
The Security of Elastic Block Ciphers Against
Key-Recovery Attacks

Debra L. Cook1, Moti Yung2, Angelos D. Keromytis2

1 Alcatel-Lucent Bell Labs, New Providence, New Jersey, USA
dcook@alcatel-lucent.com⋆⋆

2 Department of Computer Science, Columbia University, New York, NY, USA
{moti,angelos}@cs.columbia.edu

Abstract. We analyze the security of elastic block ciphers against key-recovery
attacks. An elastic version of a fixed-length block cipher isa variable-length block
cipher that supports any block size in the range of one to two times the length of
the original block. Our method for creating an elastic blockcipher involves in-
serting the round function of the original cipher into a substitution-permutation
network. In this paper, we form a polynomial-time reductionbetween the elastic
and original versions of the cipher by exploiting the underlying network structure.
We prove that the elastic version of a cipher is secure against a given key-recovery
attack if the original cipher is secure against such an attack. Our analysis is based
on the general structure of elastic block ciphers (i.e., the network’s structure, the
composition methods between rounds in the network and the keying methodol-
ogy) and is independent of the specific cipher.

keywords: variable-length block ciphers, security analysis, reduction proof, key
recovery attacks.

1 Introduction

Elastic block ciphers are variable-length block ciphers created from existing block ci-
phers [5]. The elastic version of a block cipher supports anyblock size between one and
two times that of the original block length, and results in a computational workload for
encryption that is proportional to the actual block size. Our method for creating elastic
block ciphers consists of a substitution-permutation network that uses the round func-
tion from the existing fixed-length block cipher as a black box. Elastic block ciphers,
in turn, can be combined with modes of encryption to support encryption of any size
cleartext.

Traditionally, block ciphers are designed to support a specific block size, with the
security analysis and design optimized for the supported block size. For a variable-
length block cipher, a more general analysis is required to avoid evaluating the cipher
separately for each supported block length. Furthermore, for elastic block ciphers it
is preferable to be able to analyze the ciphers as a category as opposed to evaluating
each one individually against specific attacks to which the fixed-length versions have
previously been proven to be immune.

⋆⋆ This work was performed while the author was at Columbia University.

We have extensively analyzed both the underlying structureused to create elastic
block ciphers and practical examples of elastic block ciphers. Our analysis has ranged
from proving that elastic block ciphers, in theory, providevariable length pseudorandom
permutations (PRPs) and strong PRPs to creating and analyzing concrete examples [4].
In this work, we present our analysis of the security of elastic block ciphers against
practical attacks. These attacks typically attempt to recover the keys or the round keys of
the block cipher. Differential cryptanalysis [3, 7], linear cryptanalysis [9] and exhaustive
search methods are instances of such attacks (but other key-recovery attacks exist [2,
13]).

We prove, in general, that the elastic version of a block cipher is secure against
attacks that attempt to recover key bits if the original, fixed-length version of the cipher
is secure against such attacks.Our method is unique in that we show how to convert
such an attack on the elastic version directly into an attackon the original version with
a polynomially related time complexity.Unlike generic design methodologies, where
the component from which security is derived is a well definedblack-box building
block [6], our proof requires identifying the presence of a fixed-length instance of the
block cipher embedded inside the elastic design even thoughit is the round function and
not the original block cipher in its entirety that is used as ablack box. As a result of our
proof, if the original cipher is (assumed, shown heuristically, or proven to be) immune
to a certain type of attack (such as linear or differential cryptanalysis) then the elastic
version is also (respectively assumed, shown heuristically, or proven to be) immune to
the attack in the same sense (with polynomially related parameters that we concretely
calculate).

The use of the round function of the original block cipher as ablack box in the
elastic version, together with the methods by which we compose rounds and schedule
key material, is what enables us to relate the security of theelastic version of a block
cipher directly to the security of the original cipher. Our general approach is moti-
vated by reduction-oriented proofs of security. Such prooftechniques are not typical in
symmetric-key cryptography, especially in concrete designs (for a survey of proof tech-
niques in this area, see [12]:Chapter 4), and are more commonin generic designs that
assume strong secure components (e.g.,assuming a component is a random function or
a pseudorandom function [8]).

Our elastic block cipher design exploits existing components of a cipher to gain ef-
ficiency and avoids using the entire fixed-length cipher as a black-box (as was done in
earlier work, [1, 11]). Thus, it may appear at first that the ability to perform a reduction-
based proof is lost. However, the methodology presented in this work demonstrates
that even concrete designs that use components of a cipher may resort to reduction-
like proof techniques if the components’ properties and thecomposition methods are
carefully chosen, even with respect to concrete key-recovery attacks as opposed to only
distinguishability attacks, which are more typical in investigations of a formal theoret-
ical nature. To the best of our knowledge, this type of methodology is new in this area.
While it is not common in block cipher design, we believe it will be a useful analysis
tool in settings that employ cipher components within extended contexts, and may also
be of independent interest.

2

The remainder of the paper is organized as follows. Section 2summarizes the con-
struction of elastic block ciphers. Section 3 defines the relationship between the security
of the elastic version of a block cipher against key recoveryattacks to the security of
the original cipher against such attacks. Section 4 concludes the paper.

2 Elastic Block Cipher Review

2.1 Overview

We briefly review our method for creating elastic block ciphers [5]. The method con-
verts the encryption and decryption functions of any existing block cipher to accept
blocks of sizeb to 2b bits, whereb is the block size of the original block cipher. The
general structure of an elastic block cipher is shown in Figure 1. An elastic version of
a block cipher is created by inserting the cycle of the original fixed-length block cipher
into the network structure to form the round function of the elastic version. In each
round the leftmostb bits are processed by the round function and the rightmosty bits
are omitted from the round function. Afterwards, the rightmosty bits are XORed with a
subset of the leftmostb bits and the results swapped. This swapping of bits may be omit-
ted after the last round. The number of rounds in the elastic version is set such that the
round function is applied to each bit position at least the same number of times as in the
fixed-length version. The elastic version also includes initial and end-of-round whiten-
ing, and an initial and final key-dependent permutation. Thekey-dependent permuta-
tions are present to prevent an attacker from knowing with a probability of 1 exactly
whaty bits are omitted from the first application of the round function when encrypt-
ing or decrypting. Decryption is performed by applying the network in reverse with the
round function ofG′ replaced by its inverse, specifically the inverse of the cycle inG.

We use the following notation from the definition of elastic block ciphers [5] through-
out the remainder of this paper.
Notation:

– G denotes any existing block cipher with a fixed-length block size that is structured
as a sequence of rounds. By default, any block cipher that is not structured as a
sequence of rounds is viewed as having a single round.

– A cycle inG refers to the point at which allb-bits of the block have been processed
by the round function ofG. For example, ifG is a Feistel network, a cycle is the
sequence of applying the round function ofG to the left and right halves of theb-bit
block. In AES [10], the round function is a cycle.

– r denotes the number of cycles inG.
– b denotes the block length of the input toG in bits.
– y is an integer in the range[0, b].
– G′ denotes the modifiedG with a (b + y)-bit input for any valid value ofy. G′ will

be referred to as the elastic version ofG.
– r′ denotes the number of rounds inG′.
– The round function ofG′ will refer to one entire cycle ofG.
– The swap step will refer the step in which the rightmosty bits are XORed withy

bits from the leftmostb bits and the results swapped.

3

Fig. 1. Elastic Block Cipher Structure

The elastic version of a block cipher requires a greater number of expanded key
bits than the original, fixed-length version. In practice, options for the key schedule
include using a stream cipher to generate all expanded key bits, applying the original
key schedule multiple times, or using the original key schedule for some expanded key
bits and a stream cipher or other algorithm for the additional key bits. We note that the
use of a stream cipher for the key schedule allows for a generic key schedule across
all elastic block ciphers and increases the pseudorandomness of the expanded key bits
when compared to existing key schedules, although in practice this incurs the cost of
a decrease in the rate of key expansion [4]. The acceptable relationships between the
expanded key bits of the elastic version and the original keybits are expressed in the
security analysis below.

3 Security Analysis

3.1 Overview

For any concrete block cipher used in practice, as opposed toa theoretical construction
of a pseudorandom permutation (PRP), the cipher cannot be proven secure in a formal

4

sense (is not proven to be a PRP or strong PRP) but rather is proven or shown under
certain assumptions to be secure against known types of attacks. Thus, we can only do
the same for the elastic version of such a cipher. In order to provide a general under-
standing of the security of elastic block ciphers, we provide a method for reducing the
security of the elastic version to that of the original version, showing that a security
weakness inG′ implies a weakness inG. Our security analysis ofG′ exploits the fact
that there is an instance ofG embedded inG′ and is independent of the specific block
cipher used forG.

We prove thatG′ is secure against any attack that attempts to recover the keyor the
expanded-key bits ifG is secure against the attack, under certain assumptions on the
independence of the expanded-key bits inG′. This is accomplished by showing how
to convert such an attack onG′ to an attack onG. We believe this result is important
because it implies thatG′ does not have to be analyzed against any practical attack to
whichG is immune (unless a more refined analysis than the reduction is required). Our
approach is novel because we show how to convert an attack on the variable-length
version of a block cipher directly into an attack on the fixed-length version of the block
cipher, and, in general, it points out at a direction of identifying embedded ciphers inside
ciphers when the design is not purely of a black box fashion.

Security against key recovery attacks does not by itself imply security (e.g., the
identity function which ignores the key is insecure while key recovery is impossible).
However, all concrete attacks against real ciphers (linear, differential, higher order dif-
ferential, impossible differential, related key attacks,etc.) attempt key or expanded-key
recovery and thus practical block ciphers should be secure against such attacks. We
note that if there is a relationship between the plaintext and ciphertext bits that does
not involve the key bits, this relationship would either manifest itself in the results of
statistical tests on whatever versions of the block cipher (original and/or elastic) for
which the relationship holds, and/or as algebraic equations relating the plaintext and
the ciphertext.

3.2 G within G
′

Before stating our theorem, we provide some preliminary analysis that assists us in
conveying the linkage between the original and elastic versions of a block cipher. For
simplification of terminology only, we will refer to the fixed-length block cipherG as if
the round function ofG is a cycle and omit using the term ”cycle”. For anyG in which a
cycle involves multiple applications of the round function, such as in a Feistel network,
our analysis holds by referring to a cycle ofG instead of the round function ofG.

We first draw attention to the fact that the operations performed inG′ on the leftmost
b-bit positions inr consecutive rounds is an application ofG. This is depicted intuitively
in Figure 2. We note that we are concerned only withr consecutive rounds ofG′ and do
not include either the initial or final key-dependent permutation present in the definition
of elastic block ciphers. This relationship betweenG′ andG can be used to convert
an attack which finds the round keys forG′ to an attack which finds the round keys
for G. Let Grk denoteG using round keysrk and letGk

′ denoteG′ using keyk.
Let (p, c) be ab-bit (plaintext, ciphertext) pair, and letx andz each be of lengthy. ‖
denotes concatenation. IfGk

′(p ‖ x) = c ‖ z, a set of round keys,rk, for G such

5

that Grk(p) = c can be formed from the round keys and the round outputs inG′ by
collapsing the end-of-round whitening and swap steps inG′ into a whitening step. The
leftmostb bits of the initial whitening inG′ are used as the initial whitening inG and the
rightmosty bits of the initial whitening inG′ are dropped. The resulting end-of-round
whitening key bits forG will vary in up toy positions across the (plaintext, ciphertext)
pairs when collapsing the steps fromG′; however, it is possible to use these keys to
solve for the round keys ofG.

Fig. 2.G within G
′

The following claim shows that for any set of (plaintext, ciphertext) pairs encrypted
under sets of round keys inG′ where the rightmosty bits used for whitening in each
round may vary amongst the sets and all other key bits are identical amongst the sets,
there exists a corresponding set of (plaintext, ciphertext) pairs forG where the round
keys used inG′ for the round function and the leftmostb bits of each whitening step
are the same as those used inG, the plaintexts used inG are the leftmostb bits of the
plaintexts used inG′, and the ciphertexts forG are the leftmostb bits of output of the
rth round ofG′ prior to the swap step.

Claim 1:LetG be ab-bit block cipher andG′ be its elastic version. Let{(pi, ci)} denote
a set ofn (plaintext, ciphertext) pairs such that|pi| = |ci| = b. Let b+ y be the variable
block size forG′ where0 ≤ y ≤ b. Let w be ay-bit constant. Letvi be ay bit string
that may vary peri, for i = 1 to n. Under the following assumptions regarding the key
schedules:

– The rightmosty bits of each whitening step inG′ can take on any value and are
independent of any other expanded-key bits within the roundand in other rounds.

6

– There are no message-related expanded keys. Any expanded-key bits utilized inG
depend only on the key and do not vary across plaintext or ciphertext inputs.

– Any expanded-key bits used in the round function of ther consecutive rounds ofG′

can take on the same values as the expanded-key bits used in the round functions
of G.

– If G contains initial and end-of-round whitening, any expanded-key bits used for
the leftmostb bits of each whitening step inr consecutive rounds ofG′ can take on
the same values as the whitening bits inG.

if Gk(pi) = ci then there existsn sets of round keys for the firstr rounds ofG′ that are
consistent with inputspi ‖ w producingci ‖ vi as the output of therth round prior to
the swap step at the end of therth round, fori = 1 to n, such that the leftmostb bits
used for whitening in each round are identical across then sets and any expanded-key
bits used internal to the round function are identical across then sets.

Proof. Let rk = {rk0, rk1, ...rkr} be the set of round keys corresponding to keyk for
G. rk0 denotes the key bits used for initial whitening. For each(pi, ci), form a set of
the firstr round keys forG′ as follows: Pick a constant string,w, of y bits, such as a
string of 0′s. Let pi ‖ w be the input toG′. Let rki′ = {rki′0, rki′1, ...rki′r} denote
the round keys forG′ through therth round for the pair(pi, ci). Set any bits inrki′j
used internal to the round function to be the same as the corresponding bits inrkj . Set
the leftmostb bits used for whitening inrki′j to theb bits used for whitening inrkj .
Set the rightmosty bits used for whitening inrki′j to be the same as they bits left out
of the round function in roundj of G′. This is illustrated in Figure 3. Notice that the
leftmostb bits used for whitening in each round are identical across then sets of round
keys formed, and any bits used internal to the round functionare identical across the
n sets; specifically, they correspond tork in each case, and the rightmosty bits used
in each whitening step differ based on(pi, ci) across then sets. The case in whichG
does not contain whitening steps corresponds to using 0’s for the leftmostb bits of each
whitening step inG′.

The operations ofG′ on the leftmostb bits of rounds 1 through roundr, prior to the
last swap, are identical to the operations inGk(pi) because the swap step inG′ results
in XORing y bits of a round function’s output withy 0′s. Thus, the leftmostb bits in
the output of therth round prior to the swap step isci. Therefore, fori = 1 to n there
exists a set of round keys,rki′ for G′

rki′ such thatG′(pi) producesci as the leftmostb
bits in therth round prior to the swap step, thus proving the claim.

3.3 Reduction Between the Original and Elastic Versions of aCipher

We use the fact that an instance ofG is embedded inG′ to create a reduction fromG′ to
G. As a result of this reduction, an attack againstG′ that allows an attacker to determine
some of the round keys implies an attack againstG that is polynomially related in
resources to the attack onG′. Assuming thatG itself is resistant to such attacks, we
conclude thatG′ is also resistant to such attacks. We note that if an attack finds the key
as opposed to the expanded-key bits (the round keys) then theattacker can apply the key
schedule to the key to obtain the round keys. Therefore, in our analysis, we view any

7

Fig. 3.Converted Key Unchanged inb Whitening Bits

key recovery attack as providing the round keys to the attacker. The reduction requires
a set of (plaintext, ciphertext) pairs. This is not considered a limiting factor because
in most types of attacks, whether they are known plaintext, chosen plaintext, adaptive
chosen plaintext, chosen ciphertextetc.,the attacker acquires a set of such pairs.

In our analysis, we considerG′ without the initial and final key-dependent permu-
tations. This allows us to focus on the core components of theelastic block cipher al-
gorithm. If present, the initial and final permutations onlyserve to increase the security
of G′ since they prevent an attacker from knowing with probability one which bits are
omitted from the first application of the round function whenencrypting or decrypting.
Furthermore, since these permutations are added steps (as opposed to modifications to
components ofG) using key material that is independent of the round and whitening
key bits, they do not impact our analysis.

Theorem 1. Given a fixed-length block cipher,G, that works onb-bit blocks and its
elastic version,G′, that works on(b + y)-bit blocks, where0 ≤ y ≤ b, if there exists an
attack,A′

G′ , onG′ that allows the round keys to be determined forr consecutive rounds
of G′ using polynomial (inb and/orr) time and memory, then there exists an attack on
G with r rounds that finds the round keys forG and that uses polynomial (inb and/or
r) many resources asA′

G′ , assuming:

– There are no message-related expanded keys. Any expanded-key bits utilized inG
depend only on the key and do not vary across plaintext or ciphertext inputs.

– An attack onr′ rounds ofG′ implies a reduced-round attack onr rounds ofG′ for
r ≤ r′.

8

– A′

G′ finds all possible sets of round keys, if more than one set exists.
– Any expanded-key bits used in the round function ofr consecutive rounds ofG′ can

take on the same values as the expanded-key bits used in the round functions ofG.
– If G contains initial and end-of-round whitening, any expanded-key bits used for

the leftmostb bits of each whitening step inr consecutive rounds ofG′ can take on
the same values as the whitening bits inG.

Before beginning the proof, we have a few comments on the theorem and assump-
tions. We first note that for an attack onG′ to be computationally feasible, it must
involve< 2b (plaintext, ciphertext) pairs because otherwise an exhaustive search onG
would be possible, implyingG is insecure against practical attacks. The first assumption
is typical of existing block ciphers and is true of the elastic versions of block ciphers.
The second assumption is true of block ciphers used in practice. The last two assump-
tions mean that the key schedule ofG′ is defined such that a subset of the expanded-key
bits can have the same values as if they were generated by the key schedule ofG. These
assumptions are easily satisfied in practice by using the keyschedule ofG to generate a
subset of the round key bits and a separate algorithm to generate the expanded-key bits
required inG′ for the additionalr′ − r rounds and any whitening present inG′ that is
not present inG. Another option is if the key schedule ofG′ generates pseudorandom
expanded-key bits such that it is possible the expanded-keybits for the round function
and leftmostb bits of whitening inr consecutive rounds can take on the same values
generated by the key schedule ofG. In practice, given an expanded-key, it is feasible to
check if the expanded-key adheres to a specific block cipher’s key schedule. A subset
of the expanded-key bits being tested can be inserted into the key schedule to generate
additional key bits which can be checked against the bits in the value being tested.

The theorem holds by default for the case wheny = 0, sinceG′ is just G (with
the possible addition of whitening which can be set to 0’s when applying the attack if
G does not contain whitening). We viewG as having whitening steps in the proof to
Theorem 1. This is not an issue for the following reason. If the attack onG′ involves
solving for the round key bits directly and allows the bits used in the whitening steps
to be set to0 for bit positions not swapped and to0 or 1, as necessary, for bit positions
swapped, then the whitening on the leftmostb bits is equivalent to XORing with0,
which is the same as having no whitening inG. If the attack onG′ finds all possible
keys or sets of round keys, the attack must find the key(s) or set(s) of round keys cor-
responding to round keys that are equivalent to XORing with0. Setting a subset of bits
in each whitening step inG′ to 0’s is equivalent to using a weaker version ofG′. Any
attack that works onG′ will work on the weaker version. This is merely the case where
the attacker knows certain bits of each whitening step are0’s.

We note that Theorem 1 only states that an attack onG′ can be converted to an
attack onG and not the reverse. This is because, in general, the claim that an attack
on G can be converted into an attack onG′ does not hold. Consider the case whenG
contains the initial and end-of-round whitening steps. When y = 0, G′ is G with the
initial and final key-dependent permutations added and the key schedule replaced (such
as by a stream cipher). If the attack onG is due to the original key schedule, the attack
does not necessarily hold if the key schedule is changed to generate pseudorandom bits
when creatingG′. For any attack not due to the key schedule, in order to claim that an

9

attack onG implies an attack onG′, it is necessary that the attack onG be such that the
addition of the initial and final key-dependent permutations, the addition or expansion
of the whitening steps and the addition of the swap steps do not result in the attack
becoming inapplicable or computationally infeasible. In general, the conversion of an
attack fromG′ to G works because there is a decrease in the complexity of the block
cipher being attacked when going fromG′ to G; whereas, the reverse is not true because
there is an increase in the complexity of the block cipher when convertingG to G′.

To prove Theorem 1, we must show for any value ofy, where0 ≤ y ≤ b, that if
an attack exists onG′ it can be converted into an attack onG using polynomial time
and memory. We define the steps for converting a round-key recovery attack onG′ to
an attack onG. We describe two ways of performing the conversion. The firstmethod
works for any value ofy, where0 ≤ y ≤ b. The second method is is applicable for
values ofy satisfyingr(y − 2) < b, wherer is the number of rounds in the original
cipher. We include the second method because it requires fewer computations than the
first method and thus is useful for small values ofy. The methods treat whitening key
bits as if they are pseudorandom in that the whitening key bits can take on any value. In
G, if there is a relationship amongst the whitening key bits and/or between whitening
key bits and key material used within the round function due to the key schedule ofG,
such keys will be a subset of all the possible sets of round keys found using the attack
onG′. Then the set of round keys that satisfies the key schedule ofG can be determined
by checking which of the potential keys corresponds to the key schedule. If the number
of potential sets of round keys found by the attack onG′ is large enough such that it
is computationally infeasible to determine which ones adhere to the key schedule of
G, then the attack onG′ is not computationally feasible. This is because the number
of potential sets of round keys it finds for a set of (plaintext, ciphertext) pairs will also
be large enough such that it is computationally infeasible for an attacker to determine
which set to use to decrypt additional ciphertexts.

When we refer to converting the round keys ofG′ into round keys forG, we mean
the following: In roundj of G′, let bjl denote thelth bit of theb bits output from the
round function prior to the end-of-round whitening. Letkwjl denote the end-of-round
whitening key bit applied tobjl. If bjl is involved in the swap step at the end of round
j, let yjh denote the bit from the rightmosty bits with whichbjl is swapped and let
kwjh denote the whitening key bit applied toyjh. Set thelth whitening bit in roundj
of G to kwjl ⊕ kwjh ⊕ yjh whenj ≥ 2. Whenj = 1, the lth whitening bit is set to
kw1l ⊕ kw1h ⊕ y1h ⊕ kw0h in order to include the initial whitening on the rightmosty
bits in the conversion. Set all other key bits used inG (both whitening and any internal
to the round function) to be identical to the key bits used inG′. We refer to the initial
whitening as round 0. The initial whitening forG′ is converted to initial whitening forG
by using the leftmostb expanded-key bits of the initial whitening as the initial whitening
in G.

Proof of Theorem I: First Method We describe here a method for converting the
attack onG′ to an attack onG. Without loss of generality, we use the firstr rounds of
G′ as ther consecutive rounds for which the round keys are found. The conversion is
presented in terms of solving for the round keys from the initial whitening to roundr,

10

but may also be performed by working from roundr back to the initial whitening or by
using any consecutiver rounds with whitening applied before the first round as long as
the plaintext forG is the leftmostb bits of input to ther rounds and the corresponding
ciphertext fromG is the leftmostb bits of the output of ther rounds.

This attack runs in quadratic time in the number of rounds ofG. The attack,A′

G′ , on
G′ is used to solve for round keys 0 and 1 forG, then repeatedly solves for one round
key ofG at a time, using the output of one round ofG as partial input to a reduced round
version ofG′, running the attack onG′ and converting the1st round key ofG′ to the
round key for the next round ofG. By the second condition in Theorem 1, if an attack
onG′ with r′ rounds exists, then a reduced round attack onG′ exists for any number of
rounds< r′.

Let P be a set of plaintexts andC be a set of ciphertexts. We use the notation
{(P, C)} to indicate a set of (plaintext,ciphertext) pairs of the form (pi, ci) with pi ∈ P
andci ∈ C. Given a set{(P ∗, C∗)} = {(pi∗, ci∗)} of n (plaintext, ciphertext) pairs for
G, create a set{(P, C)} = {(pi∗ ‖ 0, ci∗ ‖ vir)} of n (plaintext, ciphertext) pairs for
an r-round version ofG′. Note: we only require that they bits appended to eachpi∗

when forming{(P, C)} be a constant; we choose to use 0. Thevir values appended
to theci∗ values are arbitrary and do not need to be identical. Ther subscript invir
denotes the number of rounds. Our method runs reduced round attacks onG′ and the
vir ’s can vary each time. SolveG′ for round keys 0 and 1. By the pseudorandomness
of the round keys, sets of round keys exist that correspond to{(P, C)} and which are
identical in at least the initial whitening and first round (the round keys across alln
pairs may be identical in additional rounds, but we are only concerned with the initial
whitening and first round at this point in the process). Denote these asrk′

0 andrk′

1.
Use the leftmostb bits ofrk′

0 as round key 0,rk0, for G. Since the rightmosty bits are
identical across all inputs toG′, whenrk′

1 is converted to a round key forG, the result
will be the same across alln elements of{(P ∗, C∗)}. Use the converted round key as
round key 1,rk1, for G. For eachpi∗, apply the initial whitening and first round ofG
using the two converted round keys. Letpi1 denote the output of the first round ofG
for i = 1 to n. Using a reduced round version ofG′ with r − 1 rounds and the initial
whitening removed, set{(P, C)} = {(pi1 ‖ 0, ci∗ ‖ vir−1)} and solve for the first
round key ofG′. As before, convert the resulting round key for the first round of G′ to
a round key forG, but this time use the converted key as the second round key for G.
Repeat the process for the remaining rounds ofG, each time using the outputs of the
last round ofG for which the round key has been determined as the inputs toG′ and
reducing the number of rounds inG′ by 1, to sequentially find the round keys forG.

This attack involves applying each round ofG to n inputs for a total ofrn rounds
of G. n(r+1)r

2 rounds ofG′ are computed in the worst case ifA′

G′ requires knowing
the output of each round of the reduced round version ofG′ to find the first round key.
r applications ofA′

G′ are needed on the reduced round versions ofG′. Let tA denote
the time to runA′

G′ . Let kst be the time to check that an expanded-key found byA′

G′

adheres to the key schedule ofG. The time to attackG is O(nr2 + rtA + kst).

In summary, the attack onG can be written as:
Input{(P ∗, C∗)} = {(pi∗, ci∗) for i = 1 to n}.
Create{(P, C)} = {(pi∗ ‖ 0, ci∗ ‖ vir) for i = 1 to n} for a r-round version ofG′,

11

where thevi′s are arbitrary.
UsingA′

G′ , solve ar-round version ofG′ for rk′

0 andrk′

1.
Convertrk′

0 to rk0 andrk′

1 to rk1.
Setpi1 = first round output ofG usingrk0 andrk1, for i = 1 to n.
For j = 1 to r − 1 {

{(P, C)} = {(pij ‖ 0, ci∗ ‖ vir−j) for i = 1 to n}.
Solve ar − j reduced round version ofG′ for the first round key,rk′

1.
Convertrk′

1 to formrkj+1.
pij+1 = output of roundj + 1 of G onpij usingrkj+1, for i = 1 to n.

}

Proof of Theorem I: Second Method Our second method for proving Theorem 1
requires fewer computations than the first method, but provides round keys for a smaller
set of (plaintext, ciphertext) pairs. The attack works as follows: Assume there exists a
known (plaintext, ciphertext) pair attack onG′ which produces the round keys either
by finding the original key and then expanding it, or by findingthe round keys directly.
Using round keys for rounds 0 tor of G′, convert the round keys into round keys for
G one round at a time. For each round, extract the largest set of(plaintext, ciphertext)
pairs used in the attack onG′ that have the same converted round key. If there arenj

(plaintext, ciphertext) pairs involved at roundj, there will be at leastnj

2y pairs remaining
for which the round keys are consistent after roundj. The end result is a set of round
keys forG that are consistent with a set of n

2y(r−2) b-bit (plaintext, ciphertext) pairs for
G. We then describe how to take a set of (plaintext, ciphertext) pairs forG, convert
them into a set of (plaintext, ciphertext) pairs forG′ in order to run the attack onG′ to
find the round keys forG.

Let{(P, C)} = {(pi ‖ xi, ci ‖ zi)}, for i = 1 to n, denote a set ofn known(b+y)-
bit (plaintext, ciphertext) pairs forG′, where|pi| = |ci| = b and|xi| = |zi| = y.

Let AG′ be an attack onG′ that finds the key(s) corresponding to{(P, C)} in time
less than an exhaustive search for the key. Letm denote the number of keys found. In
practice, only one key should be found for any set of (plaintext, ciphertext) pairs.m > 1
only impacts the time to perform the attack and not the methoditself. Without loss of
generality, it is assumed that the keys are available in expanded form.

Let k be one of them keys found byAG′ and letek be the expanded-key bits corre-
sponding tok. Let ˆeki be the expanded-key bits forG resulting from the conversion of
ek when applied to theith element of{(P, C)}. Let Rint denote any bits ofek utilized
within the round function. The values found for the bits ofRint will be the same forG′

andG (the same inek and every ˆeki). For eachi, the bits of ˆeki corresponding to the
initial whitening inG (round 0) will be the leftmostb bits of the initial whitening bits
from ek.

Let {(P, U)} = {(pi||xi, ui||vi)} such thatui||vi is the output of therth round of
G′ prior to the swap step, where|ui| = b and|vi| = y.

When the round keys fromek are converted to those for̂eki, at mosty bits change in
the leftmostb bits of each end-of-round whitening step. Thus, the resulting round keys
for roundq, 1 ≤ q ≤ r can be divided for each of they impacted bits into those that have
a 0 in the affected bit and those that have a1 in the affected bit. Forq = 1 to r, define

12

Srndq
as the maximum-sized set of̂eki values fromSrndq−1 that have identical bits for

roundq, whereSrnd0 = { ˆeki, for i = 1 to n}. Let {(P, U)rndq
} be the corresponding

elements of{(P, U)}. When forming{(P, U)rndq
}, at least(2−y) ∗ |{(P, U)rndq−1}|

of the elements from{(P, U)rndq−1} are included. There is no swap step after therth

round so|Srndr
| = |Srndr−1 |. Acrossr rounds, the number of (plaintext, ciphertext)

pairs are reduced at mostr − 1 times.
To illustrate how the setsSrndq

and{(P, U)rndq
} are created, consider the example

shown in Figure 4 whereb = 4, y = 2, and the leftmost2 bits are swapped with
they bits in the swap step. The round number isq and{(P, U)rndq−1} contains three
(plaintext, ciphertext) pairs. Suppose the outputs of the round function in theqth of G′

are100101, 110011 and111111 and the whitening bits in theqth round are011010.
The whitening bits of the converted round keys corresponding to the three cases are
0110, 1110 and1110. Since1110 occurs in the majority of the cases, set theqth round
key ofG to 1110. Srndq

contains the elements ofSrndq−1 that produced1110 as theqth

round key, and{(P, U)rndq
} contains the second and third (plaintext, ciphertext) pairs

from {(P, U)rndq−1}.

1001 01 1100 11 1111 11

KB KB

KB = 0110

KY = 01

KBKY KY KY

1111 00 1010 10 1001 10

1111 11 0010 10 0001 10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted

key bits
converted

key bits

converted

key bits

Fig. 4.FormingSrndq

Let rk be the contents ofSrndr
. rk is the expanded key bits forG. Let{(P, C)G} =

{(pi, ci)|(pi ‖ yi, ui ‖ vi) ∈ {(P, U)rndr
}}. |{(P, C)G}| ≥ n/2y(r−1). {(P, C)G} is

a set of (plaintext, ciphertext) pairs for whichGrk(pi) = ci ∀ (pi, ci) ∈ {(P, C)G}.

13

So far we have defined a method that produces a set of at leastn
2y(r−1) (plaintext, ci-

phertext) pairs that are consistent with the round keys. This lower bound on the number
of (plaintext, ciphertext) pairs can be slightly increasedto n

2y(r−2) by using(b + y)-bit
plaintexts that are the same in the rightmosty bits (which we did by setting these bits to
0). This will result in|Srnd1 | = n. Since we also have|Srndr

| = |Srndr−1 |, the set of
(plaintext, ciphertext) pairs is not reduced in the first andrth rounds. Then the number
of (plaintext, ciphertext) pairs produced forG that are consistent with the round keys for
G is≥ n

2y(r−2) . The number of possible plaintexts forG is 2b; therefore, it is necessary
for y(r − 2) < b to use this method.

To perform the attack onG when given a set of (plaintext, ciphertext) pairs forG,
convert the pairs into a set of (plaintext, ciphertext) pairs forG′ and find the round keys
for G′, and then forG as follows: Given a set{(P ∗, C∗)} = {(pi∗, ci∗)} for i = 1
to n known (plaintext, ciphertext) pairs forG, create the set{(P, C)} of (plaintext,
ciphertext) pairs to use in the attack on anr-round version ofG′ by settingpi ‖ xi =
pi∗ ‖ 0 andci ‖ zi = ci∗ ‖ zi, for i = 1 to n. For the set of(P, C) pairs created,
{(P, U)} = {(pi∗ ‖ 0, ci∗ ‖ zi)}. Apply the attack onG′ to solve for the round keys
of G′ then produce the sets{(P, U)rndr

} andSrndr
. The round keys inSrndr

will be
consistent with the (plaintext, ciphertext) pairs in{(P, U)rndr

}. A set of round keys
that adheres to the key schedule ofG will be found by Claim 1 and the assumption that
the attack onG′ finds all possible sets of round keys.

Let tr be the time to runr rounds ofG′ andtA be the time to runAG′ . Recall that
m is the number of keys (sets of round keys) found byA′

G′ . In the case of obtaining at
least one set{(P, U)rndr

} of size≥ n
2y(r−2) , the time required beyondtA consists of

nmtr time to obtain the outputs of the firstr rounds for each{(P, U)}, O(nmr) time
to perform the conversion of the round keys fromG′ to round keys forG andO(nmr)
time to form theSrndr

sets. Letkst be the time to check that an expanded-key adheres
to the key schedule ofG. Thus, the additional time required to attackG (beyond the
time required to attackG′) is O(nm(r + tr)+mkst). The only unknown value ism. If
m is large enough, to the extent that it approaches the averagenumber of keys to test in
a brute force attack onG′, then this contradicts the assumption that an efficient attack
exists onG′ because the attacker is left with a large set of potential keys for decrypting
additional ciphertexts.

4 Conclusions

We have proven that the elastic version of a block cipher is secure against any practical
attack that attempts to recover key or expanded-key bits if the original cipher is secure
against the attack. This eliminates the need to analyze an elastic version of a block
cipher against these types of attacks if the original cipheris secure against such attacks
(unless one is interested in improving the concrete work factors and probabilities of
success). Our result follows from the network structure used in creating elastic block
ciphers and the fact that the round function of the original fixed-length block cipher
is used as a black box when forming its elastic version. We note that while reduction-
based proofs of security are a cornerstone of cryptographicanalysis, they are typical
when complete components are used as sub-components in a larger design and used

14

in a black box fashion. We are not aware of the use of such techniques in the case of
concrete block cipher designs.

Acknowledgments

This work was partially supported by NSF Grants ITR CNS-04-26623 and CPA CCF-
05-41093. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
NSF or the U.S Government.

References

1. M. Bellare and P. Rogaway, On the Construction of VariableLength-Input Ciphers,Pro-
ceedings of Fast Software Encryption 1999, LNCS 1636, Springer-Verlag, pages 231-244,
1999.

2. E. Biham, New Types of Cryptanalytic Attacks Using Related Keys,Proceedings of Ad-
vances in Cryptology - Eurocrypt 1993, LNCS 0765, Springer-Verlag, pages 398-409, 1994.

3. E. Biham and A. Shamir,Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, New York, 1993.

4. D. Cook,Elastic Block Ciphers, Ph.D. Thesis, Columbia University, 2006.
5. D. Cook, M. Yung and A. Keromytis, Elastic Block Ciphers: The Basic Design,Proceedings

of ASIACCS, ACM, pages 350-355, 2007.
6. L. Knudsen,Block Ciphers - Analysis, Design and Applications, Ph.D. Thesis, Aarhus Uni-

versity,http://www2.mat.dtu.dk/people/Lars.R.Knudsen, 1994.
7. L. Knudsen, Truncated and Higher Order Differentials,Proceedings of Fast Software En-

cryption 1994, LNCS 1008, Springer-Verlag, pages 196-211, 1995.
8. M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations from Pseudoran-

dom Functions,Siam Journal of Computing, vol. 17, no. 2, pages 373-386, April 1988.
9. M. Matsui, Linear Cryptanalysis Method for DES Cipher,Proceedings of Advances in Cryp-

tology - Eurocrypt 1993, LNCS 0765, Springer-Verlag, pages 386-397, 1994.
10. NIST, FIPS 197 Advanced Encryption Standard (AES), 2001.
11. S. Patel, Z. Ramzan and G. Sundaram, Efficient Constructions of Variable-Input-Length

Block Ciphers,Proceedings of Selected Areas in Cryptography 2004, LNCS 3357, Springer-
Verlag, pages 326-340, 2004.

12. S. Vaudenay,A Classical Introduction to Cryptography, Springer, Berlin, 2006.
13. D. Wagner, The Boomerang Attack,Proceedings of Fast Software Encryption 1999, LNCS

1636, Springer-Verlag, pages 156-170, 1999.

15

