
Elastic Block Ciphers in Practice:
Constructions and Modes of Encryption

Debra L. Cook*, Moti Yung**, Angelos D. Keromytis**

* dcook@cs.columbia.edu1
**Department of Computer Science, Columbia University, New York, NY, USA

{moti,angelos}@cs.columbia.edu

 We demonstrate the general applicability of the elastic block cipher method by constructing
examples from existing block ciphers: AES, Camellia, MISTY1 and RC6. An elastic block cipher
is a variable-length block cipher created from an existing fixed-length block cipher. The elastic
version supports any block size between one and two times that of the original block size. We
compare the performance of the elastic versions to that of the original versions and evaluate the
elastic versions using statistical tests measuring the randomness of the ciphertext. The benefit, in
terms of an increased rate of encryption, of using an elastic block cipher varies based on the spe-
cific block cipher and implementation. In most cases, there is an advantage to using an elastic
block cipher to encrypt blocks that are a few bytes longer than the original block length. The sta-
tistical test results indicate no obvious flaws in the method for constructing elastic block ciphers.
We also use our examples to demonstrate the concept of a generic key schedule for block ciphers.
In addition, we present ideas for new modes of encryption using the elastic block cipher construc-
tion.

keywords: elastic block ciphers, block cipher constructions, modes of encryption

1 Introduction

We illustrate the method for creating elastic block ciphers with four constructions. Elastic block
ciphers are variable-length block ciphers created from existing block ciphers [5]. The elastic ver-
sion of a block cipher supports any block size between one and two times that of the original
block size. The method consists of a substitution-permutation network that uses the round func-
tion from the existing fixed-length block cipher. In this work, we construct elastic block ciphers
from AES [13], Camellia [1], MISTY1 [8] and RC6 [17], to serve as examples of the general
applicability of the method. We analyze the randomness of the cipher's output using standard sta-
tistical tests and evaluate the performance of the elastic versions. We also use our constructions to
illustrate the use of a generic key schedule for block ciphers. Additionally, we propose how the
method can be used to create new modes of encryption.

Our performance tests demonstrate that the benefit of using an elastic block cipher varies based
on the specific block cipher and implementation. In most cases, there is an increased rate of en-
cryption when using an elastic block cipher to encrypt blocks a few bytes longer than the original

1 This work was completed while the author was at Columbia University.

block length as opposed to padding the data to two full blocks. The statistical tests applied to the
block ciphers do not prove a cipher is secure but instead serve as a sanity check to determine if
there are design flaws in the cipher. The test results for the elastic versions are consistent with
those of the original ciphers and indicate no obvious flaws in the method for constructing elastic
block ciphers.

The remainder of this paper is organized as follows. In Section 2, we describe our four construc-
tions, including the use of a generic key schedule. In Section 3, we propose ideas for new modes
of encryption. Section 4 concludes the paper.

2 Elastic Block Cipher Examples
2.1 Overview

We briefly review our method for creating elastic block ciphers [5]. Our method converts the en-
cryption and decryption functions of any existing block cipher, G, that accepts blocks of size b
bits to a variable-length block cipher, G', that accepts block sizes of b+y bits, where 0 ≤ y ≤ b.
Figure 1 shows the general structure of an elastic block cipher. The round function of G' is a cy-
cle of G, where a cycle is the sequence in which all b bits have been processed by the round func-
tion of G. For example, in AES the round function is a cycle. If G is a Feistel network, a cycle is
the sequence of applying the round function of G to the left and right halves of the b bit block. In
each round of G', the leftmost b bits are processed by the round function and the rightmost y bits
are omitted from the round function. Afterwards, the rightmost y bits are XORed with a subset of
y bits from the leftmost b bits and the results swapped. What y bits are chosen from the leftmost b
bits for use in the swap step may vary per round. The swap step is omitted after the last round.
The number of rounds in G' is r’ = r + (ry)/b where r is the number of cycles in G. The elastic
version also includes initial and end-of-round whitening on all b+y bits, and an initial and final
key-dependent permutation that processes all b+y bits.

whitening

round function =
cycle of G

whitening

⊕

Total # of rounds:
r’ = r + ry/b
r = number of cycles in G

whitening

b+y bit ciphertext

last
round

key-dependent permutation

key-dependent permutation

Swap step: XOR the y bits omitted
from the round with y of the b bits
output from the round function and
swap the two segments. The exact y
bit positions used from the round
function’s output may vary per round.

round function =
cycle of G

b+y bit plaintext, 0 ≤ y ≤ b

Figure 1: Elastic Block Cipher Structure

b bits y bits

In the remainder of this section we describe the elastic versions of AES, Camellia, MISTY1 and
RC6. We choose these particular block ciphers because they were finalists in standards competi-
tions that represent different methods for how the round function process bits. AES serves as the
simplest example for creating an elastic block cipher because its round function processes the
entire 128-bit block in each application. Camellia, one of the recommended 128-bit block ciphers
from NESSIE's competition for cryptographic algorithms [10], is a Feistel network with an addi-
tional function applied after certain cycles. MISTY1, the recommended 64-bit block cipher from
NESSIE, is also structured as a Feistel network. Its elastic version provides an example of a ci-
pher covering blocks in the range of 64 to 128 bits. RC6, a finalist from the AES competition,
breaks the data block into quarters and the round function updates two of the quarters using the
values of the other two quarters. We use a 128-bit version of RC6.

2.2 Common Items

We first describe implementation details shared by the four examples. In the elastic versions of
block ciphers, the bits in a block of data are numbered from the most significant (leftmost) to the
least significant (rightmost). Bits 1 to b become the b-bit portion and bits b+1 to b+y become the
y-bit portion. The initial and final key-dependent permutations perform a byte or word level rota-
tion combined with a swapping of any fractional byte of data. Two expanded-key bytes are util-
ized by each of the permutations. The amount of the rotation depends on an expanded-key byte.
When the block size is not an integral number of bytes or words, the rightmost fractional byte or
word is omitted from the rotation and swapped with bits from the rotation's result. A second
expanded-key byte determines the byte or word from which bits are swapped with the fractional
byte. If the block size is an integral number of bytes or words, this second expanded-key byte is
unused. RC4 [18] was used for the key schedule. The first 512 bytes of RC4's output are dis-
carded [9], then RC4 is run until the required amount of expanded key bytes are obtained. How
the bits are selected for the swap steps varies slightly among our constructions. In all cases, the
bits swapped out of the b-bit portion at the end of the round are y sequential bits (circling back to
the leftmost bit after reaching the rightmost bit), but the starting position of this sequence varies
per cipher. As shown in [4], the exact positions of the bits swapped does not matter in the sense
that the elastic version will be secure against any attack that works by recovering key or round
key bits if the original cipher is secure against the attack regardless of the bit positions chosen for
each swap step.

For each cipher, we compared the performance of the elastic version to the original version with
padding. We measured the rate of encryption for each block size that is an integral number of
bytes. This excludes the time to expand the key. In the elastic implementations, when the block
size is not an integral number of bytes, the fractional byte is stored in a byte and the processing
time is the same as if a full byte of data is present; therefore, the time to encrypt b+y bits is the
time to encrypt (b+y)/8 bytes. It is possible for the computational workload to vary at a more
granular level, such as in a hardware implementation. The time for the fixed-length version to
encrypt a (b+y)-bit block is the time to encrypt 2b bits in order to represent the padding required
when using a b-bit block cipher. We measured the time to encrypt one million (b+y)-bit blocks,
where 0 ≤ y ≤ b and y is an integer multiple of 8, using the elastic version and two million b-bit
blocks using the fixed-length version. The time to pad the data was not included when measuring
the performance of the original cipher. We implemented all the ciphers in C. All tests were con-
ducted on a 2.8Ghz Pentium 4 processor with 1GB RAM running Redhat Linux 2.4.22, unless
otherwise noted.

We also compared the performance of the elastic versions to the performance of two previous
proposals for variable-length block ciphers. The first proposal is by Bellare and Rogaway [2].
Their method involves running an existing block cipher, G, in CBC mode under one key, encrypt-
ing the last block of output from the CBC mode with G using a second key and using its output as
an IV into G run in counter mode using third key. The ciphertext is the IV for the counter mode
concatenated with the result of XORing the output from counter mode with the plaintext minus
the last block. The second proposal is a modification by Patel, Ramzan and Sundarama to the first
method that replaces the CBC portion with a hash function [15]. We used SHA-256 [14] as the
hash function. Both proposals are less efficient than padding the plaintext to two full blocks and
encrypting with a fixed-length block cipher, and both do not vary the workload for plaintext that
is between one and two blocks in length. Bellare and Rogaway's method requires slightly more
than twice the work of using fixed-sized, b-bit blocks for any (b+y)-bit block, where 0 < y ≤ b.
Patel's method requires two full applications of the block cipher plus the cost of a hash function to
encrypt b+y bits.

2.3 Elastic AES

We created the elastic version of AES by adding the swap step between rounds of AES, expand-
ing AES's whitening steps (AddRoundKey) from b = 128 bits to 128+y bits, and adding the ini-
tial and final key-dependent permutations. The round function consists of AES’s SubBytes, Shif-
trows and MixColumns steps, with the MixColumns step omitted in the last round to be consis-
tent with the fixed-length version of AES [13]. The number of rounds ranges from 10 when y = 0
to 20 when 116 ≤ y ≤ 128. We implemented the swap step by selecting y sequential bits from the
leftmost b bits, wrapping around from the right to the left as needed. The starting position is var-
ied by moving one byte to the right each round to avoid using the same bit positions in each swap.
This avoids any complex selection process for choosing the y bits that would decrease perform-
ance.

We implemented two elastic versions of AES that differed in how the round function was imple-
mented. In Version I, we implemented the round function as a straightforward sequence of the
SubBytes, Shiftrows and MixColumns steps as defined in [13]. In Version II, we combined these
steps into a table lookup. This results in the round function being a series of byte-level table look-
ups and XORs. Version II requires fewer CPU cycles than Version I, at the cost of an increase in
memory usage. The round function can also be implemented to process the data as 32-bit words,
in which case the table entries are 32-bit words. We kept table lookups at the byte level because
we chose to implement the key-dependent permutations and swap step at the byte level.
The elastic versions increase the number of operations beyond the 128-bit versions due to the
swap steps, the two key-dependent permutations and the expansion of whitening to cover 128+y
its. In Version I, the elastic version saves processing time over padding. Obviously, as the block
size approaches two full blocks, 20 rounds of AES are incurred in the elastic version along with
the added steps, which increases the number of operations beyond the 20 rounds of AES that are
required when padding the data to two full blocks. Therefore, it is expected that there is no per-
formance benefit when encrypting blocks just under 32 bytes. In Version II, the elastic version
does not offer a performance benefit compared to padding. This is because of the simplistic nature
of the operations involved (table lookups and XORs) for the round function. Even though there
are fewer rounds in the elastic version than with padding, the operations for the swap step and the
two key-dependent permutations consume any savings gained from having fewer rounds. How-
ever, Version II offers a performance benefit over the variable-length block cipher construction by
Bellare and Rogaway, and its modification by Patel, et al.

Figure 2: Normalized # of Blocks Encrypted by Elastic AES in Unit Time
(Regular AES = 100)}

Figure 2 summarizes the results from the following three cases: Case 1: Version I tested on a 1.3
Ghz Pentium 4 processor with 512MB RAM running Windows XP, Case 2: Version I tested in the
Linux environment described in Section 2.2. Case 3: Version II tested in the Linux environment
described in Section 2.2. In the first trial, the number of (b+y)-bit blocks the elastic version can
encrypt per second ranges from 190% of the number of 2b-bit blocks AES can encrypt per second
when y=1 to 100% when y = 97. Then the elastic version's performance decreased gradually to a
low of 83% of AES's rate. In the second trial, the values ranged from 186% to 69% of AES's rate,
with the elastic version becoming slower than the fixed-length version when y = 73. In the third
trial, the elastic version was slower than the fixed-sized version with padding for all block sizes.

We compared Bellare and Rogaway's method and Patel's method to AES with padding on the
Pentium 4 processor used in cases 2 and 3. Bellare and Rogaway's method encrypted between 49
and 50 (b+y)-bit blocks in the same amount of time AES with padding encrypted 100 blocks, for
both Version I and II of AES. Patel's method encrypted 96 (b+y)-bit blocks in the time it took
Version I of AES to encrypt 100 blocks, and encrypted 18 (b+y)-bit blocks in the time it took Ver-
sion II of AES to encrypt 100 blocks. When using Version I, elastic AES is computationally more
efficient than both Bellare and Rogaway's method and Patel's method for all block sizes. When
using Version II, elastic AES is computationally more efficient than Bellare and Rogaway's
method for block sizes up to 21 bytes in length, and is more efficient than Patel's method for
block sizes less than 31 bytes and is as efficient as Patel's method for block sizes between 31 and
32 bytes.

2.4 Elastic Camellia

Camellia processes 128-bit blocks and is a Feistel network with additional steps. A function, re-
ferred to as the FL function, is applied after every three cycles in the Feistel network, except after
the last three cycles. FL is applied to the left half and its inverse is applied to right half of the
b=128 bits. Camellia contains initial and final whitening steps, but not end-of-round whitening.
Creating the elastic version involved using a cycle from the Feistel network as the round function,
expanding the two existing whitening steps to cover 128+y bits and adding end-of-round whiten-

ing steps to all the other rounds, and adding the same initial and final key-dependent permuta-
tions that we used in elastic AES. We apply the FL function after every three rounds, except for
the last round. A round of the elastic version is shown in Figure 3. The data is processed as bytes.
The swap step was implemented by altering the starting positions between the left and right
halves of the b-bit portion then rotating it one byte to the right within the half. Camellia has 9 cy-
cles. The number of rounds in the elastic version ranges from 9 when y=0 to 18 when 114 ≤ y ≤
128.

FL FL-1

F

F

right 64 bitsleft 64 bits

y bitsb bits

whitening and swap steps

round
function

every 3rd
round

Figure 3: Round Function for Elastic Camellia

Figure 4: Normalized #of Blocks Encrypted by Elastic Camellia in Unit
Time (Regular Camellia = 100)}

The elastic version offered no performance gain over the fixed-length version with padding. We
also measured the performance of the elastic version without the initial and final permutations.
Removing these two steps results in the elastic version offering a performance benefit when en-
crypting blocks that are one to three bytes over the normal 16-byte block size. Results for the fol-
lowing two cases are shown in Figure 4: Case 1: elastic Camellia with all steps, Case 2: elastic
Camellia without the initial and final key-dependent permutations. By using a lower bound of
twice the work of padding for Bellare and Rogaway's method, elastic Camellia with the key-

dependent permutations provides a performance benefit for block sizes up to 22 bytes and the
version without the key-dependent permutations provides a performance benefit for block sizes in
the range of 9 to 25 bytes compared to Bellare and Rogaway's method. Patel's method encrypted
61 (b+y)-bit blocks, 0 < y ≤ b, in the time it took Camellia with padding to encrypt 100 blocks.
Elastic Camellia is more efficient than Patel's method for block sizes up to 21 bytes and 23 bytes,
respectively, for the two cases.

2.5 Elastic MISTY1

MISTY1 is a 64-bit block cipher structured as a Feistel network with an additional function,
called the FL function (not to be confused with the FL function from Camellia), applied once per
cycle. While the number of cycles is not fixed, four cycles are recommended [10] and is the num-
ber upon which we base the number of rounds in the elastic version. MISTY1 does not contain
whitening steps. A cycle from MISTY1 is used as the round function in the elastic version, shown
in Figure 5. Creating the elastic version involved adding the whitening steps, the initial and final
key-dependent permutations and the swapping of bits after each cycle. The data is processed as
32-bit words. The key-dependent permutations are of the same form (a rotation and swap) as
those used in the other three elastic block cipher examples. We alternate the starting position for
the swap between the left and right halves of the round's output and, within each halve, rotate the
starting position one word each time.

Figure 5: Round Function for Elastic MISTY1

We implemented elastic versions, with and without the key-dependent permutations, and the
regular version of MISTY1. The performance results are shown in Figure 6. Case 1 refers to the
version with the key-dependent permutations and Case 2 refers to the version without the key-
dependent permutations. The elastic versions increased the number of operations beyond the 64-
bit version of MISTY1 due to the whitening, the swap steps and, in one version, the key-
dependent permutations. The elastic version of MISTY1 provides a performance benefit com-
pared to padding for blocks that are one to four bytes over the 8-byte block size that MISTY1
processes. The benefit increases significantly in Case 2 compared to Case 1 for block sizes that
are up to one additional byte over MISTY1's 8-byte block size. The performance benefit from
removing the initial and final key permutations decreases as the block size increases because they

represent an increasingly smaller portion of the operations as more rounds are added. In both
cases, the elastic version provides a performance benefit when compared to Bellare and Roga-
way's method based on a lower bound of twice the work of padding for their method. Patel's
method encrypted 51 (b+y)-bit blocks, 0 < y ≤ b, in the time it took MISTY1 with padding to
encrypt 100 blocks using padding. Both cases of the elastic version of MISTY1 encrypt at a faster
rate than Patel's method for all block sizes between 8 and 16 bytes.

Figure 6: Normalized # of Blocks Encrypted by Elastic MISTY1 in Unit
Time (Regular MISTY1 = 100)

2.6 Elastic RC6

RC6 is an example of a block cipher other than a Feistel network whose round function processes
only a segment of the data block. RC6 divides a 128-bit data block into four 32-bit words, which
we will refer to as ABCD. A and C are updated by the round function based on the values of B
and D. At the end of the round, A and C have expanded-key bits added to them then all the words
are rotated to the left one word. B and D have expanded-key bits added to them before the first
round, and A and C have expanded-key bits added to them after the last round. The addition of
expanded-key bits to a word is a type of whitening. Since this "whitening" does not cover the en-
tire data block and is not the same as performing whitening by XORing data with expanded-key
bits, we view this addition as a step in the round function and not as whitening that should be ex-
panded to all b+y bits when forming the elastic version. A sequence of four applications of the
round function of RC6 is a cycle and serves as the round function in the elastic version, as shown
in Figure 7. Initial and end-of-round whitening, and the initial and final key-dependent permuta-
tions are also added to create the elastic version. The rotations and XOR in the initial and final
permutations were performed at the word level this time instead of at the byte level as done in
elastic AES and elastic Camellia. The number of cycles in RC6 for 128-bit blocks is 5 (20 appli-
cations of RC6's round function). The number of rounds in the elastic version ranges from 5 when
y=0 to 10 when y=103 (20 to 40 applications of RC6's round function). The swap step was im-
plemented with the starting position rotating to the right one word each round.

128 bits

RC6’s round function

y bits

whitening and swap steps

RC6’s round function

RC6’s round function

RC6’s round function

Figure 7: Round of Elastic RC6

The elastic version provides a performance benefit compared to padding for blocks of under 21
bytes in length. The results shown in Figure 8. Using a lower bound of twice the work of padding
for Bellare and Rogaway's method, the elastic version of RC6 provides a performance benefit for
blocks under 30 bytes in length when compared to Bellare and Rogaway's method. Patel's method
encrypted 52 blocks (b+y)-bit blocks, 0 < y ≤ b, in the time it took RC6 with padding to encrypt
100 blocks. Elastic RC6 is more efficient than Patel's method for block sizes up to 29 bytes.

Figure 8: Normalized # of Blocks Encrypted by Elastic RC6 in Unit Time
(Regular RC6 = 100)

2.7 Randomness Test Results

We applied statistical tests used by NIST on the AES candidates to both the original and elastic
versions of the four ciphers. While these tests do not prove a cipher is secure, they do assist in
determining if there are any obvious weaknesses with the cipher. There are sixteen tests per-
formed on eight sets of data for each cipher. Refer to NIST's special publication 800-22 [12] for a
description of the tests and to the NIST report entitled "Randomness Testing of the Advanced En-
cryption Standard Finalist Candidates" [11] for a description of the data sets. We tested every
(b+y)-bit block size where y is an integral of 8 and b ≤ b+y ≤ 2b. We also tested two block sizes
that were not an integral number of bytes. These were 129-bit and 171-bit blocks for the elastic

round
function

versions of AES, Camellia and RC6, and 69-bit and 75-bit blocks for the elastic version of
MISTY1. We used 128-bit keys in all of our tests. Each data set required either an initial set of
random plaintexts or random keys. We created these random bit strings by extracting bits from
files of random bits available from random.org [16]. Based on the results, each of our three elas-
tic block cipher examples show no signs of any statistical weakness compared to the original ci-
phers. In the AES competition, finalists passed each test at a rate of 96.33% or higher [11]. The
elastic versions of the ciphers also met or exceeded this rate. For the elastic versions of the ci-
phers, the percentage of samples passing each test was consistent across all block sizes and data
sets.

2.8 Key Schedules

The key schedule for an elastic version of a block cipher has to generate more expanded-key bits
than the key schedule of the original block cipher. Additional key bits are needed due to the ex-
pansion or addition of whitening steps, the two key-dependent mixing steps and the increase in
the number of rounds. In practice, every block cipher includes its own key schedule, which is
typically designed with a focus on performance and little concern about the lack of pseudoran-
domness in the expanded-key bits. This tendency in key schedule design results in key schedules
contributing to attacks (due to the ease in which additional key bits can be determined once a few
are found and by increasing the opportunity for related key attacks [3]) and forces applications
supporting multiple block ciphers to support a separate key schedule for each cipher. When creat-
ing elastic block ciphers, we wanted to avoid these disadvantages of existing key schedules. Fur-
thermore, unlike the encryption algorithms of block ciphers which follow a somewhat generic
structure by being a series of rounds, key schedules vary extensively in their structures. This
makes it unlikely a general method can be devised for modifying the key schedules to generate
additional bits as needed based on the block size. Therefore, we required a generic key schedule
that is independent of the block cipher and that generates as many pseudorandom expanded-key
bits (or close to pseudorandom) as needed while adhering to a performance bound. Existing
stream ciphers are potential candidates for satisfying these requirements. We used RC4 as the key
schedule in the elastic block ciphers to illustrate the concept of a generic key schedule satisfying
these requirements. The first 512 bytes of RC4's output are discarded due to a slight statistical
weakness in the initial bytes output from RC4 [9]. We re-initialized RC4's "S" array is for each
expanded key. A disadvantage of a generic key schedule is that if a weakness is discovered in the
key schedule, it will impact any block cipher using the key schedule. However, having one key
schedule decreases the likeliness of overlooked design flaws and implementation errors compared
to when multiple key schedules are required.

In contrast to RC4 and any other stream cipher used in practice, the key schedules of AES and
Camellia generate expanded keys that can easily be distinguished from random bits. In AES, an
expanded-key byte is a combination of two other expanded-key bytes. When designing AES,
Daemen and Rijmen noted the benefit of pseudorandom key bits, but stated that they took a "less
ambitious" approach focused on avoiding symmetry between rounds and attacks due to related
keys because "All other attacks are supposed to be prevented by the rounds of the block cipher."
[6], page 77. In Camellia, there is a large overlap amongst the round keys. In MISTY1, the same
expanded key bits are used in multiple locations within the block cipher. In RC6, it is more diffi-
cult to determine key bits from other expanded-key bits compared to AES and Camellia. Each
original key byte is altered with an addition and a rotation. The resulting byte is then added to a
previous expanded-key byte and a constant to create the next expanded-key byte.

Cipher Block Size in Bytes # of Rounds # of Expanded-Key Bytes
AES 16 10 180
AES 17 11 208
AES 32 20 676

Camellia 16 9 340
Camellia 17 10 383
Camellia 32 18 980
MISTY1 8 4 196
MISTY1 9 5 246
MISTY1 16 8 444

RC6 16 20 516
RC6 17 21 562
RC6 32 40 1652

Table 1: Number of Expanded Key Bytes in Elastic Versions

We compared the performance of RC4 when generating enough expanded key bits to encrypt a b-
bit block to the performance of the four ciphers' key schedules. When encrypting b bits, the num-
ber of expanded-key bits in an elastic block cipher is 32 more than the number in the original ci-
pher (due to the key-dependent permutations) plus the number of bits needed for any initial and/
or end-of-round whitening that was not in the original cipher. Recall that whitening steps were
added when forming the elastic versions of Camellia and RC6; whereas, AES already contained
whitening and only required that its whitening steps be expanded to cover all b+y bits.

When measuring the performance of the original key schedules, we removed any statements from
the original ciphers' key schedules that were present only for the support of key sizes other than
128 bits. Specifically, we removed the statements from AES's key schedules that were for the
support of 192 and 256-bit keys. We also compared each elastic block cipher’s key expansion rate
to that of AES’s original key schedule because in practice AES’s key expansion rate is presently
accepted. Let ti, for i = 1,2,3,4, correspond to the key expansion rate for the fixed-length versions
of AES, Camellia, MISTY1 and RC6, respectively. Table 1 shows the number of expanded-key
bytes needed in the elastic block ciphers for block sizes of b, b+8 and 2b bits. The key-expansion
rates for the elastic versions compared to that of the original versions are shown in Table 2.

Elastic
Cipher

Block Size
in Bytes

Elastic Version’s Rate (RC4)
 vs Fixed-Length Version’s Rate

Elastic Version’s Rate (RC4)
vs Fixed-Length AES’s Rate

AES 16 5.94t1 5.94t1

Camellia 16 43.54t2 6.89t1

MISTY1 8 119.24t3 6.09t1

RC6 16 6.29t4 7.84t1

Table 2: Key Expansion Rate

We note that Camellia and MISTY1 have the fastest key schedule of the four ciphers and also
requires the most expanded-key bits, thus resulting in RC4 appearing to be significantly slower.

However, Camellia's and MISTY1’s key schedules have the least amount of randomness of the
four ciphers due to reusing expanded-key bits in multiple locations. Overall, the RC4-based key
expansion used in the elastic ciphers when encrypting b-bit blocks is just under six to just under
eight times the rate of AES's key schedule.

3 Modes of Encryption
3.1 Overview

An elastic block cipher can be used in existing modes of encryption in two ways. The first option
is to use the block size of the original, fixed-length block cipher for all blocks except the last
block, then use a variable-length block at the end to avoid padding. A second option is to use a
block size different from the fixed-length block cipher for all blocks, with the size of the last
block set to avoid padding. When using an existing mode, the only benefit the elastic version of a
cipher provides is the elimination of padding; it does not eliminate any existing attack against the
mode. For short segments of data between one and two blocks, an elastic block cipher allows all
of the bits to be encrypted as a single block, avoiding the need to use a mode of encryption and
creating a stronger binding across the ciphertext bits compared to the ciphertext produced by a
mode of encryption. Elastic block ciphers also allow for new modes of encryption. We provide a
sketch of two new modes, Elastic Chaining and Elastic Electronic Code Book (Elastic ECB).
Both modes are intended as initial ideas for future work.

3.2 Elastic Chaining Mode

Elastic Chaining is depicted in Figure 9. y bits from the ith ciphertext block are prepended to the
(i+1)st plaintext block and the result encrypted as a (b+y)-bit block. This concatenation creates a
stronger binding between the ith and (i+1)st blocks compared to that created by the XOR used in
CBC mode. The stronger binding is achieved by increasing the work per block from the number
of rounds required for b bits to the number required for b+y bits, while the number of blocks is
unchanged. The output consists of the leftmost b bits from each ciphertext block for all but the
last block and the entire ciphertext of the last block. The first block to be encrypted can consist of
b plaintext bits with a y-bit IV prepended to it, b+y plaintext bits, or contain only b plaintext bits.
Overall, the ciphertext will be at most y bits longer than the plaintext. If the plaintext is not an
integral number of b-bit blocks, the last block may be shorter than b+y bits. When the plaintext is
not an integral number of b-bit blocks, the mode can be implemented without padding the last
block; whereas, using the non-elastic version of the block cipher would require padding and also
produce a ciphertext longer than the plaintext. The performance of the mode depends on the size
of y. For a block cipher with r rounds, nr rounds are computed to encrypt n b-bit blocks with
ECB, CBC or CTR mode. The number of rounds using elastic chaining will range from n(r+1)
when y=1 to 2nr when (ry)/b = r. This mode is useful in applications where the decryption can
start at the last block. For example, when decrypting a file or segments of a database.

The ciphertext can be decrypted by decrypting the last block, concatenating the y bits from the
plaintext block with the previous ciphertext block, and then decrypting the next block. When us-
ing an IV with the first block, the IV is not needed for decryption; however, having it available for
decryption provides a type of integrity check in that the first y bits of the resulting plaintext can be
verified against the IV.

IV

b bits b bits b bits

b bits

b bitsb bits

b bitsb bits

b bits

y bits y bits y bits

y bitsy bits

elastic
block
cipher

elastic
block
cipher

elastic
block
cipher

…

b bitsb bitsb bits input

…

…

…

…

y bits

Figure 9: Elastic Chaining Mode

The mode allows for variations. These include altering which positions the y bits from the previ-
ous ciphertext block are inserted into in the current plaintext block. Instead of prepending the y
bits to the next plaintext block, they could be appended or inserted amongst the b bits as either y
consecutive or nonconsecutive bits. The size of y can also vary between blocks, possibly based on
the key value.

This mode offers several security benefits because, even if the plaintext is known, an attacker
does not know the actual (b+y)-bit block being encrypted. If y varies per block based on key ma-
terial, the attacker does not even know the length of each block being encrypted. Incorporating
the previous ciphertext block into the current plaintext block when encrypting will hide plaintext
patterns. In the way the mode is depicted in Figure 9, a single bit toggled in the ciphertext is de-
tectable because it will garble all plaintext prior to and including the altered block. In order to
insert or splice together ciphertext blocks, the inserted ciphertext block must decrypt to a plain-
text which produces the same leftmost y bits as the original ciphertext block; otherwise, all plain-
text blocks prior to this one will be garbled, resulting in a much more noticeable impact than the
single garbled block produced by a splicing attack on CBC. Block-wise adaptive attacks [7], to
which CBC is subject, are prevented because there is no need for the device performing the en-
cryption to output the last y bits of each ciphertext block, except for the last block. This prevents
the attacker from knowing the actual block being encrypted because the attacker only gets to
choose b bits of the b+y bit block and block-wise adaptive attacks depend on the attacker know-
ing the exact plaintext.

To prepend blocks to the ciphertext, the attacker must be able to insert a ciphertext block that,
when prepended to the leftmost y bits of the original first plaintext block will decrypt to some
meaningful plaintext. Since these y bits are the IV, if the IV is not secret, the attacker will know
what the y bits are and needs to find b bits that can be prepended to the y bits. However, notice
that the attacker does not have a library of (plaintext, ciphertext) pairs from which to search for a
possible b-bit value to prepend to the IV unless the entire plaintext is one block, in which case the
mode is not necessary. The attacker will not have (b+y)-bit (plaintext, ciphertext) pairs from the
(input, output) pairs of data encrypted with this mode because the leftmost y bits of the ciphertext
are not included in the output except for the last block and the b+y input to the last block is not

output

y bits

known. Appending blocks requires that the attacker append blocks of ciphertext which decrypt to
a plaintext whose leftmost y bits are the same as the last y bits of the original ciphertext. In both
cases, the smaller y is, the more likely it is that the attacker can form meaningful blocks to pre-
pend or append, since there are only 2y values to try. If y or the bit positions used for the y bits
vary per block based on the key, an attacker will need to try all values of y and possible positions
for the y bits.

It is not possible to rearrange ciphertext blocks without garbling the plaintext because y bits from
each plaintext block are used to decrypt the previous plaintext block. In order to swap ciphertext
block i with ciphertext block j, the attacker has to find a ciphertext block in position i which,
when prepended to the leftmost y bits from the (j+1)st plaintext block, will decrypt to a plaintext
block whose leftmost y bits are the same as the y bits appended to the (j-1)st ciphertext block dur-
ing decryption. Likewise, the jth block must be such that when it is prepended to the leftmost y
bits from the (i+1)st plaintext block, will decrypt to a plaintext block whose leftmost y bits are
the same as the y bits appended to the (i-1)st ciphertext block during decryption. Furthermore, be-
cause the recipient of the ciphertext does not receive the rightmost y bits of each block except for
the last block. The attacker does not even know all of the ciphertext bits used to decrypt a given
block of plaintext when trying to determine what ciphertext blocks can be rearranged without
garbling the message.

3.3 Elastic ECB Mode

Our second new mode, shown in Figure 10, is a possible alternative to ECB mode that offers
some protection against pattern detection in and alterations of the ciphertext compared to ECB. In
tests, Elastic ECB significantly reduced the number of patterns when encrypting data that has re-
peated plaintext blocks aligning on 16-byte boundaries [4]. The data is encrypted as in ECB
mode, but the block size varies per block based on the key, as shown in Figure 10. The ith block is
of length b + yi for 0 ≤ yi ≤ b and yi is based on key bits. The ith block can be decrypted without
decrypting any other block by determining its starting position and length from the key. If the key
bits are sufficiently random, yi will be uniformly random within [0,b]. Another option is to use
key bits to set the first block's length then set each subsequent block size based on bits from the
previous ciphertext block, although this will not allow the block lengths to be set in advance.

The ith block can start at any position in the range b(i-1) + 1 and 2b(i-1) + 1, with an average of
(3b(i-1)+2)/2. For a plaintext pattern to show up in the ciphertext, the starting position of the
block (which is now random) and yi would have to match the starting position of the plaintext
pattern and its length in the file. This method does not work for all cases because there are b+1
possible block sizes (b to 2b) if all values of y are used and (b/8)+1 possible block sizes if the
block size must be an integral number of bytes. If the file is large enough and has a significant
number of repeated entries, ciphertext repetitions will occur. The degenerate case is a file consist-
ing entirely of the same byte value repeated, in which case there will be b/8 distinct ciphertext
blocks if y is restricted to being a multiple of 8.

Replacing individual blocks without garbling the plaintext is possible if the attacker can deter-
mine the start and end position of the individual blocks where the modification will occur. Any
block being replaced will have to be replaced with a block of the same length; otherwise, the
block and all subsequent plaintext blocks will be garbled. The probability of an attacker determin-
ing the start and end of the ith block is 1/(b2(i-1)). (The probability of guessing the start position of
the ith block is 1/(b(i-1)) and the probability of guessing the length, yi, of the ith block is 1/b.)
Splicing is even more difficult than replacing individual blocks. If two ciphertexts are being

spliced together, the individual block lengths of the result must be the same as the lengths corre-
sponding to the key. If a block is removed, the block boundaries for all subsequent blocks will not
correspond to the boundaries used in encryption and the remaining plaintext will be garbled.

p1: b+y1 p2: b+y2 p3: b+y3 pn: b+yn…

c2: b+y2 c3: b+y3 cn: b+yn

Ek(p1) Ek(p2) Ek(p3) Ek(pn)…

…c1: b+y1

Figure 10: Elastic ECB Mode

Elastic ECB mode is aimed at applications where at least two b-bit blocks are available when en-
crypting all but the last block so the block size can be varied, with y set to any value in the range
of 0 to b. Elastic ECB mode may require a greater amount of computation than ECB due to the
need to compute the yi's from the key and due to varying the block length. Overall encryption
time compared to ECB may or may not increase because the longer block lengths will result in
fewer blocks to encrypt. The total number of rounds required of the elastic ECB mode to encrypt
nb bits, for some integer n > 0, will depend on the n,b and yi values.

To illustrate how elastic ECB mode reduces patterns, the number of times two or more identical
blocks occur within a file was determined when using 16-byte blocks and (16+Y)-byte blocks,
where Y is an integer between 0 and 16 that varies per block. We focused the tests on files where
patterns are present. English text such as news articles and research papers are unlikely to have
repeated phrases that align on 128-bit block boundaries [4]. In contrast, patterns are likely to ap-
pear in the ciphertext produced by ECB mode when encrypting structured files where the format
of the content results in patterns, such as email logs.

We used files where repetitions of plaintext were frequent but not intentionally aligned on 16-byte
boundaries. These files consisted of emails, email logs (SMTP header information) and a log of
visitors (IP addresses, and related information) to a web site. The email consisted of emails be-
tween three people. The emails were generally short and included forwarded emails but no at-
tached files or images. 160,000 bytes were used from each file. When using elastic ECB mode,
the block sizes were determined randomly using the key value as a seed to a random number gen-
erator. We ran 10 trials, each with a different key. The results are summarized in Table 3. A block
counted as a match if it was identical to any previous block in the file. The maximum number of
matches (greatest percent) out of the 10 trials is reported for elastic ECB mode. The number of
blocks ranged from 6792 to 6845 across the combined 30 trials of elastic ECB mode on the three
file types.

File
Type

Percent of Blocks
Counting as a Match

with ECB
(10,000 total blocks)

Percent of Blocks
Counting as a Match

 with ECB
(max over 10 trials).

emails 13.62% 0.85%
email log 34.38% 9.46%
web log 38.70% 7.49%

Table 3: Percent of Matching Blocks

in ECB Mode vs Elastic ECB Mode

4 Conclusions

The constructions of the elastic versions of AES, Camellia, MISTY1 and RC6 illustrate how to
apply the method for creating variable-length block ciphers. By applying the statistical tests used
in NIST's AES competition, we conclude that there is no obvious flaw in the design because the
level of randomness of the ciphertext produced by each of the elastic versions is consistent with
the level required in the AES competition. The workload of the elastic version of a cipher is pro-
portional to the block size, with the number of rounds increasing as the block size increases. The
performance benefit from using the elastic version of a block cipher depends on the original ci-
pher and the exact implementation. The percent of overhead involved in adding the swap steps,
whitening and two key-dependent permutations varies based on the number of operations and
exact implementation of the original cipher. For AES, whose block size is 16 bytes, there is a sig-
nificant performance benefit when using the elastic version to encrypt blocks up to 25 bytes in
length using an implementation of AES that requires little memory; whereas, there is no perform-
ance benefit when using a memory intensive implementation that consists entirely of table look-
ups and XORs. For Camellia, whose block size is 16 bytes, there is a performance benefit when
using the elastic version for block sizes up to 19 bytes in length when the initial and final key-
dependent permutations are not included. For MISTY1, whose block size is 8 bytes, there is a
performance benefit when using the elastic version for block sizes up to 12 bytes. For RC6 with a
block size of 16 bytes, there is a performance benefit when using the elastic version for blocks up
to 20 bytes in length. The elastic versions offer a performance benefit over previous methods that
treat the block cipher as a black box and apply it multiple times.

The ability to encrypt variable-length blocks allows new modes of encryption to be designed. We
proposed two ways of using variable-length blocks to create new modes. Elastic Chaining in-
volves processing blocks in a manner such that bits from the ith ciphertext block become part of
the (i+1)st plaintext block. When encrypting a sequence of blocks, y bits from the previous
ciphertext block are prepended to the current plaintext block to form a (b+y)-bit block. This mode
prevents the block-wise adaptive attacks to which CBC is subject and, compared to CBC, results
in more garbled plaintext blocks when attempting to splice or otherwise alter ciphertext blocks.
Elastic ECB mode is ECB mode with key bits determining each block's size such that the block
size varies across the blocks. This significantly reduces the probability that patterns are detected,
even in highly repetitious data. Furthermore, insertion, removal or rearrangement of blocks re-
quires determining the start position and length of the blocks. These proposals for modes of en-
cryption are intended as initial concepts to demonstrate additional potential uses of elastic block
ciphers and require further analysis.

Acknowledgments

This work was partially supported by NSF Grants ITR CNS-04-26623 and CPA CCF-05-41093.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the NSF or the U.S Government.

References

1. K. Aoki and T. Ichikawa and M. Kanda and M. Matsui and S. Moriai and J. Nakajima and T. Tokita.
“Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis”. In Pro-
ceedings of Selected Areas in Cryptography, LNCS 2012, Springer-Verlag, pages 39-56, 2000.

2. M. Bellare and P. Rogaway. “On the Construction of Variable Length-Input Ciphers”. In Proceedings of
Fast Software Encryption, LNCS 1636, Springer-Verlag, 1999.

3. M. Ciet, G. Piret, and J. Quisquater. “Related-Key and Slide Attacks: Analysis, Connections and Im-
provements, Extended Abstract”. UCL Crypto Group Technical Report, 2002.

4. D. Cook. “Elastic Block Ciphers”. Ph.D. Thesis, Columbia University, New York, NY, 2006.
5. D. Cook, M. Yung, and A. Keromytis. “Elastic Block Ciphers: The Basic Design”. In Proceedings of

ASIACCS, ACM, pages 350-355, March 2007.
6. J. Daemon and V. Rijmen, “The Design of Rijndael: AES the Advanced Encryption Standard”. Springer-

Verlag, Berlin, 2002.
7. A. Joux, G. Martinet, and F.Valette. “Blockwise-Adaptive Attackers: Revisiting the (In)Security of Some

Provably Secure Encryption Models”. In Proceedings of Advances in Cryptology - CRYPTO, LNCS
2442, Springer-Verlag, August 2002.

8. M. Matsui, “New Block Encryption Algorithm MISTY”. In Proceedings of Fast Software Encryption,
LNCS 1267, Springer-Verlag, pages 54-68, 1997.

9. I. Mironov. “(Not So) Random Shuffles of RC4”. In Proceedings of Advances in Cryptology - CRYPTO,
LNCS 2442, Springer-Verlag, August 2002.

10. “NESSIE Security Report, Version 2”. https://www.cosic.esat.kuleuven.ac.be/nessie, February 2003.
11. NIST. “Randomness Testing of the Advanced Encryption Standard Finalist Candidates”,

http://citeseer.ist.psu.edu/soto00randomness.html, March 2000.
12. NIST. “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications”. NIST Special Publication 800-22. http://www.csrc.nist.gov/publications/nistir, 2001.
13. NIST. “FIPS 197 Advanced Encryption Standard (AES)”, http://www.csrc.nist.gov/publications/fips/

fips197/fips-197.pdf, 2001.
14. NIST. “FIPS 180-2 Secure Hash Standard”, http://www.csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf, 2002.
15. S. Patel, Z. Ramzan, and G. Sundaram. “Efficient Constructions of Variable-Input-Length Block Ci-

phers”. In Proceedings of Selected Areas in Cryptography, LNCS 3357, Springer-Verlag, 2004.
16. random.org. http://wwww.random.org/files.
17. Rivest, Robshaw, Sidney, and Yin. “RC6 Block Cipher”. http://www.rsa.security.com/rsalabs/rc6, 1998.
18. R. Rivest. “RC4”. In Applied Cryptography by B. Schneier, John Wiley and Sons, New York, 1996.

http://citeseer.ist.psu.edu/soto00randomness.html
http://citeseer.ist.psu.edu/soto00randomness.html
http://www.csrc.nist.gov/publications/
http://www.csrc.nist.gov/publications/
http://www.csrc.nist.gov/publications/fips/fips180-2/
http://www.csrc.nist.gov/publications/fips/fips180-2/

