine provider.
The provider would, in turn, be responsible for patching
and propagating protected instances of the application to
registered users of the service using the overlay. The de-
tection mechanism would employ distributed honeypots
on the overlay [1], in addition to sensors at the organiza-
tion level.

WebSOS The ability to provide guaranteed access to a
web service, especially under adverse network conditions
is fairly ambitious under the current Internet infrastruc-
ture. WebSOS [8] is an overlay-based architecture that
provides such access to a web server that is targeted by a
denial of service attack. We envision the use of an archi-
tecture like WebSOS in conjunction with network-wide
policies, allowing for policy-driven behavior at the net-
work, organization or user level. For example, when traf-
fic levels exceed a threshold values, access to certain web
services would become available only through WebSOS.
Inherent to the WebSOS architecture is a distributed in-
trusion detection component that deals with the issue of
identifying misbehaving traffic.

Spam Detection Outsourcing logically coherent ser-
vices to multiple vendors is an integral part of the MOSES
architecture. An ideal example for this type of service
is spam detection. One can easily envision outsourcing
spam detection to open and proprietary detection engines
and correlating the results into a more coherent and po-
tentially accurate set of results. Both SSPs and organi-
zations can benefit from using a larger user base to train
their respective detection engines, since they can diver-
sify the signature base across organizations. For example,
a detection engine can take advantage of early detection
of spam originating at a certain locale and provide filters
proactively in other locations. Furthermore, novel spam
architectures such as SpamWatch [19] may be deployed
to take advantage of collaborative, peer-to-peer and con-
tent similarity based detection.

Distributed Intrusion Detection Systems Although
not a panacea to problems involving intrusion detection
systems, an overlay-based system can provide a number
of vantage points. Briefly, the framework for collabora-
tively collecting network-wide traffic data across the un-
derlying heterogeneous network becomes readily avail-
able, greatly facilitating the data-mining of this informa-
tion. Furthermore, with MOSES, intrusion detection sys-
tems would be able to easily access both incoming and
outgoing network traffic given the desire to do so.

Non-Security related In this paper, we focus primarily
on the management and deployment of security services.
However, we also anticipate the deployment of a number
of non-security services. Examples of such services are
backup and software update. For the backup service, one
can easily envision employing a location-driven overlay
system to offer secure and resilient large-file transfers to
geographically distinct areas providing a natural protec-
tion mechanism against natural and man-made disasters.



The software update service builds upon the security in-
frastructure of a secure overlay system like SOS to pro-
vide a highly robust update mechanism. MOSES provides
the underlying security mechanism and the ability to man-
age content dissemination efficiently.

4 Conclusions
We presented MOSES, an architecture for composing net-
work security services such as anti-spam, anti-virus, auto-
mated vulnerability detection and mitigation, and filter-
ing. MOSES is roughly modeled on the web services
framework. We gave a high-level view of the type of ser-
vices MOSES would offer, its key elements, and identified
areas where additional work is needed and opportunities
for future research exist.

References
[1] K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,

E. Markatos, and A. D. Keromytis. Detecting Targetted
Attacks Using Shadow Honeypots. In Proceedings of the
14th USENIX Security Symposium, pages 129–144, Au-
gust 2005.

[2] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, and J. M.
Smith. Practical Network Applications on a Lightweight
Active Management Environment. In Proceedings of the
3rd International Working Conference on Active Networks,
pages 101–115, October 2001.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. N. Rao. Improving Web Availability for Clients with
MONET. In Proceedings of the 2nd Symposium on Net-
worked Systems Design and Implementation (NSDI), May
2005.

[4] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. J. Stolfo.
Detecting Malicious Software by Monitoring Anomalous
Windows Registry Accesses. In Proceedings of the 5th

Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

[5] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M.
Levy, and D. Wetherall. Improving the Reliability of Inter-
net Paths with One-hop Source Routing. In Proceedings
of the 6th Symposium on Operating Systems Design & Im-
plementation (OSDI), December 2004.

[6] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith. Im-
plementing a Distributed Firewall. In Proceedings of the
ACM Conference on Computer and Communications Se-
curity (CCS), pages 190–199, November 2000.

[7] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
Secure Overlay Services. In Proceedings of ACM SIG-
COMM, pages 61–72, August 2002.

[8] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis,
V. Misra, and D. Rubenstein. Using Graphic Turing
Tests to Counter Automated DDoS Attacks Against Web
Servers. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), pages 8–
19, October 2003.

[9] G. Mori and J. Malik. Recognizing Objects in Adversarial
Clutter: Breaking a Visual CAPTCHA. In Proceedings
of Computer Vision and Pattern Recognition (CVPR), June
2003.

[10] S. Sidiroglou, J. Ioannidis, A. D. Keromytis, and S. J.
Stolfo. An Email Worm Vaccine Architecture. In Pro-
ceedings of the 1st Information Security Practice and Ex-
perience Conference (ISPEC), pages 97–108, April 2005.

[11] S. Sidiroglou and A. D. Keromytis. A Network Worm Vac-
cine Architecture. In Proceedings of the IEEE Workshop
on Enterprise Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE), Workshop on Enterprise Secu-
rity, pages 220–225, June 2003.

[12] A. Stavrou, J. Ioannidis, A. D. Keromytis, V. Misra, and
D. Rubenstein. A Pay-per-Use DoS Protection Mechanism
For The Web. In Proceedings of the Applied Cryptography
and Network Security (ACNS) Conference, pages 120–134,
June 2004.

[13] A. Stavrou and A. Keromytis. Countering DoS Attacks
With Stateless Multipath Overlays. In Proceedings of the
12th ACM Conference on Computer and Communications
Security (CCS), pages 249–259, November 2005.

[14] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and
D. Rubenstein. MOVE: An End-to-End Solution To Net-
work Denial of Service. In Proceedings of the ISOC
Symposium on Network and Distributed System Security
(SNDSS), pages 81–96, February 2005.

[15] I. Stoica, D. Adkins, S. Zhuang, and S. Surana. Internet
Indirection Infrastructure. In Proceedings of ACM SIG-
COMM, pages 73–86, August 2002.

[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Application. In Proceedings of ACM SIG-
COMM, August 2001.

[17] D. M. Turner, V. Prevelakis, and A. D. Keromytis. The
Bandwidth Exchange Architecture. In Proceedings of the
10th IEEE Symposium on Computers and Communica-
tions (ISCC), pages 939–944, June 2005.

[18] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using Hard AI Problems For Security. In Pro-
ceedings of EUROCRYPT, May 2003.

[19] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph,
and J. Kubiatowicz. Approximate Object Location and
Spam Filtering on Peer-to-peer Systems. In Proceedings
of ACM Middleware, June 2003.


	Introduction
	MOSES System Architecture
	MOSES Overview
	Secure Overlay Services for MOSES

	Example MOSES Services
	Conclusions

