
Journal of Information Assurance and Security 2 (2006) 41–50

Conversion Functions for Symmetric Key Ciphers

Debra L. Cook and Angelos D. Keromytis

Department of Computer Science
Columbia University, mail code 0401

1214 Amsterdam Avenue
New York, NY 10027

{dcook,angelos}@cs.columbia.edu

Abstract: As a general design criterion, a symmetric key

cipher should not be closed under functional composition due
to the implications on the security of the cipher. However,
there are scenarios in which this property is desirable and
can be obtained without reducing the security of a cipher by
increasing the computational workload of the cipher. We ex-
pand the idea of a symmetric key cipher being closed under
functional composition to a more general scenario where there
exists a function that converts the ciphertext resulting from
encryption under a specific key to the ciphertext correspond-
ing to encryption with another key. We show how to perform
such a conversion without exposing the plaintext. We dis-
cuss the tradeoff between the computational workload and
security, and the relationship between such conversions and
proxy cryptography. We conclude with a discussion of some
practical applications of our results.

Keywords: Symmetric Key Cipher Design, Conversion
Function, Proxy Cryptography

1 Introduction

We expand the idea of a symmetric key cipher being closed
under functional composition to a more general scenario in
which there exists a function that converts the ciphertext re-
sulting from encrypting with a specific key to the ciphertext
corresponding to encrypting with another key. As a general
design criterion, a symmetric key cipher should not be closed
under functional composition due to the implications on the
security of the cipher. However, there are scenarios in which
this property is desirable. Two (sometimes conflicting) goals
of such a cipher are to provide an efficient conversion between
the encryption of data under two different keys and perform-
ing the conversion without exposing the unencrypted data, as
occurs when decrypting data with one key then encrypting it
with a second key.

Any situation involving multiple pairwise communication
between entities with data encrypted using symmetric key ci-
phers can benefit from a symmetric key cipher that allows
for efficient conversions between keys while maintaining the

security of the cipher. Applications include virtual private
network (VPN) gateways, file distribution systems using en-
crypted files, email and online chat programs. We show how
to construct from any symmetric key cipher a cipher that al-
lows an entity to convert ciphertexts between two keys with-
out exposing the plaintext and how to develop a tradeoff be-
tween the computational workload required to perform the
conversion and the security of the cipher. We describe practi-
cal applications of the results. We also discuss the relationship
between such conversions and proxy cryptography.

The motivation for our work arises from a conversion prob-
lem in VPNs: Is it possible to define a symmetric key ci-
pher that allows for converting the encryption of plaintext P ,
Ek1(P), under key k1 to the encryption of the plaintext under
another key k2, Ek2(P), with fewer computations than what
is required for decrypting with key k1 then encrypting with
key k2? Consider the case of a VPN gateway transmitting
data between users A and B. The gateway shares k1 with
A and k2 with B. A and B do not share any key material.
With existing symmetric key ciphers, the gateway must per-
form the conversion by decrypting with k1 then encrypting
with k2. Specifically, A computes C1 = Ek1(P) and sends C1
to the gateway. The gateway computes C2 = Ek2(Dk1(C1))
and sends C2 to B who computes P = Dk2(C2). Is there a
conversion function F taking a key kg such that

(I) Fkg(Ek1(P)) = Ek2(P) ∀P
where kg depends on k1 and k2, and F requires less work than
applying both E and D with some acceptable tradeoffs? In
this application, the goal is to decrease the conversion time.
The gateway may have sufficient information to obtain P and
may or may not expose P during the conversion. In some
situations it is desirable for part of P to be obtainable for in-
spection, such as when a firewall needs to examine the packet.
The gateway may also need to modify parts of P , such as
in application-aware network address translation (NAT). The
existence of a function F as shown in (I) has significant im-
plications on the security of the cipher, which we will discuss.

We are also interested in conversions that prohibit the in-
termediate entity (the gateway in the example) from obtain-

Received December 5, 2005 1554-1010 $03.50 c© Dynamic Publishers, Inc.

42 Cook & Keromytis

ing the ciphertext in situations where there is no need for
it to have access to the plaintext. This concept is known
as proxy cryptography and is a subset of our general con-
version concept. We consider proxy cryptography applied to
symmetric key ciphers in order for the conversion to be ap-
plicable in situations involving larger quantities of data and
faster processing than what can be supported with public
key ciphers. Okamoto and Mambo introduced the notion of
proxy cryptography [10]. This was further explored by Blaze,
et al. in [2]. Prior work on proxy cryptography has almost
exclusively been focused on public key ciphers. When consid-
ering encryption with public key ciphers, proxy cryptography
allows for a public key to be used by a proxy to convert ci-
phertext received from one party into ciphertext that can be
decrypted with another party’s private key without the proxy
being able to decrypt the data.

The contributions of our work consist of the following
analysis regarding conversions. First, we extend the results
in [9] concerning the security of a symmetric key cipher that
is closed under functional composition to the more general
scenario of a symmetric key cipher for which there exists a
conversion function. Second, we introduce the concepts of
conversion crypto-systems to refer to a symmetric key cipher
for which a function exists that performs the conversion of
Ek1(P) to Ek2(P) and secure conversion crypto-system to
refer to a symmetric key cipher with a conversion function
which allows converting between encryptions under different
keys without exposing the plaintext. We define two classes
of secure conversion crypto-systems, one in which the en-
tity performing the conversion may have sufficient informa-
tion to obtain the plaintext even though the conversion does
not expose the plaintext, and one which is a proxy function in
that the entity performing the conversion cannot obtain the
plaintext. Third, we show how to construct secure conver-
sion crypto-systems from any existing symmetric key cipher.
We show that our conversion crypto-system constructions are
optimal in terms of the order of computational work com-
pared to the security of the underlying cipher utilized in the
construction, and discuss tradeoffs between the workload and
security in terms of the underlying cipher. Finally, we dis-
cuss possible applications of conversion and secure conversion
crypto-systems.

Paper Organization: In Section 2 we define our nota-
tion and introduce the terms for conversion crypto-systems.
In Section 3 we provide background information on proxy
cryptography. In Section 4 we review the attacks from [9]
on symmetric key ciphers which are closed under functional
composition. In Section 5 we generalize the attacks from [9]
to symmetric key ciphers for which conversion functions exist.
In Sections 6 and 7 we present constructions and applications
of conversion crypto-systems. Section 8 concludes the paper.

2 Conversion Definitions

In this section, we introduce and formally define the terms
conversion function, secure conversion function, conversion
crypto-system and secure conversion crypto-system for sym-
metric key ciphers. The following notation is used in our
definitions.

• P denotes plaintext.

• C denotes ciphertext.

• K denotes the key space for a symmetric key cipher.

• |K| denotes the size of the key space, K.

• k, ki denote keys. i is any alphanumeric symbol.

• |k| is the length of key k in bits.

• E, D denote the encryption and decryption functions of a
symmetric key cipher S, respectively. When encryption is
applied using a specific key, k, and plaintext, P , we write
Ek(P). When decryption is applied using a specific key,
k, and ciphertext, C, we write Dk(C). When S is a block
cipher, the lengths of P and C are the block size.

• S = (E, D, K) is a symmetric key cipher with encryption
function E, decryption function D and key space K. This
will be abbreviated as S.

• Z is the set of all permutations on b bits.

• KZ refers to the set of keys by which to index Z. Viewing
Z as an enumerated set, the ith key in KZ refers to the ith

permutation in Z.

• G = {Gkg} is a family of permutations on b bits. A specific
permutation in G is indicated by Gkg, where kg is a key
used to index into G. KG is the set of all kg values. |KG| =
|G|. Gkg(X) is the result of the permutation Gkg applied
to a b bit value X. The inverse of Gkg will be written as
G−1

kg . Notice that G ⊆ Z and |KG| ≤ |KZ|. |KG| can be
thought of as an enumeration of the elements from Z that
form G.

• F G is a function that performs the permutations in G. F G

is used to indicate the conversion function as defined in the
definitions below. F G

kg(X) refers to F G using key kg and
operating on input X. The inverse of F G will be written

as F G−1
.

We now define (secure) conversion functions, (secure) con-
version crypto-systems and related terms.

Definition 1: Conversion Function
Given a symmetric key cipher S = (E, D, K) operating on

b bit inputs, the conversion for S is the family of permutations
G = {Gkg} that converts Ek1(P) to Ek2(P) ∀ P for any keys
k1, k2 ∈ K. Specifically, Gkg(Ek1(P)) = Ek2(P) ∀ P where
kg is dependent on k1 and k2. The conversion function for S
is a function F G which takes key kg and b bit input X and
computes Gkg(X). There is no restriction on whether the
conversion function exposes P during the conversion and on
whether the entity performing the conversion has sufficient in-
formation to obtain P . F G is invertible because Gkg is a per-

mutation and thus is invertible. (Ek1(P)) = F G−1

kg (Ek2(P))
∀ P .
|KG| ≥ |K|. If not, then the existence of a kg for every

pair of keys k1, k2 ∈ K would require at least one kg to
map a k1 to more than one k2. If G is unknown, then the
number of values to try to determine KG may be more than
|K| because S may be defined such that the length of the key
is less than number of permutations on a b bit block (which
is true of symmetric key ciphers in practice). For example, if
no information is known about G other than the fact that G
exists, then any value in KZ potentially maps to an element
of KG. The number of keys to try in order to determine
KG is relevant when trying to attack a cipher for which a
conversion function exists.

Conversion Functions for Symmetric Key Ciphers 43

For any symmetric key cipher S operating on b bit inputs,
the mapping of Ek1(P) to Ek2(P) is a permutation on b bits.
Therefore, a family of permutations, G, which corresponds
to the conversion for S exists. This family of permutations
can always be created conceptually, if not practically, in the
following manner: For every pair of keys, (k1, k2) ∈ K, create
a table that contains the mapping of Ek1(P) to Ek2(P) of
every b bit P . Call the table Gkg where kg = k1||k2. G
is the set of permutations defined by all the resulting tables.
Define F G to be the function that performs the table lookups.
G corresponds to the |K|2 tables. Regardless of the exact
permutations in G, the representation of G may be simplified
at least slightly from the |K|2 tables. For example, when k1 =
k2, the resulting table corresponds to the identity function
and there will be |K| such tables. Also, the table for Gk2||k1

is the inverse of the table for Gk1||k2.

Definition 2: Conversion Crypto-System
A conversion crypto-system is a pair (S, F G) where F G is

the conversion function for the symmetric key cipher S.

Definition 3: Secure Conversion Function
A secure conversion function is a conversion function that

does not expose P during the conversion. There is no restric-
tion on whether or not the entity performing the conversion

has sufficient information to obtain P . dF G will indicate the
conversion function F G is a secure conversion function.

Definition 4: Secure Conversion Crypto-System

A secure conversion crypto-system is a pair (S,dF G) where
dF G is the secure conversion function for the symmetric key
cipher S.

Definition 5: Proxy Function
Given a symmetric key cipher S = (E, D, K), a proxy func-

tion is a conversion function that does not expose P during
the conversion and does not provide the entity performing the
conversion sufficient information to obtain P . A proxy func-

tion is a special case of a secure conversion function. gF G will
indicate the conversion function F G is a proxy function.

Definition 6: Proxy Crypto-System

A proxy crypto-system is a pair (S,gF G) where gF G is the
proxy function for the symmetric key cipher S. Proxy crypto-
systems are a subset of secure conversion crypto-systems.

Definition 7: Conversion Entity and Converter
Conversion entity and converter are used interchangeably

to refer to the entity executing the conversion function F G.

Definition 8: Proxy
A proxy is an entity executing F G in a proxy crypto-

system. This is a special class of conversion entities.

Definition 9: Effective Key Length
The effective key length, Keff , of a symmetric key cipher

S = (E, D, K) is a parameter defined in terms of the key
length, |k| for k ∈ K, which indicates the amount of work
required to successfully attack S compared to that of an ex-
haustive search over all keys. A cipher for which an exhaus-
tive search of the key space is the best known attack requires
O(2|k|) work and has an effective key length of |k|. For exam-
ple, if the key length is 128 bits, an exhaustive search over |K|
will require trying half of all keys (2127 keys) on average. If an
attack exists which requires trying 263 keys on average, then
Keff = 64. In this case S’s effective key length is equivalent

to that of a cipher with a 64 bit key on which an exhaustive
search over all keys is the best attack even though S uses 128
bit keys.

The conversion function, F G, corresponding to G can be
constructed (trivially) by defining F G

kg(C) to be Ek2(Dk1(C))
to convert Ek1(P) to Ek2(X). In this case, kg = k1||k2 and
|KG| = 22|k| versus |K| = 2|k|. Performing the conversion
by decrypting with k1 then encrypting with k2 exposes the
plaintext during the conversion. While both a secure conver-
sion function and a proxy function exists for every S (define
all of the tables corresponding to the mapping and have F G

perform table lookups), it should not be feasible to compute
secure conversion and proxy functions for a symmetric key ci-
pher used in practice by defining the tables due to the memory
and/or computational resources required.

3 Proxy Cryptography
The concept of conversion functions in general has not been
discussed prior to our definition in [4]. However, two specific
cases of conversion functions have been addressed previously.
The first case is where the symmetric key cipher’s encryption
algorithm is the conversion function. The security implica-
tions of such as cipher has been analyzed under the concept
of a block cipher which is closed under functional composi-
tion [9], which we review in Section 4. The second case is
where the conversion function is a proxy function. The con-
cept of a proxy function has been addressed under the topic
of proxy cryptography, although almost always in the context
of public key cryptography. We summarize the previous work
on proxy cryptography here.

When discussed in terms of encryption, proxy cryptogra-
phy refers to the concept of converting plaintext encrypted
under one key to the encryption of the same plaintext under
a second key without exposing the plaintext during the con-
version. The entity which performs the conversion is referred
to as the proxy and the function used to perform the con-
version is referred to as the proxy function. The proxy does
not have sufficient information, (e.g., the appropriate keys)
to obtain the plaintext. When applied to public key ciphers,
proxy cryptography allows two parties to publish a key that
the proxy will use to convert ciphertext received from one
party into ciphertext that can be decrypted with the other
party’s private key without the proxy being able to decrypt
the text. The concept of proxy cryptography is also relevant
to signature schemes. If a proxy function exists for a signa-
ture scheme, an entity A can sign for an entity B by signing
the data as itself then sending the signature to a proxy which
transforms A’s signature into B’s signature.

The prior work that exists on proxy cryptography is focused
on public key encryption and signature schemes. Okamoto,
Usuda and Mambo introduced the notion of proxy signature
schemes in [11]. Their work addressed the problem of an en-
tity, A, delegating the signing of messages to a proxy without
the proxy needing to know the secret component of the key
A uses for signing. Okamato and Mambo later expanded the
concept to encryption with public key ciphers [10]. In addi-
tion to the general concept, they defined proxy schemes for
El Gamal [5] and RSA [12]. Proxy cryptography was fur-
ther explored by Blaze, Bleumer and Strauss in [2] under
the term ”atomic proxy cryptography”. [2] discusses proxy
cryptography as it relates to public key encryption, signature

44 Cook & Keromytis

schemes and identification schemes. In [2], Blaze, et al. also
defined asymmetric and symmetric proxy cryptography. We
note that this is not to be confused with proxy encryption
using symmetric (secret key) and asymmetric (public key) ci-
phers. Given entities A, B and the proxy, asymmetric proxy
cryptography means the use of the proxy only works in one
direction between A and B. For example, A can use the proxy
to send messages to B without the proxy being able to con-
vert messages from B into a form A can decrypt. Symmetric
proxy cryptography means the use of the proxy works in both
directions between A and B. [1] refers to asymmetric proxy
cryptography as uni-directional proxy cryptography and sym-
metric proxy cryptography as bi-directional proxy cryptogra-
phy.

The only place in which proxy cryptography for symmetric
key ciphers has been discussed, albeit briefly, is in [8]. Ivan
and Dodis formally defined in [8] the concepts of symmet-
ric and asymmetric proxy cryptography from [2] in a manner
that can be applied to either public or private key ciphers,
although they only illustrate the concepts with public key
ciphers. [8] does not analyze the notion of proxy cryptogra-
phy in relation to private key ciphers. For example, it does
not explore the applications of symmetric key proxy func-
tions, does not discuss the workload and does not explore the
relationships between the keys, workload and security of a
symmetric key cipher with a proxy function, all of which we
discuss within this paper for conversion functions. No prior
work has considered the implications of a symmetric key ci-
pher which has been defined in a manner that incorporates
proxy cryptography, or more generally, conversions.

In [1], the use of proxy cryptography with public key ci-
phers was applied to the encryption and sharing of keys used
to encrypt files in a file system. An entity, A, creates a file
and encrypts it with a symmetric key cipher using secret key,
ka. ka is then encrypted using a public key cipher proxy en-
cryption scheme. Let kap be the key A uses for the public key
cipher and X be the encryption of ka using kap. A gives X
and a list of users who can access the file to an access control
server, which functions as the proxy to convey ka to the users
via the proxy encryption scheme. The access control server
does not have sufficient information to decrypt X and obtain
ka, but can only convert X into data that an authorized user,
B, on the list can decrypt to obtain ka. Therefore, the access
control server cannot obtain the contents of the files.

Proxy cryptography for public key ciphers has also been
called ”re-encryption” since it involves the proxy ”re-
encrypting” ciphertext received from the sending entity to
create a ciphertext that the receiving entity can decrypt.
[6] proposes efficient constructions of universal re-encryption
schemes using El-Gamal.

4 Security Implications of a Symmetric
Key Cipher that is Closed Under Func-
tional Composition

4.1 Overview
Before describing conversion crypto-systems, we review why
closure under functional composition is an undesirable prop-
erty for symmetric key ciphers. A symmetric key cipher,
S = (E, D, K), that is closed under functional composition
is an example of a conversion crypto-system where the con-

version function is S’s encryption function, E, using key space
K. Specifically, if S = (E, D, K) is closed under functional
composition, then ∀ k1, k2 ∈ K, ∃ k3 ∈ K such that:

(II) Ek3(Ek1(P)) = Ek2(P) ∀ P

Within the context of determining whether not DES [7]
is a group, Kaliski, et al. proved in [9] that any symmetric
key cipher with key length |k| that is closed under functional
composition is vulnerable to a known plaintext attack requir-
ing O(2|k|/2) work as opposed to O(2|k|) work required for an

exhaustive key search. We will write O(2|k|/2) as O(|K| 12),
where K is the keyspace. Two methods of known plaintext
attacks were described in [9], with a tradeoff between the
memory and the time required to decrypt additional cipher-
texts. We provide a brief summary of these attacks. They do
not provide the actual secret key, but instead provide a series
of keys which, when encrypting or decrypting with the keys
in order, produce the same results as the secret key.

4.2 First Attack - Variation of Birthday
Paradox

The first attack described in [9] produces a pair of keys,
(k1, k3), which can be used in place of k2 as indicated by
(II). Let S = (E, D, K) be closed under functional compo-
sition. Choose two sets of r keys KA = {ka1, ka2, ...kar}
and KB = {kb1, kb2, ...kbr} from K. For all pairs (kai, kbj),
0 ≤ i, j ≤ r, determine if (II) holds via a meet in the mid-
dle attack. Let C = Ek2(P). Compute Ekai(P) ∀ kai and
Dkbj (C) ∀ kbj and search for matches. Set k1 to the kai and
k3 to the kbj that produce the match. Test with additional
plaintexts to ensure the match does not hold for only a specific
P . This attack will produce a pair of keys that are equiva-
lent to the single key k2 as opposed to finding k2. The key
pair can be used to decrypt additional ciphertexts that have
been encrypted with k2. Obviously if either Ekai(P) = C or
Dkbj (C) = P is found during the search, then k2 has been

found. A match will be found in O(|K| 12) time and memory

when using r = O(|K| 12) keys in KA and KB if S is closed
under functional composition.

The result derives from a meet-in-the-middle variation of
the Birthday Paradox using two samples X and Y . If X and
Y are of size r, and are drawn at random from |K| elements
with each element drawn independently with probability 1

|K| ,

then there are
�|K|

r

�
ways to select X and

�|K|−r
r

�
ways to

select Y such that X
T

Y = ∅ and
�|K|

r

�2
ways to select X

and Y . The chance that X and Y do not intersect is:

(III) Pr(X
T

Y = ∅) = [(|K|)(|K|−1)...(|K|−2r+1)]

[((|K|)(|K|−1)...(|K|−r+1))2]

If r = α(|K| 12) for some constant α > 0, then Pr(X
T

Y =

∅) ≈ e−3α2
for sufficiently large |K|. The cipher S is trans-

formed into this variation of the Birthday Paradox by using
KA and KB as the two samples and defining intersection
to mean there is a k1 ∈ KA and a k3 ∈ KB such that
Ek3(Ek1(P)) = Ek2(P) ∀ P . The probability of finding a

(k1, k3) is approximately 1 − e−3α2
and approaches 1 as α

increases. The attack requires O(|K| 12) time and memory.

Conversion Functions for Symmetric Key Ciphers 45

4.3 Second Attack - Cycling Attack
The second attack in [9] is referred to as a cycling attack.
While it requires less memory than the first attack, it pro-

duces a series of keys that require O(|K| 12) time for decryp-
tion in contrast to the two keys produced by the first attack.
This attack corresponds to taking a pseudorandom walk in
the message space covered by the symmetric key cipher, with
each step corresponding to encrypting (or decrypting) with
another key. Encountering a cycle after a short number of
steps is an indication that the cipher is likely to be closed un-
der functional composition. Taking a large number of steps
without encountering a cycle is an indication that the cipher
is not closed under functional composition. For a cipher which
is closed under functional composition, it is expected that a

cycle will be encountered in |K| 12 steps.
Again let S = (E, D, K) be closed under functional com-

position. Given the plaintext, ciphertext pair (P, C) where
C = Ek2(P)), the idea is to obtain some series of encryptions
and decryptions that started with P and C, respectively, and
intersect. Starting with L = P on the left and R = C on the
right, randomly pick a key, k from K and either encrypt the
left side or decrypt the right side. Repeat, each time testing
if the left and right sides are equal. We use k ← K to indicate
k is randomly selected from K. This attack is summarized as
follows:

Set:
i = 0;
j = 0;
L = P ;
R = C;

while (L 6= R) do {
k ← K;
if encrypting L{

kai ← k;
L ← Ekai(L);
i = i + 1;

}
else if decrypting R{

kbj ← k;
R ← Dkbj(R);
j = j + 1;

}
}

A series of encryptions and decryption will be pro-
duced such that Ekai(Ekai−1 ...(Eka2(Eka1(P)))) =
Dkbj (Dkbj−1 ...(Dkb2(Dkb1(C)))) for randomly chosen
kai, kbj ∈ K. The result can be verified by testing with a few

additional plaintexts. An average of |K| 12 steps are needed
before the two sides match when S is closed under functional
composition. Like the first attack, k2 is not found. However,
the equivalent key for k2 that is produced this time is the
series of kai’s and kbj ’s. To decrypt additional ciphertexts
encrypted with k2, Dka1(Dka2 ...(Dkai−1(Dkai(Dkbj (Dkbj−1

... (Dkb2(Dkb1(C))))))) must be computed.

If the sequence of keys are saved, O(|k| ∗ |K| 12) space is
needed to store the keys. Only the current value of L and R
need to be saved as opposed to all of intermediate results of
the encryptions and decryptions. Time and space tradeoffs al-
low for the attack to occur in O(1/w) space and O(|K|(1+w)/2)
time where 0 < w < 1 [3].

5 Security Implications of a Symmetric
Key Cipher with a Conversion Func-
tion

5.1 Overview
By definition, every symmetric key cipher, S = (E, D, K),
has a conversion function, F G, as we mentioned in Section 2.
Define F G

kg(X) to be the decryption of X with key k1 followed
by the encryption with key k2 when converting from Ek1(P)
to Ek2(P) and kg = k1||k2. If this is the most efficient F G

then the effective key length of S is |k|, for k ∈ K (assuming
other types of attacks do not exist on S). Here the conversion
function will not assist in any attack attempting to find the
keys and/or recover plaintexts. We are concerned with the
implications when a conversion function exists for S that is
more efficient to compute then encrypting and decrypting.

In the remainder of this section, we describe how the
method used in the first attack from Section 4 can be used
with a conversion function to attack a cipher and how the
work required in the attack is related to the work of the con-
version function. We then define how the probability of such
an attack is related to the potential set of keys for the conver-
sion function. In all cases, we deal with conversion functions
in general, independent of whether or not the conversion func-
tion is also a secure conversion function or a proxy function.

5.2 Application of Birthday Paradox to
Symmetric Key Ciphers with a
Conversion Function

We now generalize the first attack from [9] to an attack on
a symmetric key cipher for which a conversion function ex-
ists. Thus we prove why it is undesirable for a symmetric
key cipher to be a conversion crypto-system if the computa-
tional and memory resources required of the conversion func-
tion are less than those required of decrypting then encrypting
to perform the conversion. A symmetric key cipher which is
closed under functional composition (which [9] addressed) is
a special case of a symmetric key cipher for which a conver-
sion function exists, specifically the case where the conversion
function is the encryption function. In the following, we use
the term ”work” to refer to the computational and memory
resources required.

Lemma I: For a symmetric key cipher S with keyspace K
and encryption function E, if there exists a function F G tak-
ing parameter kg ∈ KG, KG is known and |KG| = |K| such
that ∀k1, k2 ∈ K, ∃ a kg for which F G

kg(Ek1(P)) = Ek2(P)
∀P and the work of F G

kg is O(work of E) then there exists a

O(|K| 12) known plaintext attack on S.

Proof: The cipher S is transformed as in Section 4 into the
variation of the Birthday Paradox by using KA and KB as
the two samples and defining intersection to mean there is
a kai in KA and a kbj in KB such that F G

kbj
(Ekai(P)) =

Ek2(P). The set KB is selected from KG instead of from K
as it was in the first attack in Section 4. Since |KG| = |K|,
Equation (III) from Section 4 holds with X = KA and Y =
KB.

Lemma I implies that for any symmetric key cipher, S =
(E, D, K), with a conversion function, F G, taking a key, kg,
of the same length as the key length, |k|, of S, the effec-
tive key length of S is equal to 1

2
|k| when the work of F G is

46 Cook & Keromytis

equivalent to E. In this case, to obtain security comparable
to an exhaustive search over all keys of length |k|, namely
O(2|k|) work, the key length of S must be doubled to 2|k|.
Let K′ be the set of the longer keys such that for k′ ∈ K′,
|k′| = 2|k|. Then |K′| 12 = (22|k|)

1
2 = 2|k| = |K| and the

attack is O(|K′| 12) = O(|K|). We point out that when the
most efficient conversion function consists of decrypting with
k1 and encrypting with k2, then |kg| = 2|k| and the effective
key length of S is |k|.

It is possible for the effective key length of S to be less
than 1

2
|k| if F G provides some speedup aside from the square

root reduction in the number of keys to try to the extent that

a brute force attack is O(2(1
2 |k|−w)) as opposed to O(2(1

2 |k|))
for some w > 0. As long as the work in determining the
correct kg and applying F G

kg is greater than or equal to the
total work required in determining k1 and k2 then decrypting
and encrypting, the effective key length of S is |k|.

5.3 Attack Probability in Relation to Key
Space

We now consider how the probability of finding the pair
(k1, kg) when F G is not known for S = (E, D, K) (F G is
not known aside from creating a complete mapping of all Ek1

to Ek2 ∀k ∈ K). Let U be the potential set of permutations
in G and KU be the corresponding set of keys (indices into
U). G ⊆ U , KG ⊆ KU , U ⊆ Z and KU ⊆ KZ, where Z is
the set of all permutations on b bits.

We again choose two sets of keys, this time with one set
created from K and one set created from KU . Let KA be a
set of r keys chosen from K and let KB be a set of r keys
chosen from KU . When |KU | ≥ |K|, for any element in
KB, there may or may not be an element in K that we can
combine with it to obtain a key equivalent to k2. Without
loss of generality, choose KA first. There are r elements in
KU that can create a match with some element of K and�|KU|−r

r

�
ways to select r elements from KU such that no

match is formed. Let Pr[k1, k3] be the probability of finding
a k1 from KA and a k3 from KB, and let Pr[(k1, k3)] denote
the probability of not finding such a pair.

(IV) Pr[k1, k3] = 1− Pr[(k1, k3)]

Pr[(k1, k3)] =

�|K|
r

��|KU|−r
r

�
/
�|KU|

r

��|K|
r

�

≥ �|K|
r

��|K|−r
r

�
/
�|K|

r

�2

≥ �|K|−r
r

�
/
�|K|

r

�

with equality holding when |KU | = |K|, and

Pr[(k1, k3)| |KU | ≥ |K|] =

1− Pr[(k1, k3)| |KU | ≥ |K|]
≤ 1− Pr[(k1, k3)| |KU | = |K|]

As the expected number of keys to try before finding a match

increases from the O(|K| 12) obtained when |KU | = |KG| =
|K| (e.g. as the size of KU increases), the probability of
success decreases.

6 Conversion Crypto-Systems for Sym-
metric Key Ciphers

6.1 Secure Conversion Constructions
In this section, we define a general construction for symmetric
key secure conversion crypto-systems. First, we consider all
symmetric key ciphers and provide two variations for defining
the keys in the general construction. The variations differ in
the workload required of each entity and in which entities
share key material. Second, we provide a variation that is
restricted to stream ciphers and offers advantages over the
general construction. Recall that a conversion function can
be constructed for any symmetric key cipher, S = (E, D, K),
by defining:

(V) F G
kg(C) = Ek2(Dk1(C)) ∀k1, k1 ∈ K

with kg = k1||k2
to convert Ek1(P) to Ek2(P). This is not a secure system un-
der our definition due to the fact that the plaintext is exposed
during the conversion at the end of the decryption step.

Given a symmetric key cipher S = (E, D, K), we define the
following key format and function for use in our constructions:

• Let kg = (k1, k2, f lag1, f lag2) for keys k1, k2 ∈ K with
|k1| = |k2| and single bit values flag1, f lag2. The flagi

and ki values will be used to denote whether to encrypt,
decrypt or do nothing. A flagi value of 0 indicates to
encrypt with key ki and a value of 1 indicates to decrypt
with key ki. If ki is null, do nothing.

• Let H = Hk(X) denote H(E, D, X, kg) and be defined
as applying E or D, as indicated by kg, to X. From
kg, k1 and flag1 are used for the first application of E
or D, and k2 and flag2 are used for the second applica-
tion of E or D. For example, given a plaintext P and key
kg = (k1, k2, 0, 1), the conversion function will perform
Dk2(Ek1(P)). H itself can be considered to be a symmet-
ric key cipher that uses S as a building block.

Using the above key format, we define two general meth-
ods for creating a secure conversion crypto-system for any
symmetric key cipher. In both cases the conversion function
satisfies our definition of a proxy function. We also define a
method for creating a secure conversion crypto-system that
is specific to stream ciphers. We assume S is secure in the
sense that it has an effective key length of |k| for k ∈ K so,
independent of the conversion functions we define, there is no
practical attack on S.

6.2 General Methods
The following describes two ways of defining the keys using
the 4-item tuple format and operations required of the sender,
receiver and converter to create a secure conversion-crypto
system.

First Method:
The first method requires each pair of the three entities

to share some key material. We note that independent of
our initial paper on conversion functions [4], [8] defined this
method in a general scheme independent of the type of cipher
(public key or private key) while illustrating it with a public
key cipher, El Gamal. [8] neither explored the applications of
the method when using symmetric key ciphers nor the impli-
cations, such as the workload required of the entities and the
tradeoffs between workload, key length and security.

Conversion Functions for Symmetric Key Ciphers 47

We define the method as the following sets of keys and
computations for the sending entity, receiving entity and con-
verter:

(VI) Method 1:

Keys:

• kA = (kab, ka, 0, 0)

• kg = (ka, kb, 1, 0)

• kB = (kb, kab, 1, 1)

Computations:

• Sending Entity: Computes C1 = HkA(P) on plaintext P
and sends C1 to the converter.

• Converter: Computes C2 = Hkg(C1) and sends C2 to the
receiving entity.

• Receiving Entity: Computes HkB(C2) to obtain P .

Let A be an entity encrypting data using a symmetric
key cipher S = (E, D, K) to send data to entity B. To
send plaintext P from A to B via a converter, A computes
C1 = HkA(P), which is the equivalent of the double encryp-
tion Eka(Ekab(P)), and sends C1 to the converter. The con-
verter computes C2 = Hkg(C1), which is the equivalent of
Ekb(Dka(C1)), and sends C2 to B. To obtain P , B computes
HkB(C2), which is the equivalent of the double decryption
Dkab(Dkb(C2)).

Let F G
kg(X) = Hkg(X). When H is used in this manner,

(H,gF G) is a secure conversion crypto-system that is a proxy
crypto-system. F G

kg(X) is a secure conversion function be-
cause the converter does not expose P during the conversion.
F G

kg(X) is also a proxy function because the converter does
not have sufficient information by which to obtain P . The
disadvantages of this method are that each pair of entities (A
and B, A and the converter, and B and the converter) must
share partial key material and each entity incurs two appli-
cations of the cipher. While having the converter decrypt
and encrypt is no worse in terms of workload then what is
required in the conversion defined in (V) and provides the
benefit of being a proxy function, the receiving and sending
entities must also incur two applications of the cipher com-
pared to one application each when using the conversion in
(V).

There are a couple options for how key material can be used
in this method when communicating when either endpoint, A
or B, communicates with other entities. The key shared by
an endpoint and the converter can be used for communication
between the endpoint and multiple entities. For example, A
and the converter can use ka as their shared key when A sends
data to another entity, B′, through the converter. If ka is not
public and B intercepts the message to B′, B cannot perform
even one layer of the decryption. If ka is public, B can per-
form the same decryption layer as the converter, but cannot
obtain the plaintext unless it has the key, kb′ , belonging to B′

that is needed for the second layer of decryption. Likewise,
B and the converter can use kb when B sends messages to
entities other than A through the converter.

If the keys shared between the endpoints and the converter
are not public or used in multiple pairs, the key, kab, that
shared between the endpoints can be used for communicating
with multiple entities. For example, A can use kab with B′ if
B′ uses a key kb′ 6= kb with the converter if B′ cannot obtain

kb and if B cannot obtain kb′ . If either B′ or B intercept
messages between the converter and the other that originated
from A, neither can reverse the encryption performed by the
converter. This ”public” use of kab has a downside in that if
it is possible for an adversary to access memory within the
converter as F G

kg(C1) is being computed and obtain Dka(C1),
then the adversary can compute Dkab(Dka(C1)) and obtain
P .

Second Method:
The second method uses onion routing [13]. This method

does not require any shared key material between the con-
verter and B in order for B to receive messages from A.

(VII) Method 2:

Keys:

• kA = (kab, ka, 0, 0)

• kg = (ka, null, 1, 0)

• kB = (kab, null, 1, 0)

Computations:

• Sending Entity: Computes C1 = HkA(P) on plaintext P
and sends C1 to the converter.

• Converter: Computes C2 = Hkg(C1) and sends C2 to the
receiving entity.

• Receiving Entity: Computes HkB(C2) to obtain P .

Let A and B be defined as before. A performs HkA(P)
which is two encryptions to compute C1 = Eka(Ekab(P)).
The converter performs Hkg(C1) to produce C2 = Dka(C1)
and B performs HkB(C2) to compute P = Dkab(C2). Again

we set F G
kg(X) = Hkg(X) and (H,gF G) is a secure conversion

crypto-system that is a proxy crypto-system.
In this method, only the sending entity incurs two applica-

tions of the cipher. The converter incurs one application of
the cipher versus the two applications the converter performs
in (V). Across the three entities, the total workload is equiv-
alent to the workload of (V). In contrast to the first method,
every pair of entities do not share key material. A and the
converter must share ka. A and B must share kab.

Even though the first method imposes twice the workload
on each entity compared to a single application of a cipher;
whereas, the second method only increases the workload of
one entity, the first method offers a potential advantage in
how the key material is shared. While in both cases A and B
must share some key material, in the first method no entity
has the entire key of any other entity. In the second method,
A has the entire key used by each of the other two entities. B
must share some key material with A in both methods. The
second method does not require shared key material between
B and the converter for B to receive messages, but they must
share key material if B is also sending messages.

The second method provides an advantage over both
method 1 and the basic decrypt-encrypt approach in how
the work is distributed across the three entities. The con-
verter is likely to have a greater workload than either A or B
because the converter has to process all of the pairwise ses-
sions between the entities it serves; whereas, neither A nor
B will likely be involved in every session. By decreasing the
converter’s work to one application of S, the overall num-
ber of simultaneous sessions supported by the converter will

48 Cook & Keromytis

likely increase in comparison to when the converter must per-
form two applications of S. In most applications, increasing
A’s workload from the one encryption incurred in the basic
decrypt-encrypt approach to two encryptions will have less of
an impact on the number of simultaneous sessions supported
than when the converter must perform an encryption and de-
cryption.

6.3 Alternate Interpretation of Method 1
An alternative way of viewing the first method requires a
symmetric key cipher, S, that has is structured as a series
of rounds. This is typical of block ciphers used in practice.
Let r be the number of rounds in S. In the first method, let
Er1,r2

k1,k2 denote running r1 rounds of encryption using key k1
followed by r2 rounds of encryption using key k2. Let the keys
be defined as before in Method 1. Each entity will compute
two key expansions, one for each part of its key, use the first
key expansion for a specified number of rounds and use the
second key expansion for the remaining number of rounds.
For example, A will run r1 rounds of encryption with the
expanded kab and r2 = r − r1 rounds of encryption with the
expanded ka. The converter will run r2 rounds of decryption
using the expanded ka and r2 rounds of encryption using
the expanded kb. B will decrypt by running r2 rounds with
the expanded kb and r1 rounds with the expanded kab. The
converter requires a total of 2 ∗ (r2) rounds. Setting r1 = r2
results in each entity running r rounds. Specifically,

(VIII) Alternative Version of Method 1:

Keys:

• kA = (kab, ka, 0, 0)

• kg = (ka, kb, 1, 0)

• kB = (kb, kab, 1, 1)

Computations:

• A computes C1 = Er1,r2
kab,ka

(P).

• The converter computes C2 = Er2
kb

(Dr2
ka

(C1)).

• B computes P = Dr2,r1
kb,kab

(C2).

This method is equivalent to using two applications of a
reduced round version of the underlying cipher, S, thus the
number of rounds chosen for each step must be large enough
avoid making the reduced round version susceptible to other
attacks. A tradeoff can be established between the workload
and security by adjusting the number of rounds. To obtain
an effective key length equal to |k|, the effective key length
of the cipher S, set r1 = r2 = r. This results in the method
being equivalent to Method 1. If the workload of each entity
is set to that of S (r1 = r2 = r/2 so the work is equivalent
to a single encryption or decryption of r rounds), Lemma I
applies and the effective key length is 1

2
|k|.

We note that if r1 = r2 = r/2 and S’s key schedule creates
keys corresponding to the following:

• k1 : The round keys for the first r/2 rounds are the same
as in kab and the round keys for the second r/2 rounds are
the same as in ka.

• k2: The round keys for the first r/2 rounds are the same
as in kb and the round keys for the second r/2 rounds are
the same as in kab.

• k3 : The round keys for the first r/2 rounds produce the
same result as when decrypting r/2 rounds with ka and
the round keys for the second r/2 rounds produce the same
result as when encrypting with kb.

Then Ek3(Ek1(P)) = Ek2(P) and S is closed under functional
composition.

6.4 Stream Ciphers
We now define a third method that is a construction of a
secure conversion crypto-system that is specific to stream ci-
phers. Let S = (E, D, K) be a stream cipher (or a block
cipher run in a stream cipher mode, for example, OFB or
CTR) and C = KS ⊕ P , where KS is the key stream. Then,
unlike the first two methods, it is not necessary for A and B
to share any key material.

(IX) Method 3:

Keys:

• kA = (ka, null, 0, 0)

• kg = (kb, ka, 1, 1)

• kB = (kb, null, 1, 0)

Computations:

• Sending Entity: Computes C1 = HkA(P) on plaintext P
and sends C1 to the converter.

• Converter: Computes C2 = Hkg(C1) and sends C2 to the
receiving entity.

• Receiving Entity: Computes HkB(C2) to obtain P .

Let KSa and KSb denote the key streams produced by
E when using ka and kb respectively. A computes C1 =
HkA(P), which is the equivalent of KSa ⊕ P . The converter
computes C2 = Hkg(C1), which is the equivalent of KSa ⊕
KSb ⊕ C1. B computes HkB(P), which is the equivalent
to KSb ⊕ C2. The converter can compute KSa ⊕KSb ⊕ C1
without exposing the plaintext by either computing KSb⊕C1
or KSa ⊕KSb first.

There are several advantages to this construction. First,
A and B do not share any key material. Second, P is not
revealed during the conversion. However, the converter does
have the information needed to obtain P and therefore can
be used in applications where it needs to inspect P (such
as a firewall) and/or modify P (such as application aware
NAT). To obtain P , the converter performs the conversion by
computing KSb⊕(KSa⊕C), in which case this is the same as
the basic method of decrypting then encrypting stated in (V).
Third, it is not necessary that A and B incur any overhead
related to utilizing H in place of the underlying stream cipher.
H may be run only by the converter. A and B can just apply
the stream cipher directly.

Let F G
kg(X) = Hkg(X), then (H,dF G) is a secure conversion

crypto-system when the conversion is performed by as stated
and not by computing KSa⊕C then XORing the result with
KSb. The F G does not satisfy the definition of a proxy func-
tion because the converter has enough information to obtain
the plaintext even though it does not do so by definition of the
crypto-system. The converter is a proxy if it can only gen-
erate the combined keystream without knowing kA and/or
kB and without knowing either of the individual keystreams,
KSa or KSb. This may be possible if, through the use of

Conversion Functions for Symmetric Key Ciphers 49

an external device, such as a smart card or a secure crypto
processor, which given kA and kB produces the keystream
corresponding to kg, then it is possible to perform the con-
version without the converter having sufficient information to
obtain P . Another option is a hardware implementation that
runs two instances of the key stream generator and XORs
their outputs then makes the resulting key stream available
for XORing with the data. The keys may be configurable in
hardware and not accessible by any software applications on
the converter.

6.5 Effective Key Length
When designing a conversion function we do not want to re-
duce the effective key length of the cipher. In our two general
methods and the method stream cipher specific method, the
effective key length is that of the cipher S. The work re-
quired of the converter in methods 1 and 3 is equal to that
of encrypting and decrypting with the cipher, S = (E, D, K).
Assuming the work required when decrypting is equal to the
work required when encryption, the workload of the converter
is twice that of encryption. The length of the key, kg, used in
the conversion is also twice that of S’s key length. The two
flag bits in kg can be considered to be known as part of the
algorithm and do not count as key bits which an attacker will
need to determine. Even though we formally define H as the
cipher in the crypto-system, we want the effective key length
to be that of the underlying cipher S since our purpose of
defining the crypto-system is to provide a mechanism for a
secure conversion (and proxy function) for S. By Lemma I,
for the crypto-systems defined in the first and third methods,

there exists an attack which is ≈ 2(|K|2) 1
2 = 2|K| and thus

Keff = |k|. Therefore, both methods 1 and 3 are the best
possible in terms of security versus key length.

In the second method, the converter will need a key of
length 2|k| to obtain the plaintext because of the double en-
cryption by A. By the definition of method 2, we are using
onion routing and not providing a function which decreases
the amount of work needed to convert between keys k1 and
k2. The actual computations that allow the conversion in
method 2 can be viewed as being split between A and the
converter, with each performing one of the two applications
of S needed for the conversion. Thus the workload is no differ-
ent than if the conversion was performed by decrypting with
k1 then encrypting with k2.

7 Applications
In existing applications that convert ciphertext via the ba-
sic mode of decrypting then encrypting, whether or not the
plaintext is accessible temporarily during the conversion (in
part due to intermediate results being written to memory) de-
pends on the application and implementation. With a secure
conversion crypto-system, it is not a concern if intermediate
results are written to temporary files or insecure memory dur-
ing the conversion because it is still encrypted under one key.
Applications where a conversion that is faster than decrypt-
ing and encrypting would be valuable include VPN gateways
and cases where an entity needs to distribute data or commu-
nicate with multiple users without establishing pairwise keys
or sharing the same key with multiple entities. Examples of
this latter case include file distribution systems, email and
online chat.

In cases where the converter is trusted or requires access
to the plaintext, a basic conversion crypto-system in which
the converter can access the plaintext is beneficial over per-
forming the conversion by decrypting then encrypting only if
the conversion function is more computationally efficient then
decrypting and encrypting. For the converter to be trusted,
in must be ensured that the converter does not permit access
to the plaintext by any process or for any reason other than
that required by the conversion process. For example, there
must not be a threat of malware on the converter accessing
memory to which the plaintext is written as an intermediate
result during the conversion. However, as we showed, any
gains in efficiency that a conversion crypto-system offers over
decrypting then encrypting imply a decrease in security. Even
without efficiency gains, a conversion crypto-system is useful
if the application involves a converter which must serve as a
secure converter or proxy in some cases while requiring access
to the plaintext in other cases. This can be accomplished by
defining the entities according to one of the methods which
provides a secure conversion or proxy and providing the full
key material used by the sending entity to the converter when
needed to allow the converter access to the plaintext. Scenar-
ios where a converter may need to inspect packets include
gateways providing firewall and/or application-aware NAT
functionality. In the case of a firewall, packet inspection is
needed and the plaintext may be altered if malicious content
must be removed. In application-aware NAT, IP addresses
embedded in the application’s data are replaced. For exam-
ple, in VoIP services, NAT may be performed by the service
provider on the IP addresses of the caller and called party
contained within the VoIP protocol (such as SIP).

A scenario where the converter does not need to inspect
packets is a file system in which the files are encrypted under
one key and sent to a requesting user encrypted with the
user’s key. In such an application, a proxy function is useful
even if it incurs overhead not present in the basic decrypting
then encrypting approach because it ensures the file contents
are not obtained by unauthorized users from the converter.
Given that the converter may be using the same resources
as the users who store and access the files, the chances of
malicious activity can be higher than for a converter executing
on a system to which no users have access, thus increasing the
need for a proxy function.

The main disadvantage of our two general methods in Sec-
tion 6 is that the sending entity, A, and receiving entity, B,
must share key material, which results in implementation is-
sues. If the converter needs to inspect some of the packets
(thus a basic conversion crypto-system is needed instead of a
secure conversion crypto-system), either the converter must
establish the key material shared between A and B, or A
and B must establish shared key material on their own and
then send the necessary key material to the converter. If the
converter must be secure or act as a proxy, then if A and B
can establish a shared key, it can be argued there is no need
for a conversion entity unless it is used in preventing traffic
analysis since now the converter does not inspect or alter the
data but just converts it to ciphertext which B can decrypt.
In such cases it is not advisable for the converter to estab-
lish the key material and send it to A and B because then
the converter has all of the key material and can obtain the
plaintext even though it may not do so if the algorithm is

50 Cook & Keromytis

applied as specified. The methods are useful in cases where
the keys are established by an entity external to A, B and the
converter that never has access to the ciphertext in any form.
This allows keys to be established such that no entity has all
of the key material. Our method specific to stream ciphers
avoids the need for sender and receiver to share key mate-
rial, instead requiring only that they each share a key with
the converter. However, the implementation must be care-
fully designed if the method is to be used as a proxy function
instead of a conversion or secure conversion function.

8 Conclusions

We introduced the concept of (secure) conversion functions.
We have shown that for any symmetric key cipher S with
key space K, if there exists a conversion function requiring a
key whose length is the same as the length of the elements
of K and whose work is O(S) then there exists an O(|K|1/2)
attack. Our work poses the question of whether or not an
actual symmetric key cipher can be designed with a conver-
sion function (other than decrypt and encrypt) such that a
variable tradeoff between workload and security (effective key
length) can be set per application.

We provided methods for constructing a secure conversion
crypto-system from any symmetric key cipher that can con-
vert text between the ciphertext corresponding to encryption
under one key to that corresponding to encryption under a
second key without exposing the plaintext during the conver-
sion. The work of the resulting system is twice that of the
underlying cipher with an effective key length of that of the
underlying cipher. If the underlying cipher consists of multi-
ple rounds, the conversion crypto-system can be defined such
that the number of rounds performed by the sender, converter
and receiver vary according to the desired level of security and
workload. If the underlying cipher is a stream cipher, the
conversion can be implemented in a manner requiring no ad-
ditional work on the sending and receiving entities, and either
allowing or disallowing the converter access to the plaintext.
The security is unchanged from that of the basic stream ci-
pher with the added benefit that the plaintext is not exposed
during the conversion.

References

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Im-
proved Proxy Re-Encryption Schemes with Applications
to Secure Distributed Storage. In Proceedings of the
Network and Distributed Systems Security Symposium
(NDSS), February 2005.

[2] M. Blaze, G. Bleumer, and M. Strauss. Atomic Proxy
Cryptography and Protocol Divertibility. In Proceedings
of EUROCRYPT ’98, LNCS 1403, Springer-Verlag, May
1998.

[3] A. Chandra. Efficient Compilation of Linear Recursive
Programs. Technical Report STAN-CS-72-282, Stanford
University, April 1972.

[4] D. Cook and A. Keromytis. Conversion and Proxy Func-
tions for Symmetric Key Ciphers. In IEEE Interna-
tional Conference on Information Technology: Coding
and Computing (ITCC), Information Assurance and Se-
curity Track, pages 662–667, April 2005.

[5] T. ElGamal. A Public Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

[6] P. Fairbrother. An Improved Construction for Univer-
sal Re-encryption. In Workshop in Privacy Enhancing
Technologies, May 2004.

[7] FIPS 46-3. Data Encryption Standard (DES), 1999.

[8] A. Ivan and Y. Dodis. Proxy Cryptography Revisted.
In Proceedings of the Network and Distributed Systems
Security Symposium (NDSS), February 2003.

[9] B. Kaliski, R. Rivest, and A. Sherman. Is the Data
Encryption Standard a Group? Journal of Cryptology,
pages 3–36, 1988.

[10] E. Okamoto and M. Mambo. Proxy Cryptosystems: Del-
egation of Power to Decrypt Ciphertexts. IEICE Trans.
Fund. Eletronic Communications and Comp Sci. E80-
A/1, pages 54–63, 1997.

[11] E. Okamoto, K. Usuda, and M. Mambo. Proxy Cryp-
tosystems: Delegation of Power to Decrypt Ciphertex
ts. IEICE Trans. Fund. Eletronic Communications and
Comp Sci. E79 -A/9, pages 1338–1354, September 1996.

[12] RSA Laboratories. PKCS #1: RSA Encryption Stan-
dard, version 1.5 edition, November 1993.

[13] US Navy Research Laboratories. Onion Routing.
http://www.onion-router.net, 1998.

Author Biographies
Debra Cook is a Ph.D. student in Computer Science Depart-
ment at Columbia University in New York. She is completing
her doctorate in 2006. Her research interests are in in ap-
plied cryptography and security. She has a B.S. and M.S.E.
in mathematical sciences from the Johns Hopkins University
in Baltimore, Maryland and a M.S. in computer science from
Columbia University. After graduating from Johns Hopkins,
she was a senior technical staff member at Bell Labs and
AT&T Labs before pursuing her Ph.D.

Angelos Keromytis is an Associate Professor of Com-
puter Science at Columbia University. He received his Mas-
ters and PhD from the University of Pennsylvania, and his
Bachelors (all in Computer Science) from the University of
Crete, in Greece. His research interests include network and
system survivability, authorization and access control, and
large-scale systems security. A full CV can be found at
http://www.cs.columbia.edu/˜angelos/cv.html

