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Abstract. We introduce mix rings, a novel peer-to-peer mixnet archi-
tecture for anonymity that yields low-latency networking compared to
existing mixnet architectures. A mix ring is a cycle of continuous-time
mixes that uses carefully coordinated cover traffic and a simple fan-out
mechanism to protect the initiator from timing analysis attacks. Key
features of the mix ring architecture include decoupling path creation
from data transfer, and a mechanism to vary the cover traffic rate over
time to prevent bandwidth overuse. We analyze the architecture with
respect to other peer-to-peer anonymity systems – onion routing and
batching mixnets – and we use simulation to demonstrate performance
advantages of nearly 40% over batching mixnets while protecting against
a wider variety of adversaries than onion routing.

1 Introduction

In 1981, Chaum proposed a method for anonymous communication called a
mixnet[3]. Chaum envisioned a network of proxies, called mixes, each with a well-
known public key. In this system, when an initiator wishes to send a message
anonymously to a responder, the initiator chooses a route through the mixes
and wraps the message in a series of encrypted layers, one layer per mix in
the route. Each layer contains next-hop information and the encrypted next-
innermost layer; the layers are peeled off one by one as the message traverses
the route to the responder. Chaum’s original system has descendants in a wide
variety of anonymity-providing systems, including systems for anonymous web
surfing[18, 2], peer-to-peer anonymity[11], and network level anonymity in the
form of onion routing[12, 10].

Onion routing, equivalent to Chaum’s system as described thus far, yields
low-latency connectivity but is vulnerable to timing analysis. An adversary ob-
serving all links in an onion routing network can record arrival and departure
times for all messages in the network and use statistical methods to determine
exactly who is communicating with whom[19, 17]. Mixnets go further and at-
tempt to address this vulnerability by processing messages in batches to disguise
timing correlations. However, each mix along a route must delay processing a
batch until the batch is full, so, in practice, mixnet communication is generally
slower than onion routing. The result is, broadly, two designs: one provides strong
anonymity at the expense of performance, the other provides weaker anonymity
with performance.



We introduce an intermediate solution, mix rings, that give better perfor-
mance than mixnets while maintaining anonymity that is stronger than onion
routing. The goal of a mix or onion router is to disguise the correspondence
between the input and output messages that each relays. This goal is achieved
through cryptographically transforming each message so an observer cannot link
the messages and then, in the case of mixes, obscuring timing information ei-
ther through batching or individually delaying the messages. The work presented
here introduces a third mechanism for obscuring timing information that elim-
inates the need for batching (and the corresponding performance degredation
that comes with batching) while maintaining the anonymity properties of the
standard mixnet.

The intuition is that the batching process in a continuous-time mixnet in-
herently reduces performance, since a message has to be delayed at each mix
until the batch is full before it is forwarded. Batching is used to protect against
timing analysis, and we show that the mix ring architecture protects against the
same attacks, while paying a reduced performance penalty.

We route cover messages in a ring of mixes that contains the initiator. Using
mechanisms described later, the source (i.e., the initiator) of these cover mes-
sages is hidden, so an outside observer only sees an unbroken stream of messages
traversing the ring, with no obvious source or destination. When the initiator
wants to send a message to the responder, the initiator replaces a cover message
with a data message that “forks” (we will use the term fan-out) into two mes-
sages when it reaches an arbitrary point on the ring. One of the messages contains
the data destined for the responder, the other is a cover message that continues
around the ring. Since all traffic movement in the ring is coordinated, timing
analysis can determine no more than that the message originated somewhere
in the ring. We demonstrate that this system gives performance advantages of
nearly 40% over batching mixnets, while providing a stronger form of anonymity
than onion routing.

Note that there exists a form of mixnet, called a mix cascade, that similarly
provides low latency traffic. A mix cascade consists of a dedicated set of servers
that redirect traffic from a large set of users on a predefined route. There is
considerable discussion in the field of anonymity research on the merits of mix
cascades vs. peer-to-peer style anonymity systems; [9] contains an excellent sum-
mary of both sides of the discussion. Mix rings are a peer-to-peer network, and
thus we compare them only with other peer-to-peer anonymity systems.

The rest of this paper is organized as follows: in Section 2, we discuss related
work. In Section 3, we define our threat model and give a detailed explanation
of our system. In Sections 4 and 5, we examine the anonymity and performance
of mix rings. We conclude the paper in Section 6.

2 Related work

Systems based on onion routing include Tarzan[11], a peer-to-peer, IP-layer
anonymizing network and Tor[10]. Tor extends onion routing by adding sup-



port for integrity protection, congestion control, and location-hidden services
through rendezvous points. Batching mixes add protection from timing analysis
attacks by pooling messages in batches. Mixes have been used in a wide variety of
applications such as ISDN service[15], IP-layer infrastructure[14], and email[6].

Stop-and-go mixes[13], or sg-mixes, come from a subtype of mixes called
continuous-time mixes. Messages in a continuous-time mixnet are delayed indi-
vidually, rather than in batches. In sg-mix networks, message delays are ran-
domly chosen from an exponential distribution within a window of estimated
arrival time for that mix. Of course, this requires the initiator to predict traf-
fic levels throughout the mixnet. Mix rings are closely related to sg-mixes but
use constant rather than random delays so a principal does not have to predict
network traffic levels. (There exist attacks on connection based continuous-time
mixes that are based on observation of injected traffic[5], but these attacks do
not apply to mix rings, as mix rings are not connection-based.)

Pipenet[4] is effectively a mix network with the addition of pairwise cover
traffic between all mixes. This network provides strong theoretical anonymity
but is impractical due to its considerable bandwidth requirements. Mix rings are
similar to Pipenet but we reduce bandwidth requirements through mix ring’s
ability to increase and decrease cover traffic on demand.

Pfitzmann, et al., consider anonymity in a ring topology in the context of
local area networks [16] and describe such a system as being both fault tolerant
and efficient. Mix rings may be considered an extension of this work into the
inter-network realm. Other ring-related work includes [1] which uses tokens to
carry messages on routes that they compare to public transportation bus routes.

Danezis, et al. route dummy messages in a ring through an anonymity system
in what they call heartbeats [8]. Using heartbeats, an anonymity system can
detect some forms of tampering on the network, including an adversaries who
might speed up or slow down network links, or block them entirely. Mix rings
inherently provide the same protections, since every cover traffic message in the
ring can be viewed as a heartbeat.

3 Design and operation

We begin our discussion by describing our threat model and the design goals for
the system, then move on to the design of the system.

3.1 Threat model

We consider the broad categories of adversaries first described in [18]: a local
eavesdropper (e.g., a malicious first-hop router), one or more malicious mixes, a
malicious responder, and finally a global adversary who can observe and modify
all network links. We further assume that the global adversary can compromise
some, but not all, mixes in the network. We assume no adversary can reverse
cryptographic transformations.



3.2 Design goals

Our broad goal is to design a peer-to-peer system that finds a compromise be-
tween the (relatively) weak anonymity/low latency of onion routing and the
strong anonymity/high latency of mixnets. Thus, the specific goals of the ar-
chitecture proposed in this paper are to provide the flexibility of a peer-to-
peer anonymity system, while demonstrating anonymity comparable to that of
a mixnet, but with lower latency than a mixnet. We specifically consider latency
rather than bandwidth due to the batching nature of mixnets; the batching
process affects latency but does not inherently affect bandwidth.

3.3 System model

The basic mix ring infrastructure is a set of continuous-time mixes, each with
a well-known public key. (Note that in continuous-time mixes, messages are
delayed individually, rather than in batches.) The initiator must be a mix, but
the responder need not be.

When a mix receives a message, it decrypts the message to obtain next-hop
information, a set of options, and a recursively defined body. (See Section 3.4 for
more details on the structure of a message.) The mix performs any operations
specified by the options, pads the body out to the original length of the message,
and then forwards it on to the specified next hop.

Consider an initiator who wants anonymous communication with a particular
responder. This initiator chooses a random set of mixes, logically organizes them
into a ring, and negotiates session keys with each. The initiator then uses the
method described in Section 3.5 (below) to anonymously start routing cover
traffic around the ring.

ResponderInitiator

Exit point

Fig. 1. The initiator routes both cover traffic and data traffic around the ring. The
data traffic leaves the ring through a randomly chosen exit point.

The initiator sends a message to the responder, outside the ring, by con-
structing a special message that fans out when it reaches a randomly chosen exit
point on the ring. That is, when the message is processed by the exit point, the
processing generates two messages: one message destined for the responder and



one message that continues along the ring, indistinguishable from other cover
traffic. The result is that the total number of cover messages circling the ring is
unchanged, and from an adversary’s point of view, each member of the ring is
equally likely to have been the source of the message. (See Figure 1.)

3.4 Mix ring messages

Messages in mix rings are similar to other forms of onion-style messaging, e.g.,
Minx[7]. Each message has the following form:

{T, H1, B1, [H2, B2], P}

A message consists of a set of options T (defined below), a header H1 con-
taining the next-hop IP address and port, and a recursively defined body B1

encrypted using the next hop’s session key. The message may contain an op-
tional second header and body, H2 and B2, in the case of a fan-out message.
Finally, as each layer of the message is removed, padding P is appended so the
total message length remains constant.

We define the following options T on a message:

set-rate A set-rate option has a field that indicates the rate at which the mix
should forward every subsequent message.

delay A delay option instructs a mix to wait for some time period d before
processing the rest of the message, including any other options that may be
set.

fan-out A message with the fan-out option set contains in its body two next-
hop messages, H1, B1 and H2, B2. Typically, one of these next-hop messages
is standard cover traffic which is forwarded to the next hop in the ring; the
other is routed to the responder.

Each option may be set in any of the encrypted layers in a message, and a
single layer may have multiple options. Note that set-rate applies to all future
messages received by the mix, whereas delay is specific to the message layer
containing that option.

3.5 Constructing the ring

An initiator µ0 uses a trusted, well-known, directory server (similar to the Tor[10]
directory server) to arbitrarily select a set of mixes µ1, µ2, ..., µn that will
comprise the ring. The initiator then selects a second set of mixes ν1, ν2, ..., νn

which form a tunnel through the mixes to µi, an arbitary mix in µ. Through
this tunnel, the initiator negotiates a session key with each mix in the ring be
used for encrypting the layers of each message (see Figure 2).

Note that when a mix is sent a message with no option set (as are the
mixes in the tunnel) it behaves as a standard continuous-time mix. The purpose
of the tunnel at startup is to protect against a local adversary (an adversary
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Fig. 2. Injecting cover traffic into the ring. The initiator tunnels all cover traffic (1)
to an arbitrarily chosen mix on the ring (2), from which the traffic is routed around
the ring (3). When the traffic returns to the initiator, it is replaced with cover traffic
routed directly through the the ring (4), rather than through the tunnel.

situated on the initiator’s local network) who can otherwise observe the initiator
constructing the ring. See Section 4.1 for further discussion.

Now with a session key for each mix in the ring, the initiator begins trans-
mitting cover traffic at some rate r, routed through the tunnel and around the
ring, destined for the initiator itself. The first of these messages has the set-rate

option defined on each of its layers, instructing each mix on the default rate
r to transmit each subsequent message. As each cover message returns to the
initiator, it is seamlessly replaced with a new cover message routed through µ1

rather than the tunnel. When the desired number of cover messages has entered
the ring, the initiator closes the tunnel. The desired number of cover messages
is a factor of the bandwidth requirements of the initiatior and the bandwidth
limitations of the links on the ring itself. It can be as small as one, or as large
as the network infrastructure of the ring can handle.

Reiter et al. showed that all anonymity systems must reset periodically to
allow new nodes to join[18, 21]. We use the standard network time protocol
(NTP) to coordinate periodic resets across the mix ring system for this purpose.
We assume that, after each reset, every participating mix builds a new ring. This
protects from an adversary observing the initiator’s local network who might
otherwise be able to identify the initiator by observing which mix is the first to
send traffic (since this would have to be the initiator). With the above method,
that same adversary can only determine that the initiator is a participant in one
or more rings, but not that he or she is a given ring’s creator.

At this point, the construction of the ring is complete. The cover traffic is
flowing around the ring, each message advancing at a rate of r. This is the default
behavior of the ring when no message is being sent.

3.6 Default behavior

The default behavior occurs when no message is being sent. At some rate r the
initiator sends cover messages through the ring. As each cover message traverses



the ring and returns to the initiator, it is seamlessly replaced with a new one. If
a cover message fails to arrive within some window of its appointed time, or if
the messages arrive out of order, the initiator considers such messages lost and
does not transmit a new cover message; instead it uses the method described in
Section 3.7 to refill these gaps in the cover traffic.

If the initiator filled each gap as it appeared, an adversary could drop one or
more cover messages and then observe at what point the messages were replaced;
whichever mix replaced the messages would be the initiator. Thus, we use another
method, described below.

3.7 Filling gaps in the cover traffic

When the initiator discovers a gap in the cover traffic, it cannot simply insert
a new cover message because it would be clear to an adversary that the mix
which filled the gap was the initiator. Instead, the initiator chooses a random
mix µj on the ring and instructs that mix to fill the gap. This instruction is
performed using tools already described: on the gap’s second trip around the
ring, the initiator replaces the message immediately preceding it with a message
constructed in the following manner. In the message layer corresponding with
µj , the initiator sets the fan-out flag. The message headers H1 and H2 have
the same next-hop destination (the next mix in the ring) but each is set with
a different delay value, one d = r and one d = 2r, such that the gap is filled
when the second message is relayed. For larger gaps, this procedure is repeated
as necessary.

3.8 Varying the traffic rate

Under normal circumstances, the traffic rate in the ring is set to a low volume to
avoid consuming unnecessary bandwidth. Only when the initiator wishes to send
traffic is the rate increased. When the initiator wishes to increase or decrease
the traffic rate, it constructs a message to each mix in the ring with carefully
calculated delay and set-rate values such that all mixes in the ring execute the
set-rate at approximately the same time (this instruction actually takes the form
of a single message, with each layer in the message instructing that particular
hop on its rate and delay values). Perfect coordination is not required so long
as the initiator’s rate change is not statistically unique with respect to the rate
changes of the other mixes.

Over time, due either to properties of the network or actions of an adversary,
the cover traffic may become unevenly distributed around the ring. That is, the
traffic may become grouped together in “clumps.” We do not consider it further
here, but in future versions of the system, the initiator may counter this action
through judicious use of the delay option.

3.9 Sending a message

To send a message, the initiator chooses a random member of the ring µe as the
exit point for that message. It then constructs a message which is identical to



the other cover messages except that the layer of the message destined for µe

has the fan-out option set. One branch of the fan out, the data, is destined for
the responder; the other, cover traffic, is routed to the next hop on the ring. The
initiator can vary the ratio of data to cover messages to increase or decrease the
traffic bandwidth.

3.10 Receiving a message

The current mix rings implementation does not include a mechanism for a return
channel. However, we include in this section a draft for this mechanism which
will be built in future work. Briefly, the initiator includes in the message a reply
block which the responder may use to send messages back to the initiator. The
reply block is essentially an empty onion, designed to travel along the return
route of the ring. The responder fills in the body of the message and sends it
to the first hop of the return path (i.e., the exit point on the ring). When the
initiator receives the message, the return path is complete, but the initiator
must generate a new cover message that continues along the ring in place of the
return message. Otherwise an adversary could simply observe the path of return
message to identify the initiator.

4 Analysis

In this section, we analyze the mix ring architecture by comparing it with onion
routing and mixnet architectures. We show performance advantages of nearly
40% over batching mixnets and demonstrate a stronger form of anonymity than
strict onion routing.

Table 1. Comparison of initiator exposure in onion routing, mix rings, and mixnets.
The columns represent, respectively, a malicious first-hop router, a malicious interme-
diate mix or set of mixes, and a malicious responder.

Local Bad End
eavesdropper mixes host

Onion routing Exposed No No
Mix rings Possibly No No
Mixnets Possibly No No

Table 1 gives a comparison of the three architectures with respect to vari-
ous adversaries, each of which will be analyzed further in the remainder of this
section. We examine attack vectors by breaking them into three classes: adver-
saries at or near the initiator (a local eavesdropper), adversaries in the middle
of the network (compromised mixes), and adversaries at or near the responder.
We then consider some specific attacks against the cover traffic in the ring, and
attacks by a global adversary.



4.1 Attacks from a local eavesdropper

In onion routing, an initiator is immediately exposed to an adversary of this
type, since the adversary can observe the construction of the onion route. In
mixnets, the adversary can detect initiator activity, but generally cannot distin-
guish whether the initiator is truly an initiator or simply an intermediate node
on a mix route. Initiator activity in mix rings is identical to that of mixnets –
the initiator is simply building up mix routes, and thus the initiator is no more
or less exposed than an initiator in a mixnet.

4.2 Attacks from compromised mixes

In both onion routing and mixnets, a malicious intermediate mix can identify
its predecessor and successor on a given route. Also, if the responder is a node
outside the network and the compromised mix is the last hop on the route before
the responder, the adversary is trivially able identify the responder.

Similarly, a malicious mix in a ring can identify its predecessor and successor.
It has knowlege of the traffic rate in the ring, and whether or not it is an exit
point. If the mix is an exit point, it can identity the responder.

When a compromised mix knows it is on a route of interest, it can record
its predecessor on that route. Since the initiator has to be on the route between
itself and the responder after every reset, while all other mixes will only be on
that route with some probability less than one, over time the initiator will be the
predecessor of the compromised mix more often than any other mix. This attack
is called the predecessor attack and was first proposed by Reiter and Rubin[18].

Of course, the compromised mix must identify when it is in a route of interest;
this is only achieved when multiple compromised mixes are on the same route. In
onion routing, if a compromised mix is the exit point for a route, it uses timing
analysis to identify whether any of its collaborators are also on that route. If
there is one, then the collaborator records its predecessor. In this case, Wright, et

al., showed that after O(n2 ln n) resets, the adversary can with high probability
identify the initiator[20].

The mixnet attack is similar, but requires all mixes in a route of length
l be compromised before recording a predecessor data point. Wright showed
that mixnets survive for O(nl ln n) resets before the adversary can identify the
initiator with high probability .

Under the predecessor attack, mix rings behave as mixnets. The portion of
the ring past the fan-out is irrelevant since the attack takes place over the portion
of the ring between the initiator and the exit point. This is a segment of the ring
and a segment of the ring is also a mix route. If the distance from initiator to
exit point is i, then the initiator in a mix ring is compromised after O(ni ln n)
resets.

4.3 Attacks from the responder

Consider a ring of circumference 2n and an onion or mix route of length n.
(These are comparable since, on average, assuming randomly chosen exit points,



a message will traverse n mixes before it reaches the exit point and leaves the
ring.) A malicious responder in a standard onion or mix route must unroll the
route, compromising each of the n mixes in turn, to identify the initiator. Simi-
larly, a malicious responder in a mix ring must, on average, compromise n mixes
from the exit point back to the initiator to make positive indentification. Mix
rings, mixnets and onion routing are equally strong against attacks of this form
from the responder.

4.4 Attacking the cover traffic

Cover traffic is a key difference between mix rings and mixnets. The cover traffic
in a mix ring is cryptographically transformed in the same fashion as the data-
carrying traffic. An adversary is therefore unlikely to be able to distinguish
cover traffic from data traffic without reversing the crytographic transforms.
The adversary can, however, attempt to inject new cover traffic, or drop, delay,
modify or replay.

New cover traffic introduced by the adversary will be detected and dropped
at its first hop since we assume only the initiator possesses the session key
required to construct a valid message. However, if the adversary cuts an arbitrary
link for a short time but does not drain the cover traffic completely, then the
mechanism described in Section 3.7 is sufficient to fill any gaps. Meanwhile, the
remaining cover traffic is still useful for carrying data. If the adversary drains
the cover traffic completely, the ring must be reconstructed as in Section 3.5.
This is effectively a denial of service.

If, instead, the adversary attempts to delay the traffic (this may also oc-
cur due to properties of the underlying network) the cover traffic may become
unevenly distributed around the ring. This is handled as described in Section 3.8.

4.5 Attacks from a global adversary

Similar to mix nets and onion routing, a global adversary is able to observe the
construction of the ring, and this compromises the initiator from the start.

4.6 Further analysis

An important consideration in mix rings is that there must be members of the
community willing to operate nodes in a mix ring in which they, themselves,
are not the initiator. Given that there are members of the community who have
shown willingness to operate Tor and Mixminion nodes, for example, we believe
it a reasonable assumption that like-minded individuals would also be willing to
operate nodes in a mix ring.

5 Performance

To compare the performance of onion routing, mix rings, and mixnets, we de-
signed and deployed a simulator on PlanetLab, a worldwide experimental over-
lay network. The simulator is designed to emulate onion routing, mix rings, and
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Fig. 3. Transfer time for a 50kb file over varying route lengths.

mixnets. It is important to note that we only consider peer-to-peer anonymity
systems; we do not consider mix cascades. The simulator is a daemon that runs
on each node. At startup, the daemon is configured to operate as a node in
an onion routing system, a mix ring system, or a mixnet system. The differ-
ence between these modes of operation consist primarily of batching for mixnets
and handling the message options for mix rings. More specifically, the daemon
behaves as follows.

– When configured as an onion-router, the daemon listens for messages on
a pre-defined port. On receipt of a message m, the daemon decrypts the
message using its private key to obtain next-hop information. The message
is then immediately forwarded to the next hop.

– When configured as a router in a mix net, the daemon collects messages
arriving on a pre-defined port until the specified number of messages has
arrived (the batch size). Then each message is decrypted to obtain next-hop
information and forwarded onwawrd.

– Finally, when configured as a node in a mix ring, the daemon behaves as
an onion router, but obeys any options that may be set in the message (see
Section 3.4).

We deployed the simulator on approximately 30 PlanetLab nodes. For testing
mixnets and onion routing, we chose six nodes at random to behave as onion
routers or mixes, respectively. In the case of mix rings, we chose twelve of the
nodes at random, since in a mix ring a one-way message only traverses half the
ring, on average. We configured the mixnet with a batch size of 10 messages;
we configured the mix ring with a default cover traffic rate of 10ms between
messages. Each message is 8192 bytes.

In each of the following tests, we chose one node as the initiator and a node
outside the route or ring as the responder. The measurements do not take into
account interactions with other users, nor do they compare startup times; these
will be the subject of future analysis.



Figure 3 compares the transfer time of a 50kb file under each of the three
schemes as the length of the route increases. In the case of the mix ring, the exit
point on the mix ring was pegged at the n

2
node. It is clear that, while the mix

ring does not outperform onion routing, it has considerably lower latency than
the mixnet, on the order of 40% improvement for a given path length.
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Figure 4 compares the three schemes as the file size increases. In this case,
the mix ring exit point is chosen randomly, so the variance of the mix ring plot
has increased due to the randomly chosen exit points. However, the trend is still
clear: mix ring performance is considerably better than mixnets and approaches
that of onion routing.

6 Conclusion

This paper presents mix rings, an anonymity system stronger than onion routing,
with better performance than mixnets. Mix rings are a compromise between the
weaker anonymity/low latency of onion routing and the strong anonymity/high
latency of mixnets. Mix rings use cover traffic to protect against timing analysis
and provide a mechanism to vary the cover traffic rate to prevent bandwidth
overuse. We show that mix rings provide anonymity that is stronger than onion
rings, and comparable to mixnets. For file transfers, we show that mix rings
exhibit nearly 40% performance improvements over mixnets. This work makes
strong anonymity a possibility for low-latency applications that may not have
previously had the option available.

In future work, we will consider bidirectional traffic, perhaps using reply
blocks. We will also give futher study to the bandwidth interactions between
multiple rings.
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